
z/OS Communications Server
Version 2.Release 4

IP Sockets Application Programming
Interface Guide and Reference

IBM

SC27-3660-40

Note:

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 805.

This edition applies to Version 2 Release 4 of z/OS® (5650-ZOS), and to subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-06-21
© Copyright International Business Machines Corporation 2000, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xiii

Tables...xxiii

About this document.. xxv
Who should read this document.. xxv
How this document is organized.. xxv
How to use this document...xxvi

How to contact IBM service... xxvi
Conventions and terminology that are used in this information.. xxvi
How to read a syntax diagram.. xxvii
Prerequisite and related information... xxx

Summary of changes for IP Sockets Application Programming Interface Guide
and Reference.. xxxv
Changes made in z/OS Communications Server Version 2 Release 4.. xxxv
Changes made in z/OS Communications Server Version 2 Release 3.. xxxv
Changes made in z/OS Version 2 Release 2...xxxv

Part 1. Overview..1

Chapter 1. Introducing TCP/IP concepts...3
TCP/IP concepts... 3
Understanding sockets concepts...4

Introducing TCP/IP concepts: Programming with sockets..5
Introducing TCP/IP concepts: Selecting sockets .. 5
Introducing TCP/IP concepts: Socket libraries.. 6
Introducing TCP/IP concepts: Address families.. 8
Introducing TCP/IP concepts: Addressing sockets in an Internet domain..................................... 8

Chapter 2. Organizing a TCP/IP application program... 13
Client and server socket programs.. 13

Client/server socket programs: Iterative server socket programs... 13
Client/server socket programs: Concurrent server socket programs... 14

Client/server socket programs: Call sequence in socket programs... 15
Call sequence in stream socket sessions...15
Call sequence in datagram socket sessions.. 16

Client/server socket programs: Blocking, nonblocking, and asynchronous socket calls.................. 17
Client/server socket programs: Testing a program using a miscellaneous server.............................19
Client/server socket programs: Testing a local machine using a loopback address..........................19
Client/server socket programs: Accessing required data sets... 19

Part 2. Designing programs.. 21

Chapter 3. Designing an iterative server program.. 23
Allocating sockets in an iterative server program... 23
Binding sockets in an iterative server program... 25

Binding with a known port number.. 25
Binding using socket call gethostbyname..25

 iii

Binding a socket to a specific port number..26
Listening for client connection requests in an iterative server program.. 27
Accepting client connection requests in an iterative server program.. 28
Transferring data between sockets in an iterative server program.. 30
Closing a connection in an iterative server program... 30

Active and passive closing in an iterative server program...30
Shutdown call in an iterative server program.. 31
Linger option in an iterative server program.. 32

Chapter 4. Designing a concurrent server program..33
Concurrent servers in native MVS environment.. 33
MVS subtasking considerations in a concurrent server program... 34

Access to shared storage areas in a concurrent server program.. 34
Data set access in MVS... 35
Task and workload management in a concurrent server program..36
Security considerations in a concurrent server program...36
Reentrant code in a concurrent server program..37

Understanding the structure of a concurrent server program.. 37
Selecting requests in a concurrent server program.. 37
Client connection requests in a concurrent server program...41

Passing sockets in a concurrent server program... 42
Transferring data between sockets in a concurrent server program..45
Closing a concurrent server program...45

Chapter 5. Designing a client program.. 47
Allocating a socket in a client program..47
Connecting to a server in a client program..47
Transferring data between sockets in a client program..48
Closing a client program...48

Chapter 6. Designing a program to use datagram sockets...49
Datagram socket characteristics... 49
Understanding datagram socket program structure...49
Allocating a datagram socket...50
Binding datagram sockets to port numbers.. 50
Streamline data transfer using connect call..50
Transferring data between datagram sockets...50

Chapter 7. Transferring data between sockets...51
Transferring data between sockets: Streams and messages... 51
Transferring data between sockets: Data representation...54
Using send() and recv() calls..55

The send() and recv() call conversation... 55
Using socket calls in a network application... 56
Reading and writing data from and to a socket... 57

Using sendto() and recvfrom() calls...58

Chapter 8. Designing IPv6 programs ..61

Chapter 9. Designing multicast programs ..63
Designing multicast programs: Multicast source filters..63
Designing multicast programs: IPv4 multicast options ... 65

IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP... 65
IP_ADD_SOURCE_MEMBERSHIP and IP_DROP_SOURCE_MEMBERSHIP................................... 68
IP_BLOCK_SOURCE and IP_UNBLOCK_SOURCE...69
IP_MULTICAST_IF...70
IP_MULTICAST_LOOP... 71
IP_MULTICAST_TTL.. 72

iv

Designing multicast programs: IPv6 multicast options.. 73
IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP..73
IPV6_MULTICAST_IF..76
IPV6_MULTICAST_LOOP.. 76
IPV6_MULTICAST_HOPS..77

Designing multicast programs: Protocol-independent multicast options..78
MCAST_JOIN_GROUP and MCAST_LEAVE_GROUP...78
MCAST_JOIN_SOURCE_GROUP and MCAST_LEAVE_SOURCE_GROUP....................................... 80
MCAST_BLOCK_SOURCE and MCAST_UNBLOCK_SOURCE.. 80

Designing multicast programs: IOCTL multicast commands..81
SIOCGIPMSFILTER... 81
SIOCGMSFILTER... 82
SIOCSIPMSFILTER..82
SIOCSMSFILTER... 82

Part 3. Application program interfaces... 83

Chapter 10. C Socket application programming interface..85
Compiler restrictions with C applications..85
Compiling and linking C applications...86

C application compatibility considerations..86
C socket API: Non-reentrant modules... 86
C socket API: Reentrant modules.. 88

C program compiler messages.. 91
C program abends.. 91
C socket implementation... 91
C socket header files.. 92

Manifest.h header file... 92
Prototyping..93

C structures.. 93
C socket API error messages and return codes.. 94
C socket calls..94

accept() .. 94
bind() .. 95
close() ...98
connect() .. 99
endhostent() .. 102
endnetent() .. 102
endprotoent() ...102
endservent() ...103
fcntl() ..103
getclientid() ..104
getdtablesize() ... 105
gethostbyaddr() ... 105
gethostbyname() ..106
gethostent() ... 107
gethostid() ..108
gethostname() ..108
getibmopt() .. 109
getibmsockopt() ...110
getnetbyaddr() ... 111
getnetbyname() ... 112
getnetent() ... 113
getpeername() ... 113
getprotobyname() .. 114
getprotobynumber() .. 115
getprotoent() ..115

 v

getservbyname() ..116
getservbyport() .. 117
getservent() ..117
getsockname() ... 118
getsockopt() ... 119
givesocket() ..123
htonl() ...125
htons() .. 125
inet_addr() ... 126
inet_lnaof() ...127
inet_makeaddr() .. 127
inet_netof() .. 127
inet_network() ... 128
inet_ntoa() ... 128
ioctl() .. 129
listen() .. 131
maxdesc() .. 132
ntohl() ...133
ntohs() .. 133
read() ..134
readv() .. 135
recv() .. 136
recvfrom() .. 137
recvmsg() ... 138
select() ... 140
selectex() ... 143
send() ... 144
sendmsg() .. 145
sendto() ..147
sethostent() ..148
setibmopt() .. 149
setibmsockopt() ...150
setnetent() ... 151
setprotoent() ..152
setservent() ..152
setsockopt() ... 152
shutdown() ... 156
sock_debug() ... 157
sock_do_teststor()..157
socket() .. 158
takesocket() ... 160
tcperror() ..161
write() ...162
writev() ... 163

Sample C socket programs.. 164
Executing TCPS and TCPC modules... 164
Executing UDPS and UDPC modules..164
C socket TCP client... 165
C socket TCP server.. 166
C socket UDP server... 168
C socket UDP client.. 170

Chapter 11. X/Open Transport Interface ... 173
XTI software requirements..173
What is provided with XTI..173
How XTI works in the z/OS environment...173
Creating an application using the XTI protocol... 174
Coding XTI calls..174

vi

Coding XTI calls: Initializing a transport endpoint.. 174
Coding XTI calls: Establishing a connection.. 175
Coding XTI calls: Transferring data.. 175
Coding XTI calls: Releasing a connection.. 175
Coding XTI calls: Disabling a connection...175
Coding XTI calls: Managing events.. 175
Coding XTI calls: Using utility calls.. 176
Coding XTI calls: Using system calls..176

Compiling and linking XTI applications using cataloged procedures...176
XTICL...177
XTIC...179
XTIS...180

Understanding XTI sample programs..180
XTI socket client sample program... 181
XTI socket server sample program.. 186

Chapter 12. Macro application programming interface... 193
Sockets API environmental restrictions and programming requirements.......................................193
Sockets API input register information... 194
Sockets API output register information...195
Sockets API compatibility considerations...195
Defining storage for the macro API ...195
Understanding common parameter descriptions... 197
Sockets API error messages and return codes... 197
Characteristics of sockets..197
Task management and asynchronous function processing..198

Macro API asynchronous function processing: How it works... 199
Asynchronous exit environmental and programming considerations.. 201

Using an unsolicited event-exit routine...201
Diagnosing problems in applications using the macro API.. 202
Macros for assembler programs.. 202

ACCEPT... 202
BIND..206
BIND2ADDRSEL..209
CANCEL... 212
CLOSE..213
CONNECT.. 215
FCNTL..218
FREEADDRINFO..220
GETADDRINFO..222
GETCLIENTID..228
GETHOSTBYADDR.. 230
GETHOSTBYNAME..232
GETHOSTID.. 235
GETHOSTNAME.. 237
GETIBMOPT.. 239
GETNAMEINFO... 242
GETPEERNAME...246
GETSOCKNAME.. 249
GETSOCKOPT..252
GIVESOCKET...269
GLOBAL... 271
INET6_IS_SRCADDR.. 272
INITAPI... 275
IOCTL.. 279
LISTEN.. 288
NTOP... 290
PTON... 292

 vii

READ... 294
READV... 296
RECV..298
RECVFROM..302
RECVMSG..306
SELECT.. 310
SELECTEX..314
SEND... 319
SENDMSG..321
SENDTO...325
SETSOCKOPT.. 328
SHUTDOWN.. 346
SOCKET... 348
TAKESOCKET.. 351
TASK..353
TERMAPI... 354
WRITE... 355
WRITEV... 357

Macro interface assembler language sample programs...359
EZASOKAS sample server program for IPv4... 359
EZASOKAC sample client program for IPv4.. 366
EZASO6AS sample server program for IPv6... 373
EZASO6AC sample client program for IPv6...382

Chapter 13. CALL instruction application programming interface...391
CALL instruction API environmental restrictions and programming requirements.........................391
CALL instruction API output register information... 392
CALL instruction API compatibility considerations...392
CALL instruction application programming interface (API).. 393
Understanding COBOL, Assembler, and PL/I call formats..393

COBOL language call format...393
Assembler language call format...393
PL/I language call format... 393

Converting parameter descriptions... 394
Diagnosing problems in applications using the CALL instruction API..394
CALL instruction API error messages and return codes... 395
Code CALL instructions.. 395

ACCEPT... 395
BIND..397
BIND2ADDRSEL..399
CLOSE..402
CONNECT.. 403
FCNTL..406
FREEADDRINFO..408
GETADDRINFO..409
GETCLIENTID..416
GETHOSTBYADDR.. 417
GETHOSTBYNAME..420
GETHOSTID.. 422
GETHOSTNAME.. 423
GETIBMOPT.. 424
GETNAMEINFO... 426
GETPEERNAME...430
GETSOCKNAME.. 432
GETSOCKOPT..434
GIVESOCKET...450
INET6_IS_SRCADDR.. 452
INITAPI... 455

viii

IOCTL.. 457
LISTEN.. 466
NTOP... 467
PTON... 469
READ... 471
READV... 472
RECV..474
RECVFROM..476
RECVMSG..479
SELECT.. 483
SELECTEX..486
SEND... 491
SENDMSG..493
SENDTO...497
SETSOCKOPT.. 499
SHUTDOWN.. 515
SOCKET... 517
TAKESOCKET.. 519
TERMAPI... 521
WRITE... 521
WRITEV... 523

Using data translation programs for socket call interface.. 524
Assembler language utility programs call format..524
Data translation.. 524
Bit-string processing...525

Call interface sample programs...536
Sample code for IPv4 server program... 536
Sample program for IPv4 client program.. 539
Sample code for IPv6 server program... 541
Sample program for IPv6 client program.. 545
Common variables used in PL/I sample programs..548
Common variables used in COBOL sample programs... 556
COBOL call interface sample IPv6 server program... 561
COBOL call interface sample IPv6 client program.. 570

Chapter 14. REXX socket application programming interface...579
Overview...579

Supported REXX APIs...579
Prerequisites for using REXX sockets.. 579
Format of the REXX socket function and return values...579
REXX programming hints and tips..580
How structures are represented.. 582

Runtime functions..585
ACCEPT... 588
BIND..590
BIND2ADDRSEL..592
CLOSE..594
CONNECT.. 595
FCNTL..598
GETADDRINFO..599
GETCLIENTID..607
GETDOMAINNAME... 609
GETHOSTBYADDR.. 610
GETHOSTBYNAME..611
GETHOSTID.. 612
GETHOSTNAME.. 613
GETNAMEINFO... 614
GETPEERNAME...616

 ix

GETPROTOBYNAME... 618
GETPROTOBYNUMBER...618
GETSERVBYNAME.. 619
GETSERVBYPORT... 620
GETSOCKNAME.. 621
GETSOCKOPT..623
GIVESOCKET...631
INET6ISSRCADDR.. 633
INITIALIZE..635
IOCTL.. 636
LISTEN.. 646
READ... 647
RECV..649
RECVFROM..651
RESOLVE... 654
SELECT.. 655
SEND... 657
SENDTO...659
SETSOCKOPT.. 661
SHUTDOWN.. 671
SOCKET... 672
SOCKETSET...674
SOCKETSETLIST... 675
SOCKETSETSTATUS..676
TAKESOCKET.. 677
TERMINATE...679
VERSION... 680
WRITE... 680

Sample programs... 682
Overview of REXX sample programs..682
The REXX-EXEC RSCLIENT sample program for IPv4...685
The REXX-EXEC RSSERVER sample program for IPv4..685
The REXX-EXEC R6CLIENT sample program for IPv6...685
The REXX-EXEC R6SERVER sample program for IPv6..686
AT-TLS security definitions for REXX samples...686
Running the REXX sample programs... 686
Testing the GIVESOCKET and TAKESOCKET commands.. 686

Chapter 15. Pascal application programming interface...689
Steps for Pascal language API procedure calls...689
Pascal language API software requirements.. 690
Pascal API header files.. 690
Pascal language API compatibility considerations... 690
Pascal language API data structures...691

Connection state...691
Connection information record.. 692
Notification record..693
File specification record... 697

Pascal language API: using procedure calls..698
Notifications..698
TCP initialization procedures..698
TCP termination procedure.. 698
TCP communication procedures.. 698
PING interface.. 698
Monitor procedures.. 698
UDP communication procedures... 698
Raw IP interface... 698
Timer routines...699

x

Host lookup routines.. 699
Assembler calls...699
Other routines...699

Pascal return codes..699
Pascal language API procedure calls.. 701

AddUserNote.. 701
BeginTcpIp.. 702
ClearTimer.. 702
CreateTimer.. 703
DestroyTimer.. 703
EndTcpIp...703
GetHostNumber..704
GetHostResol..704
GetHostString... 705
GetIdentity..705
GetNextNote... 706
GetSmsg..706
Handle...707
IsLocalAddress... 707
IsLocalHost... 708
MonQuery..708
PingRequest..709
RawIpClose...710
RawIpOpen... 710
RawIpReceive... 711
RawIpSend..712
ReadXlateTable... 713
SayCalRe... 714
SayConSt...714
SayIntAd... 714
SayIntNum..715
SayNotEn.. 715
SayPorTy... 715
SayProTy..716
SetTimer..716
TcpAbort..716
TcpClose..717
TcpFReceive, TcpReceive, and TcpWaitReceive.. 718
TcpFSend, TcpSend, and TcpWaitSend..720
TcpNameChange...722
TcpOpen and TcpWaitOpen.. 722
TcpOption..724
TcpStatus.. 725
UdpClose...726
UdpNReceive.. 726
UdpOpen... 727
UdpReceive... 728
UdpSend... 728
Unhandle...729

Sample Pascal program... 730
Building the sample Pascal API module.. 730
Running the sample module.. 730
Sample Pascal application program.. 731

Appendix A. Multitasking C socket sample program.. 735
Server sample program in C.. 735
The subtask sample program in C...740

 xi

The client sample program in C...742

Appendix B. Socket call error return codes... 745
System error codes for socket calls.. 745

Sockets return codes (ERRNOs).. 745
z/OS UNIX return codes.. 756
Additional return codes... 756

Sockets extended ERRNOs.. 757
User abend U4093...761

Appendix C. Address family cross reference... 763

Appendix D. GETSOCKOPT/SETSOCKOPT command values.................................769

Appendix E. Abbreviations and acronyms...773

Appendix F. GETNAMEINFO flags and returned information examples.................779

Appendix G. Related protocol specifications...781

Appendix H. Accessibility.. 801

Notices..805
Terms and conditions for product documentation... 806
IBM Online Privacy Statement.. 807
Policy for unsupported hardware..807
Minimum supported hardware..807
Programming interface information..808
Policy for unsupported hardware..808
Trademarks.. 808

Bibliography.. 809

Index.. 815

Communicating your comments to IBM.. 831

xii

Figures

1. The TCP/IP protocol stack...3

2. Socket concept.. 4

3. TCP/IP networking API relationship on z/OS..6

4. The port concept... 9

5. Port number assignments... 9

6. Iterative server main logic.. 14

7. A typical stream socket session..16

8. A typical datagram socket session... 17

9. Socket call variables..24

10. MVS TCP/IP socket descriptor table...24

11. An application using the bind() call.. 25

12. A bind() call using gethostbyname()...26

13. Variables used for the BIND call...26

14. Variables used by the listen call... 27

15. Variables used by the ACCEPT call... 29

16. Socket states...30

17. Closing sockets... 31

18. Serialized access to a shared storage area.. 34

19. Synchronized use of a common service task... 35

20. Concurrent server in an MVS address space..37

21. To set/test bits for SELECT calls... 40

22. An application using the select() call..41

23. Accepting a client connection...42

 xiii

24. Giving a socket to a subtask... 44

25. Taking sockets from the main process... 45

26. Finding the IP address of a server host using gethostbyname()... 47

27. Layout of a message between a TPI client and a TPI server... 52

28. Transaction request message segment... 52

29. The TCP buffer flush technique.. 53

30. Big or little endian byte order for a 2-byte integer...54

31. An application using the send() and recv() calls.. 56

32. An application using the sendto() and recvfrom() Calls...59

33. IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP... 68

34. IP_ADD_SOURCE_MEMBERSHIP and IP_DROP_SOURCE_MEMBERSHIP..69

35. IP_BLOCK_SOURCE and IP_UNBLOCK_SOURCE... 70

36. IP_MULTICAST_IF .. 71

37. IP_MULTICAST_LOOP... 72

38. IP_MULTICAST_TTL...73

39. IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP ...76

40. IPV6_MULTICAST_IF.. 76

41. IPV6_MULTICAST_LOOP ..77

42. IPV6_MULTICAST_HOPS.. 78

43. MCAST_JOIN_GROUP and MCAST_LEAVE_GROUP... 79

44. MCAST_JOIN_SOURCE_GROUP and MCAST_LEAVE_SOURCE_GROUP... 80

45. MCAST_BLOCK_SOURCE and MCAST_UNBLOCK_SOURCE...81

46. Sample JCL for compiling non-reentrant modules.. 87

47. Sample JCL for linking non-reentrant modules... 88

48. Sample JCL for running non-reentrant modules..88

xiv

49. Sample JCL for compiling reentrant modules..89

50. Sample JCL for prelinking and linking reentrant modules...90

51. Sample JCL for running the reentrant program... 90

52. C socket TCP client sample.. 166

53. C socket TCP server sample... 168

54. C socket UDP server sample...170

55. C socket UDP client sample..171

56. Using XTI with TCP/IP...174

57. Sample compile and link-edit job control procedure...178

58. Sample client execution job control procedure... 179

59. Sample server execution job control procedure..180

60. Sample client code for XTI... 186

61. Sample server code for XTI.. 192

62. ECB input parameter...199

63. User token setting...199

64. HOSTENT structure returned by the GETHOSTBYADDR macro.. 232

65. HOSTENT structure returned by the GETHOSTBYNAME macro... 235

66. NUM_IMAGES field settings... 241

67. EZASOKAS sample server program for IPv4..366

68. EZASOKAC sample client program for IPv4...372

69. EZASO6AS sample server program for IPv6..382

70. EZASO6AC sample client program for IPv6...389

71. Storage definition statement examples... 394

72. ACCEPT call instructions example..396

73. BIND call instruction example..398

 xv

74. BIND2ADDRSEL call instruction example..401

75. CLOSE call instruction example..403

76. CONNECT call instruction example.. 405

77. FCNTL call instruction example..407

78. FREEADDRINFO call instruction example..408

79. GETADDRINFO call instruction example..410

80. GETCLIENTID call instruction example..417

81. GETHOSTBYADDR call instruction example.. 418

82. HOSTENT structure that is returned by the GETHOSTBYADDR call..419

83. GETHOSTBYNAME call instruction example..420

84. HOSTENT structure returned by the GETHOSTYBYNAME call..421

85. GETHOSTID call instruction example.. 422

86. GETHOSTNAME call instruction example.. 423

87. GETIBMOPT call instruction example.. 425

88. Example of name field ... 426

89. GETNAMEINFO call instruction example... 427

90. GETPEERNAME call instruction example...431

91. GETSOCKNAME call instruction example.. 433

92. GETSOCKOPT call instruction example..435

93. GIVESOCKET call instruction example...451

94. INET6_IS_SRCADDR call instruction example.. 453

95. INITAPI call instruction example... 456

96. IOCTL call instruction example.. 458

97. COBOL language example for SIOCGHOMEIF6... 459

98. COBOL language example for SIOCGIFNAMEINDEX.. 461

xvi

99. COBOL II example for SIOCGIFCONF.. 466

100. LISTEN call instruction example.. 466

101. NTOP call instruction example... 468

102. PTON call instruction example... 470

103. READ call instruction example... 472

104. READV call instruction example...473

105. RECV call instruction example... 475

106. RECVFROM call instruction example... 477

107. RECVMSG call instruction example..480

108. SELECT call instruction example..485

109. SELECTEX call instruction example... 488

110. SEND call instruction example... 492

111. SENDMSG call instruction example... 495

112. SENDTO call instruction example...498

113. SETSOCKOPT call instruction example..500

114. SHUTDOWN call instruction example.. 516

115. SOCKET call instruction example...517

116. TAKESOCKET call instruction example.. 520

117. TERMAPI call instruction example...521

118. WRITE call instruction example... 522

119. WRITEV call instruction example...523

120. EZACIC04 EBCDIC-to-ASCII table...525

121. EZACIC04 call instruction example... 526

122. EZACIC05 ASCII-to-EBCDIC table...526

123. EZACIC05 call instruction example... 527

 xvii

124. EZACIC06 call instruction example... 527

125. EZAZIC08 call instruction example... 530

126. EZACIC09 call instruction example... 533

127. EZACIC14 EBCDIC-to-ASCII table...534

128. EZACIC14 call instruction example... 534

129. EZACIC15 ASCII-to-EBCDIC table...535

130. EZACIC15 call instruction example... 535

131. EZASOKPS PL/1 sample server program for IPv4...539

132. EZASOKPC PL/1 sample client program for IPv4..541

133. EZASO6PS PL/1 sample server program for IPv6... 545

134. EZASO6PC PL/1 sample client program for IPv6.. 548

135. CBLOCK PL/1 common variables... 556

136. EZACOBOL COBOL common variables...561

137. EZASO6CS COBOL call interface sample IPv6 server program.. 570

138. EZASO6CC COBOL call interface sample IPv6 client program... 577

139. ACCEPT command example... 590

140. CLOSE command example... 595

141. CONNECT command example..597

142. FCNTL command example... 599

143. GETCLIENTID command example... 609

144. GETDOMAINNAME command example...610

145. GETHOSTBYADDR command example.. 611

146. GETHOSTBYNAME command example... 612

147. GETHOSTID command example.. 613

148. GETHOSTNAME command example.. 614

xviii

149. GETNAMEINFO command example...616

150. GETPEERNAME command example...617

151. GETPROTOBYNAME command example... 618

152. GETPROTOBYNUMBER command example.. 619

153. GETSERVBYNAME command example.. 620

154. GETSERVBYPORT command example... 621

155. GETSOCKNAME command example.. 623

156. ASCII to EBCDIC...626

157. EBCDIC to ASCII...626

158. GETSOCKOPT command example... 631

159. READ command example... 649

160. READ command example... 654

161. RESOLVE command example... 655

162. SELECT command example..657

163. ASCII to EBCDIC...667

164. EBCDIC to ASCII...667

165. SOCKET command example...674

166. SOCKETSET command example.. 675

167. SOCKETSETLIST command example...676

168. SOCKETSETSTATUS command example..677

169. TERMINATE command example.. 680

170. VERSION command example...680

171. Pascal declaration of connection state type..691

172. Pascal declaration of connection information record..692

173. Pascal declaration of socket type.. 693

 xix

174. Notification record.. 694

175. Pascal declaration of file specification record... 697

176. Sample calling sequence..702

177. BeginTcpIp example... 702

178. ClearTimer example... 703

179. Create timer example... 703

180. Destroy timer example... 703

181. EndTcpIp example..703

182. GetHostNumber example...704

183. GetHostResol example...704

184. GetHostString example.. 705

185. GetIdentity example...705

186. GetNextNote example.. 706

187. GetSmsg example...706

188. Handle example..707

189. IsLocalAddress example.. 707

190. IsLocalHost example.. 708

191. MonQuery example...708

192. Monitor query record.. 709

193. PingRequest example...709

194. RawIpClose example..710

195. RawIpOpen example.. 711

196. RawIpReceive example.. 711

197. RawIpSend example...712

198. ReadXlateTable example.. 713

xx

199. SayCalRe example.. 714

200. SayConSt example..714

201. SayIntAd example.. 714

202. SayIntNum example... 715

203. SayNotEn example..715

204. SayPorTy example.. 715

205. SayProTy example...716

206. SetTimer example...716

207. TcpAbort example...716

208. TcpClose example...717

209. TcpFReceive example...718

210. TcpReceive example...718

211. TcpWaitReceive example..718

212. TcpFSend example... 720

213. TcpSend example... 720

214. TcpWaitSend example.. 721

215. TcpNameChange example..722

216. TcpOpen example... 722

217. TcpWaitOpen example..722

218. TcpOption example...724

219. TcpStatus example... 725

220. UdpClose example..726

221. UdpNReceive example... 726

222. UdpOpen example.. 727

223. UdpReceive example.. 728

 xxi

224. UdpSend example.. 729

225. Unhandle example..729

226. Sample Pascal API with receive option... 730

227. Sample Pascal API with send option... 731

228. Sample Pascal application program...734

229. MTCSRVR C socket server program sample.. 740

230. MTCCSUB C socket server program sample.. 742

231. MTCCLNT C socket server program sample...744

232. Example of abend U4093...762

xxii

Tables

1. Socket programming interface actions...18

2. TCP/IP data sets and applications..20

3. Effect of shutdown socket call..32

4. First fullword passed in a bit string select()... 38

5. Second fullword passed in a bit string using select()...39

6. C structures in assembler language format..93

7. Initializing a call.. 174

8. Establishing a connection... 175

9. Transferring data...175

10. Releasing a connection...175

11. Disabling a connection..175

12. Managing events... 176

13. Using utilities...176

14. System function calls..176

15. OPTNAME options for GETSOCKOPT and SETSOCKOPT...255

16. IOCTL macro arguments...285

17. OPTNAME options for GETSOCKOPT and SETSOCKOPT...332

18. OPTNAME options for GETSOCKOPT and SETSOCKOPT...436

19. IOCTL call arguments... 464

20. OPTNAME options for GETSOCKOPT and SETSOCKOPT...501

21. REXX socket sample programs...682

22. TCP connection states.. 692

23. Pascal language return codes...699

 xxiii

24. Sockets ERRNOs... 745

25. Sockets extended ERRNOs...757

26. C socket address families cross reference ..763

27. MACRO, CALL, REXX, socket address families cross reference ... 766

28. MACRO, CALL, REXX, exceptions..767

29. GETSOCKOPT/SETSOCKOPT command values for Macro, Assembler, COBOL and PL/I..................... 769

30. GETSOCKOPT/SETSOCKOPT optname value for C programs..770

xxiv

About this document

This document describes the syntax of the TCP/IP application programming interface (API). The APIs
described in this document can be used to create TCP/IP client and server applications or modify existing
applications to communicate using TCP/IP. The information in this document supports both IPv6 and
IPv4. Unless explicitly noted, information describes IPv4 networking protocol. IPv6 support is qualified
within the text.

This document refers to Communications Server data sets by their default SMP/E distribution library
name. Your installation might, however, have different names for these data sets where allowed by SMP/E,
your installation personnel, or administration staff. For instance, this document refers to samples in
SEZAINST library as simply in SEZAINST. Your installation might choose a data set name of
SYS1.SEZAINST, CS390.SEZAINST or other high-level qualifiers for the data set name.

To provide flexibility in writing new applications and adapting existing applications, the following
programming languages and interfaces are described:

• C sockets
• X/Open Transport Interface (XTI)
• Assembler, PL/I, and COBOL sockets
• REXX sockets
• Pascal language

Who should read this document
This document is intended for experienced programmers familiar with MVS™, the IBM® multiple virtual
storage operating system, TCP/IP protocols, UNIX sockets, and data networks.

To use this document, you should be familiar with MVS and the IBM timesharing option (TSO).

You should also be familiar with z/OS Communications Server and installing and customizing any required
programming products for your network.

Depending on the design and function of your application, you should be familiar with one or more of the
following programming languages:

• Assembler
• C
• COBOL
• Pascal
• PL/I
• REXX

How this document is organized
This document is organized into the following parts:

• Part 1, “Overview,” on page 1 presents an overview of TCP/IP concepts and organizing a TCP/IP
application program.

• Part 2, “Designing programs,” on page 21 describes ways to design various types of programs.
• Part 3, “Application program interfaces,” on page 83 describes the following socket application

program interfaces (APIs):

– C Socket application programming interface (API)
– X/Open Transport Interface (XTI)

© Copyright IBM Corp. 2000, 2020 xxv

– Macro application programming interface (API)
– CALL instruction application programming interface (API)
– REXX socket application programming interface (API)
– Pascal application programming interface (API)

• Appendixes provide additional information for this document.
• “Notices” on page 805 contains notices and trademarks used in this document.
• “Bibliography” on page 809 contains descriptions of the documents in the z/OS Communications Server

library.

How to use this document
To use this document, you should be familiar with z/OS TCP/IP Services and the TCP/IP suite of protocols.

How to contact IBM service
For immediate assistance, visit this website: http://www.software.ibm.com/support

Most problems can be resolved at this website, where you can submit questions and problem reports
electronically, and access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States or Puerto Rico), call
the IBM Software Support Center anytime (1-800-IBM-SERV). You will receive a return call within 8
business hours (Monday – Friday, 8:00 a.m. – 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or your authorized IBM
supplier.

If you would like to provide feedback on this publication, see “Communicating your comments to IBM” on
page 831.

Conventions and terminology that are used in this information
Commands in this information that can be used in both TSO and z/OS UNIX environments use the
following conventions:

• When describing how to use the command in a TSO environment, the command is presented in
uppercase (for example, NETSTAT).

• When describing how to use the command in a z/OS UNIX environment, the command is presented in
bold lowercase (for example, netstat).

• When referring to the command in a general way in text, the command is presented with an initial
capital letter (for example, Netstat).

All the exit routines described in this information are installation-wide exit routines. The installation-wide
exit routines also called installation-wide exits, exit routines, and exits throughout this information.

The TPF logon manager, although included with VTAM®, is an application program; therefore, the logon
manager is documented separately from VTAM.

Samples used in this information might not be updated for each release. Evaluate a sample carefully
before applying it to your system.

Note: In this information, you might see the following Shared Memory Communications over Remote
Direct Memory Access (SMC-R) terminology:

• RoCE Express®, which is a generic term representing IBM 10 GbE RoCE Express, IBM 10 GbE RoCE
Express2, and IBM 25 GbE RoCE Express2 feature capabilities. When this term is used in this
information, the processing being described applies to all of these features. If processing is applicable
to only one feature, the full terminology, for instance, IBM 10 GbE RoCE Express will be used.

xxvi About this document

http://www.software.ibm.com/support

• RoCE Express2, which is a generic term representing an IBM RoCE Express2® feature that might operate
in either 10 GbE or 25 GbE link speed. When this term is used in this information, the processing being
described applies to either link speed. If processing is applicable to only one link speed, the full
terminology, for instance, IBM 25 GbE RoCE Express2 will be used.

• RDMA network interface card (RNIC), which is used to refer to the IBM 10 GbE RoCE Express, IBM® 10
GbE RoCE Express2, or IBM 25 GbE RoCE Express2 feature.

• Shared RoCE environment, which means that the "RoCE Express" feature can be used concurrently, or
shared, by multiple operating system instances. The feature is considered to operate in a shared RoCE
environment even if you use it with a single operating system instance.

Clarification of notes
Information traditionally qualified as Notes is further qualified as follows:
Attention

Indicate the possibility of damage
Guideline

Customary way to perform a procedure
Note

Supplemental detail
Rule

Something you must do; limitations on your actions
Restriction

Indicates certain conditions are not supported; limitations on a product or facility
Requirement

Dependencies, prerequisites
Result

Indicates the outcome
Tip

Offers shortcuts or alternative ways of performing an action; a hint

How to read a syntax diagram
This syntax information applies to all commands and statements that do not have their own syntax
described elsewhere.

The syntax diagram shows you how to specify a command so that the operating system can correctly
interpret what you type. Read the syntax diagram from left to right and from top to bottom, following the
horizontal line (the main path).

Symbols and punctuation
The following symbols are used in syntax diagrams:
Symbol

Description
►►

Marks the beginning of the command syntax.
►

Indicates that the command syntax is continued.
|

Marks the beginning and end of a fragment or part of the command syntax.
►◄

Marks the end of the command syntax.

About this document xxvii

You must include all punctuation such as colons, semicolons, commas, quotation marks, and minus signs
that are shown in the syntax diagram.

Commands
Commands that can be used in both TSO and z/OS UNIX environments use the following conventions in
syntax diagrams:

• When describing how to use the command in a TSO environment, the command is presented in
uppercase (for example, NETSTAT).

• When describing how to use the command in a z/OS UNIX environment, the command is presented in
bold lowercase (for example, netstat).

Parameters
The following types of parameters are used in syntax diagrams.
Required

Required parameters are displayed on the main path.
Optional

Optional parameters are displayed below the main path.
Default

Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console commands, the
keywords are not case sensitive. You can code them in uppercase or lowercase. If the keyword appears in
the syntax diagram in both uppercase and lowercase, the uppercase portion is the abbreviation for the
keyword (for example, OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values you supply. For
example, a data set is a variable.

Syntax examples
In the following example, the PUt subcommand is a keyword. The required variable parameter is
local_file, and the optional variable parameter is foreign_file. Replace the variable parameters with your
own values.

PUt local_file

foreign_file

Longer than one line
If a diagram is longer than one line, the first line ends with a single arrowhead and the second line begins
with a single arrowhead.

The first line of a syntax diagram that is longer than one line

The continuation of the subcommands, parameters, or both

Required operands
Required operands and values appear on the main path line. You must code required operands and
values.

xxviii About this document

REQUIRED_OPERAND

Optional values
Optional operands and values appear below the main path line. You do not have to code optional
operands and values.

OPERAND

Selecting more than one operand
An arrow returning to the left above a group of operands or values means more than one can be selected,
or a single one can be repeated.

,

REPEATABLE_OPERAND_OR_VALUE_1

REPEATABLE_OPERAND_OR_VALUE_2

REPEATABLE_OPER_OR_VALUE_1

REPEATABLE_OPER_OR_VALUE_2

Nonalphanumeric characters
If a diagram shows a character that is not alphanumeric (such as parentheses, periods, commas, and
equal signs), you must code the character as part of the syntax. In this example, you must code
OPERAND=(001,0.001).

OPERAND = (001 , 0.001)

Blank spaces in syntax diagrams
If a diagram shows a blank space, you must code the blank space as part of the syntax. In this example,
you must code OPERAND=(001 FIXED).

OPERAND = (001 FIXED)

Default operands
Default operands and values appear above the main path line. TCP/IP uses the default if you omit the
operand entirely.

DEFAULT

OPERAND

Variables
A word in all lowercase italics is a variable. Where you see a variable in the syntax, you must replace it
with one of its allowable names or values, as defined in the text.

About this document xxix

variable

Syntax fragments
Some diagrams contain syntax fragments, which serve to break up diagrams that are too long, too
complex, or too repetitious. Syntax fragment names are in mixed case and are shown in the diagram and
in the heading of the fragment. The fragment is placed below the main diagram.

Syntax fragment

Syntax fragment
1ST_OPERAND , 2ND_OPERAND , 3RD_OPERAND

Prerequisite and related information
z/OS Communications Server function is described in the z/OS Communications Server library.
Descriptions of those documents are listed in “Bibliography” on page 809, in the back of this document.

Required information
Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and UNIX System Services.

Softcopy information
Softcopy publications are available in the following collection.

Titles Description

IBM Z Redbooks The IBM Z®® subject areas range from e-business application development
and enablement to hardware, networking, Linux®, solutions, security, parallel
sysplex, and many others. For more information about the Redbooks®

publications, see http://www.redbooks.ibm.com/ and http://www.ibm.com/
systems/z/os/zos/zfavorites/.

Other documents
This information explains how z/OS references information in other documents.

When possible, this information uses cross-document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap (SA23-2299). The Roadmap describes
what level of documents are supplied with each release of z/OS Communications Server, and also
describes each z/OS publication.

To find the complete z/OS library, visit the z/OS library in IBM Documentation (www.ibm.com/support/
knowledgecenter/SSLTBW/welcome).

Relevant RFCs are listed in an appendix of the IP documents. Architectural specifications for the SNA
protocol are listed in an appendix of the SNA documents.

The following table lists documents that might be helpful to readers.

Title Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006 ISBN 13: 978-0596100575

Routing in the Internet, Second Edition, Christian Huitema (Prentice Hall 1999) ISBN 13: 978-0130226471

xxx About this document

http://www.redbooks.ibm.com
http://www.ibm.com/systems/z/os/zos/zfavorites/
http://www.ibm.com/systems/z/os/zos/zfavorites/
https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en

Title Number

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX
Domain Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Services System SSL Programming SC14-7495

z/OS IBM Tivoli Directory Server Administration and Use for z/OS SC23-6788

z/OS JES2 Initialization and Tuning Guide SA32-0991

z/OS Problem Management SC23-6844

z/OS MVS Diagnosis: Reference GA32-0904

z/OS MVS Diagnosis: Tools and Service Aids GA32-0905

z/OS MVS Using the Subsystem Interface SA38-0679

z/OS Program Directory GI11-9848

z/OS UNIX System Services Command Reference SA23-2280

z/OS UNIX System Services Planning GA32-0884

z/OS UNIX System Services Programming: Assembler Callable Services
Reference

SA23-2281

z/OS UNIX System Services User's Guide SA23-2279

z/OS XL C/C++ Runtime Library Reference SC14-7314

z Systems: Open Systems Adapter-Express Customer's Guide and Reference SA22-7935

Redbooks publications
The following Redbooks publications might help you as you implement z/OS Communications Server.

Title Number

IBM z/OS Communications Server TCP/IP Implementation, Volume 1: Base
Functions, Connectivity, and Routing

SG24-8096

IBM z/OS Communications Server TCP/IP Implementation, Volume 2: Standard
Applications

SG24-8097

IBM z/OS Communications Server TCP/IP Implementation, Volume 3: High
Availability, Scalability, and Performance

SG24-8098

IBM z/OS Communications Server TCP/IP Implementation, Volume 4: Security
and Policy-Based Networking

SG24-8099

IBM Communication Controller Migration Guide SG24-6298

About this document xxxi

Title Number

IP Network Design Guide SG24-2580

Managing OS/390 TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements

SG24-5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release availability, migration
information, downloads, and links to information about z/OS technology

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server documentation

http://www.ibm.com/systems/z/os/zos/library/bkserv/

z/OS Communications Server product

The page contains z/OS Communications Server product introduction

https://www.ibm.com/products/zos-communications-server
IBM Communications Server product support

Use this site to submit and track problems and search the z/OS Communications Server knowledge
base for Technotes, FAQs, white papers, and other z/OS Communications Server information

http://www.software.ibm.com/support

IBM Communications Server performance information

This site contains links to the most recent Communications Server performance reports

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks publications, Redpapers, and Technotes

http://www.redbooks.ibm.com/

z/OS Support Community

Search the z/OS Support Community Library for Techdocs (including Flashes, presentations,
Technotes, FAQs, white papers, Customer Support Plans, and Skills Transfer information)

z/OS Support Community

Tivoli® NetView® for z/OS

Use this site to view and download product documentation about Tivoli NetView for z/OS

http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome

xxxii About this document

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/library/bkserv/
https://www.ibm.com/products/zos-communications-server
http://www.software.ibm.com/support
http://www.ibm.com/support/docview.wss?uid=swg27005524
http://www.redbooks.ibm.com
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v4NGAQ/zos?language=en_US&productId=01t0z000007g70jAAA
http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome

RFCs

Search for and view Request for Comments documents in this section of the Internet Engineering Task
Force website, with links to the RFC repository and the IETF Working Groups web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet Engineering Task Force (IETF) and
other groups, in this section of the Internet Engineering Task Force website

http://www.ietf.org/ID.html

Information about web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to websites are provided for convenience only and do not serve as
an endorsement of these websites.

DNS websites
For more information about DNS, see the following USENET news groups and mailing addresses:
USENET news groups

comp.protocols.dns.bind
BIND mailing lists

https://lists.isc.org/mailman/listinfo
BIND Users

• Subscribe by sending mail to bind-users-request@isc.org.
• Submit questions or answers to this forum by sending mail to bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

• Subscribe by sending mail to bind9-users-request@isc.org.
• Submit questions or answers to this forum by sending mail to bind9-users@isc.org.

The z/OS Basic Skills Information Center
The z/OS Basic Skills Information Center is a web-based information resource intended to help users
learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers in
use today. The Information Center is designed to introduce a new generation of Information Technology
professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS
systems programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the following objectives:

• Provide basic education and information about z/OS without charge
• Shorten the time it takes for people to become productive on the mainframe
• Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your web browser to the following website,
which is available to all users (no login required): https://www.ibm.com/support/knowledgecenter/
zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics

About this document xxxiii

http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
https://lists.isc.org/mailman/listinfo
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics

xxxiv z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Summary of changes for IP Sockets Application
Programming Interface Guide and Reference

This document contains terminology, maintenance, and editorial changes, including changes to improve
consistency and retrievability. Technical changes or additions to the text and illustrations are indicated by
a vertical line to the left of the change.

Changes made in z/OS Communications Server Version 2 Release 4
This document contains information previously presented in z/OS Communications Server: IP Sockets
Application Programming Interface Guide and Reference, which supported z/OS Version 2 Release 3.

Changed information

AT-TLS support for TLS v1.3, see the following topics:

• “IOCTL” on page 636
• Sockets return codes (ERRNOs)

Changes made in z/OS Communications Server Version 2 Release 3
This document contains information previously presented in z/OS Communications Server: IP Sockets
Application Programming Interface Guide and Reference, which supported z/OS Version 2 Release 2.

January 2018
Maintenance and terminology changes are made for z/OS Version 2 Release 3 in January 2018.

September 2017
Changed information

• AT-TLS currency with System SSL, see “IOCTL” on page 636.
• IPv6 getaddrinfo() API standards compliance, see the following topics:

– GETADDRINFO (Code CALL API)
– GETADDRINFO (Macro API)
– GETADDRINFO (REXX socket API)

Changes made in z/OS Version 2 Release 2
This document contains information previously presented in z/OS Communications Server: IP Sockets
Application Programming Interface Guide and Reference, SC27-3660-00, which supported z/OS Version
2 Release 1.

Changed information
TLS session reuse support for FTP and AT-TLS applications, see “IOCTL” on page 636.

© Copyright IBM Corp. 2000, 2020 xxxv

xxxvi z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Part 1. Overview

For native IPv4 addresses, the application must create an AF_INET address family socket. For native IPv6
addresses and IPv4-mapped IPv6 addresses, the application must create an AF_INET6 address family
socket. See z/OS Communications Server: IPv6 Network and Application Design Guide and the SOCKET
command under the APIs that support IPv6 for details.

For details on which TCP/IP APIs and commands support the AF_INET6 (IPv6) address family, see
Appendix C, “Address family cross reference,” on page 763.

© Copyright IBM Corp. 2000, 2020 1

2 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 1. Introducing TCP/IP concepts

This information explains basic TCP/IP concepts and sockets programming.

TCP/IP concepts
Conceptually, the TCP/IP protocol stack consists of four layers, each layer consisting of one or more
protocols. A protocol is a set of rules or standards that two entities must follow so as to allow each other
to receive and interpret messages sent to them. The entities could, for example, be two application
programs in an application protocol, or the entities might be two TCP protocol layers in two different IP
hosts (the TCP protocol).

Figure 1 on page 3 illustrates the TCP/IP protocol stack.

Figure 1. The TCP/IP protocol stack

Programs are located at the process layer; here they can interface with the two transport layer protocols
(TCP and UDP), or directly with the network layer protocols (ICMP and IP).

TCP
Transmission Control Protocol is a transport protocol providing a reliable, full-duplex byte stream.
Most TCP/IP applications use the TCP transport protocol.

UDP
User Datagram Protocol is a connectionless protocol providing datagram services. UDP is less reliable
because there is no guarantee that a UDP datagram ever reaches its intended destination, or that it
reaches its destination only once and in the same condition as it was passed to the sending UDP layer
by a UDP application.

ICMP
Internet Control Message Protocol is used to handle error and control information at the IP layer. The
ICMP is most often used by network control applications that are part of the TCP/IP software product
itself, but ICMP can be used by authorized user processes as well. PING and TRACEROUTE are
examples of network control applications that use the ICMP protocol.

IP
Internet Protocol provides the packet delivery services for TCP, UDP, and ICMP. The IP layer protocol
is unreliable (called a best-effort protocol). There is no guarantee that IP packets arrive, or that they

© Copyright IBM Corp. 2000, 2020 3

arrive only once and are error-free. Such reliability is built into the TCP protocol, but not into the UDP
protocol. If you need reliable transport between two UDP applications, you must ensure that reliability
is built into the UDP applications.

ARP/ND
The IPv4 networking layer uses the Address Resolution Protocol (ARP) to map an IP address into a
hardware address. In the IPv6 networking layer, this mapping is performed by the Neighbor Discovery
(ND function). On local area networks (LANs), such an address would be called a media access control
(MAC) address.

RARP
Reverse Address Resolution Protocol is used to reverse the operation of the ARP protocol. It maps a
hardware address into an IPv4 address. Note that both ARP packets and RARP packets are not
forwarded in IP packets, but are themselves media level packets. ARP and RARP are not used on all
network types, as some networks do not need these protocols.

Understanding sockets concepts
A socket uniquely identifies the endpoint of a communication link between two application ports.

A port represents an application process on a TCP/IP host, but the port number itself does not indicate
the protocol being used: TCP, UDP, or IP. The application process might use the same port number for TCP
or UDP protocols. To uniquely identify the destination of an IP packet arriving over the network, you have
to extend the port principle with information about the protocol used and the IP address of the network
interface; this information is called a socket. A socket has three parts: protocol, local-address, local-port.

Figure 2 on page 4 illustrates the concept of a socket.

Application

ProcessA

Application

ProcessB

Port

1028

Port

2034

TCP TCP

IP IP

Networkintf. Networkintf.

9.67.38.96

Socket A ={TCP ,9.67.38.96,1028}

Socket B={TCP ,9.67.38.92,2034}

9.67.38.92

CONNECTION

Figure 2. Socket concept

The term association is used to specify completely the two processes that comprise a connection:

(protocol,local-address,local-port,foreign-address,foreign-port).

The terms socket and port are sometimes used as synonyms, but note that the terms port number and
socket address are not like one another. A port number is one of the three parts of a socket address, and
can be represented by a single number (for example, 1028) while a socket address can be represented by
(tcp,myhostname,1028).

A socket descriptor (sometimes referred to as a socket number) is a binary integer that acts as an index to
a table of sockets; the sockets are currently allocated to a given process. A socket descriptor represents
the socket, but is not the socket itself.

4 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Introducing TCP/IP concepts: Programming with sockets
A socket is an endpoint for communication able to be named and addressed in a network. From the
perspective of the application program, it is a resource allocated by the address space; it is represented
by an integer called the socket descriptor.

The socket interface was designed to provide applications a network interface that hides the details of the
physical network. The interface is differentiated by the different services provided: Stream, datagram, and
raw sockets. Each interface defines a separate service available to applications.

The MVS socket APIs provide a standard interface using the transport and internetwork layer interfaces of
TCP/IP. These APIs support three socket types: stream, datagram, and raw. Stream and datagram socket
types interface with the transport layer protocols; raw socket types interface with the network layer
protocols. Choose the most appropriate interface for your application.

Introducing TCP/IP concepts: Selecting sockets
You can choose among the following types of sockets:

• Stream
• Datagram
• Raw

Stream sockets perform like streams of information. There are no record lengths or character boundaries
between data, so communicating processes must agree on their own mechanisms for distinguishing
information. Usually, the process sending information sends the length of the data, followed by the data
itself. The process receiving information reads the length and then loops, accepting data until all of it has
been transferred. Because there are no boundaries in the data, multiple concurrent read or write socket
calls of the same type, on the same stream socket, will yield unpredictable results. For example, if two
concurrent read socket calls are issued on the same stream socket, there is no guarantee of the order or
amount of data that each instance will receive. Stream sockets guarantee to deliver data in the order sent
and without duplication. The stream socket defines a reliable connection service. Data is sent without
error or duplication and is received in the order sent. Flow control is built in to avoid data overruns. No
boundaries are imposed on the data; the data is treated as a stream of bytes.

Stream sockets are most common because the burden of transferring the data reliably is handled by
TCP/IP, rather than by the application.

The datagram socket is a connectionless service. Datagrams are sent as independent packets. The service
provides no guarantees. Data can be lost or duplicated, and datagrams can arrive out of order. The size of
a datagram is limited to the size able to be sent in a single transaction. Currently, the default value is 8192
bytes, and the maximum value is 65535. The maximum size of a datagram is 65535 for UDP and 65535
bytes for raw.

The raw socket allows direct access to lower layer protocols, such as IP and the ICMP. This interface is
often used to test new protocol implementation, because the socket interface can be extended and new
socket types defined to provide additional services. For example, the transaction type sockets can be
defined for interfacing to the Versatile Message Transfer Protocol (VMTP). 1Transaction-type sockets are
not supported by TCP/IP. Because socket interfaces isolate you from the communication function of the
different protocol layers, the interfaces are largely independent of the underlying network. In the MVS
implementation of sockets, stream sockets interface with TCP, datagram sockets interface with UDP, and
raw sockets interface with ICMP and IP.

Notes:

1. The TCP and UDP protocols cannot be used with raw sockets.

1 David R. Cheriton and Carey L. Williamson, “MVSTP as the Transport Layer for High-Performance
Distributed Systems,” IEEE Communications, June 1989, Vol. 27, No. 6.

Chapter 1. Introducing TCP/IP concepts 5

2. If you are communicating with an existing application, you must use the same protocols used by the
existing application. For example, if you communicate with an application that uses TCP, you must use
stream sockets.

You should consider the following factors for these applications:

• Reliability

Stream sockets provide the most reliable connection. Datagrams and raw sockets are unreliable
because packets can be discarded or duplicated during transmission. This characteristic might be
acceptable if the application does not require reliability or if the application implements reliability
beyond the socket interface.

• Performance

Overhead associated with reliability, flow control, and connection maintenance degrades the
performance of stream sockets so that they do not perform as well as datagram sockets.

• Data Transfer

Datagram sockets limit the amount of data moved in a single transaction. If you send fewer than 2048
bytes of data at one time, use datagram sockets. When the amount of data in a single transaction is
greater, use stream sockets.

If you are writing a new protocol to use on top of IP, or if you want to use the ICMP protocol, you must
choose raw sockets; but to use raw sockets, you must be authorized by way of RACF® or APF.

Introducing TCP/IP concepts: Socket libraries
Figure 3 on page 6 illustrates the TCP/IP networking API relationship on z/OS.

Application Programs and Subsystems

Sockets Extended
Call API

Sockets Extended
Assembler Macro API z/OS CS TCP/IP C/C++ Sockets

z/OS UNIX System Services Callable BPX Sockets

Language Environment

(UNIX) C/C++ SocketsP
a
s
c
a
l
A

P
I

R
E

X
X

 S
o
c
k
e
ts

X
T

I
R

F
C

1
0
0
6

X
T

I
X

P
G

4
.2

S
U

N
 R

P
C

 4
.0

D
C

E
 R

P
C

S
N

M
P

 D
P

I
2
.0

S
U

N
 R

P
C

 3
.9

N
C

S
 R

P
C

X
-W

in
d

o
w

 S
y
s
te

m
X

1
1

R
6

S
N

M
P

 D
P

I
1

.2

C
IC

S
s
o

c
k
e

ts

IM
S

S
o

c
k
e

ts

Network Interface Layer

IP Network Protocol Layer

TCP and UDP Transport Protocol Layer

X
-W

in
d

o
w

 S
y
s
te

m
X

1
1

R
4

Figure 3. TCP/IP networking API relationship on z/OS

When we create a sockets program, we use something that generally is called a sockets library. A sockets
library consists of both compile-time structures, statically linked support modules, and run-time support
modules.

There are two main sockets execution environments in z/OS with available libraries:

• Native TCP/IP (implemented by TCP/IP in z/OS Communications Server)
• UNIX (implemented by z/OS UNIX System Services [Language Environment®])

6 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Native TCP/IP
A non-UNIX socket program can use only one TCP/IP protocol stack at a time. The native TCP/IP C socket
library is not POSIX compliant and it should not be used for new C socket program development. The non-
C native TCP/IP socket libraries (sockets extended: call and assembler macro, REXX sockets, CICS®

sockets, and IMS sockets) are available for development of new socket application programs. The
following TCP/IP Services APIs are included in this library:
Pascal API

The Pascal IPv4 socket application programming interface enables you to develop TCP/IP
applications in the Pascal language. Supported environments are normal MVS address spaces. The
Pascal programming interface is based on Pascal procedures and functions that implement
conceptually the same functions as the C socket interface. The Pascal routines, however, have
different names than the C socket calls. Unlike the other APIs, the Pascal API does not interface with
z/OS UNIX System Services; it uses an internal interface to communicate with the TCP/IP protocol
stack.

IMS sockets
The Information Management System (IMS) IPv4 socket interface supports development of client/
server applications in which one part of the application executes on a TCP/IP-connected host and the
other part executes as an IMS application program. The programming interface used by both
application parts is the socket programming interface, and the communication protocols are either
TCP, UDP, or RAW. For more information, see z/OS Communications Server: IP IMS Sockets Guide.

CICS sockets
The CICS socket interface enables you to write CICS applications that act as IPv4 or IPv6 clients or
servers in a TCP/IP-based network. Applications can be written in C language, using the C sockets
programming, or they can be written in COBOL, PL/I, or assembler, using the Extended Sockets
programming interface. For more information, see z/OS Communications Server: IP CICS Sockets
Guide.

z/OS CS TCP/IP C/C++ Sockets
The C/C++ Sockets interface supports IPv4 socket function calls that can be invoked from C/C++
programs.

Note: Use of the UNIX C socket library is encouraged.

Sockets Extended macro API
The Sockets Extended macro API is a generalized assembler macro-based interface to IPv4 and IPv6
socket programming. It includes extensions to the socket programming interface, such as support for
asynchronous processing on most sockets function calls.

Sockets Extended Call Instruction API
The Sockets Extended Call Instruction API is a generalized call-based interface to IPv4 and IPv6
sockets programming. The functions implemented in this call interface resemble the C-sockets
implementation, with some extensions similar to the sockets extended macro interface.

REXX sockets
The REXX sockets programming interface implements facilities for IPv4 and IPv6 socket
communication directly from REXX programs by way of an address rxsocket function. REXX socket
programs can execute in TSO, online, or batch.

UNIX
A UNIX socket program can use up to eight TCP/IP protocol stacks at once. The stacks may be a
combination of any TCP/IP protocol stack that is supported by z/OS UNIX System Services. The following
APIs are provided by the UNIX element of z/OS and are not addressed in detail in this publication:
z/OS C sockets

z/OS UNIX C sockets are used in the z/OS UNIX environment. Programmers use this API to create
IPv4 and IPv6 applications that conform to the POSIX or XPG4 standard (a UNIX specification).
Applications built with z/OS UNIX C sockets can be ported to and from platforms that support these
standards. For more information, see z/OS XL C/C++ Runtime Library Reference.

Chapter 1. Introducing TCP/IP concepts 7

z/OS UNIX Assembler Callable Services
z/OS UNIX Assembler Callable Services is a generalized call-based interface to z/OS UNIX IPv4 and
IPv6 sockets programming. The functions implemented in this call interface resemble the z/OS UNIX
C sockets implementation, with some extensions similar to the sockets extended macro interface. For
more information, see z/OS UNIX System Services Programming: Assembler Callable Services
Reference.

Introducing TCP/IP concepts: Address families
Address families define different styles of addressing. All hosts in a given address family understand and
use the same scheme for addressing socket endpoints. TCP/IP supports addressing families AF_INET and
AF_INET6. See “Introducing TCP/IP concepts: Socket libraries” on page 6 to determine which APIs
support the AF_INET or both the AF_INET and AF_INET6 address families. The AF_INET domain defines
addressing for the IPv4 internet domain. The AF_INET6 domain defines addressing for the IPv6 internet
domain.

Introducing TCP/IP concepts: Addressing sockets in an Internet domain
This topic describes how to address sockets in an Internet domain.

Internet addresses
Internet addresses are 32-bit quantities (AF_INET) or 128-bit quantities (AF_INET6) that represent a
network interface. Every Internet address within an administered AF_INET domain must be unique. Every
Internet address within a scope for AF_INET6 domain must be unique. An internet host can also have
multiple Internet addresses. In fact, a host has at least as many Internet addresses as it has network
interfaces. For IPv4 interfaces, there must be one unique address per interface. However, the same is not
true for IPv6 interfaces. See z/OS Communications Server: IPv6 Network and Application Design Guide
for more information.

Ports
A port is used to differentiate among different applications using the same network interface. It is an
additional qualifier used by the system software to get data to the correct application. Physically, a port is
a 16-bit integer. Some ports are reserved for particular applications; they are labeled as well-known
ports.

In the client/server model, the server provides a resource by listening for clients on a particular port.
Some applications, such as FTP and Telnet, are standardized protocols and listen on a well-known port.
Such standardized applications use the same port number on all TCP/IP hosts. For your client/server
applications, however, you need a way to assign port numbers to represent the services you intend to
provide. An easy way to define services and their ports is to enter them into data set hlq.ETC.SERVICES.
In C, the programmer uses the getservbyname() function to determine the port for a particular service.
Should the port number for a particular service change, only the hlq.ETC.SERVICES data set needs to be
modified.

Note: Note that hlq is the high-level qualifier. z/OS Communications Server ships with a default hlq of
TCPIP. Use this default or override it using the DATASETPREFIX statement in the PROFILE.TCPIP and
TCPIP.DATA configuration files. TCP/IP is shipped with data set hlq.ETC.SERVICES that contains the well-
known services of FTP and Telnet. Data set hlq.ETC.SERVICES is described in the z/OS Communications
Server: IP Configuration Reference.

A socket program in an IP host identifies itself to the underlying TCP/IP protocol layers by port number.

A port number is a 16-bit integer ranging from 0 to 65535. A port number uniquely identifies this
application to the protocol underlying this TCP/IP host (TCP, UDP, or IP). Other applications in the TCP/IP
network can contact this application by way of reference to the port number on this specific IP host.

Figure 4 on page 9 shows the port concept.

8 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Application

Process no. 1

Application

Process no. 2

Port

x

Port

y

TCP or UDP

IP and ICMP

Network hardware interface

IP address

Hardware address

Figure 4. The port concept

Both server applications and client applications have port numbers. A server application uses a specific
port number to uniquely identify this server application. The port number can be reserved to a particular
server, so no other process ever uses it. In an IBM TCP/IP Services environment, you can do this using the
PORT statement in the hlq.PROFILE.TCP/IP configuration data set. When the server application initializes,
it uses the bind() socket call to identify its port number. A client application must know the port number of
a server application in order to contact it.

Because advance knowledge of the client's port number is not needed, a client often leaves it to TCP/IP to
assign a free port number when the client issues the connect() socket call to connect to a server. Such a
port number is called an ephemeral port number; this means it is a port number with a short life. The
selected port number is assigned to the client for the duration of the connection, and is then made
available to other processes. It is the responsibility of the TCP/IP software to ensure that a port number is
assigned to only one process at a time.

Well-known official Internet port numbers are in the range of 0 - 255. See http://www.iana.org/
assignments/multicast-addresses for details. In addition, port numbers in the range of 256 - 1023 are
reserved for other well-known services. Port numbers in the range of 1024 - 65535, which are neither in-
use nor reserved, are used when TCP/IP automatically assigns port numbers to client programs that do
not use specific port numbers.

Figure 5 on page 9 shows port number assignments.

Port
Numbers

0 255- - -256 1023 1024 65535

Official
Internet
Services

Other
Well-known
Services

Ephemeral
ports

Figure 5. Port number assignments

Before you select a port number for your server application, consult the hlq.ETC.SERVICES data set. This
data set is used to assign port numbers to server applications. The server application can use socket call
getservbyname() to retrieve the port number assigned to a given server name. Add the names of your
server applications to this data set and use socket call getservbyname(). With this technique, you avoid
hard coding the port number into your server program. The client program must know the port number of
the server on the server host. There is no socket call to obtain that information from the server host. To
compensate, synchronize the contents of data sets ETC.SERVICES on all TCP/IP hosts in your network.
Client application can then use the getservbyname() socket call to query its local ETC.SERVICES data set
for the port number of the server. Use this technique to develop your own local well-known services.

Network byte order
Ports and addresses are usually specified by calls using the network byte ordering convention. Network
byte order is also known as big endian byte ordering, where the high order byte defines significance.
Network byte ordering allows hosts using different architectures to exchange address information. See

Chapter 1. Introducing TCP/IP concepts 9

http://www.iana.org/assignments/multicast-addresses
http://www.iana.org/assignments/multicast-addresses

“accept() ” on page 94, “bind() ” on page 95, “htonl() ” on page 125, “htons() ” on page 125, “ntohl() ”
on page 133, and “ntohs() ” on page 133 for more information about network byte order.

Notes:

1. The socket interface does not handle application data byte ordering differences. Application writers
must handle byte order differences themselves, or use higher level interfaces such as remote
procedure calls (RPC). For description of the RPC calls, see z/OS Communications Server: IP
Programmer's Guide and Reference.

2. If you use the socket API, your application must handle the issues related to different data
representations on different hardware platforms. For character based data, some hosts use ASCII,
while other hosts use EBCDIC. Your application must handle translation between the two
representations.

Maximum number of sockets
For most socket interfaces, the maximum number of sockets allowed per each connection between an
application and the TCP/IP sockets interface is 65535. The exceptions to this rule are the C sockets
interface and the C sockets interface for CICS, where the maximum allowed for both of these interfaces is
2000.

Programmers need to be aware that for an application using a sockets interface that uses Sockets
Transform (for example, the EZASMI macro API, the callable EZASOKET API, CICS Sockets, or IMS
Sockets) approximately 68 bytes of storage per socket in the application's address space is allocated
when the application connects to the TCP/IP sockets interface. Each time a REXX client opens a socket,
approximately 208 bytes of storage is allocated. If an application using a sockets interface that uses
sockets transform requests 65 535 sockets, then approximately 4.25 MB (65535*68 bytes) of storage in
the application's address space is allocated just for the socket array. If a REXX client opens 65535
sockets, then approximately 13 MB (65535*208 bytes) of storage is allocated for the socket chain. The
monitoring and processing of this many sockets is also costly in terms of performance and CPU utilization.

The number of sockets that an application can open is also limited by the MAXFILEPROC UNIX System
Services parameter in the BPXPRMxx parmlib member. This parameter determines the number of sockets
each z/OS UNIX System Services process can have open. Each address space is usually a z/OS UNIX
System Services process. Thus, in most cases the combined number of sockets opened by all the
applications within an address space is limited to the MAXFILEPROC parameter. If MAXFILEPROC is
65535 and two different applications within the same address space both request 65535 sockets, then
the two applications will not be able to concurrently have 65535 sockets open. If one of the applications
has 65000 sockets open, then the other application will not be able to have more than 535 sockets open
even though it has allocated 65535 sockets.

The number of sockets that an application can open in a particular addressing family is also limited by the
MAXSOCKETS parameter in BPXPRMxx parmlib member's NETWORK statement that corresponds to the
addressing family. This value determines how many sockets for a particular addressing family can be
opened in the entire system. If MAXSOCKETS for the AF_INET addressing family is set to 60000 and there
are already 50000 AF_INET sockets open in the system, then a new application will not be able to open
more than 10000 AF_INET sockets even if it requests a higher number when it connects to the TCP/IP
sockets interface.

For details on the BPXPRMxx member, see the following publications:

• z/OS UNIX System Services Planning
• z/OS MVS Initialization and Tuning Reference
• z/OS UNIX System Services File System Interface Reference

AF_INET socket addresses in an Internet domain
A socket address in an Internet addressing family is comprised of four fields:

• The address family (AF_INET)
• The Internet address

10 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• A port
• A character array

The structure of an Internet socket address is defined by the following sockaddr_in structure, which is
found in header file IN.H:

struct in_addr
{
 u_long s_addr;
};
struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The sin_family field is set to AF_INET. The sin_port field is the port used by the application, in network
byte order. sin_addr field specifies a 32-bit Internet address. The sin_addr field is the Internet address of
the network interface used by the application; it is also in network byte order. The sin_zero field should be
set to zeros.

AF_INET6 socket addresses in an Internet domain
See z/OS Communications Server: IPv6 Network and Application Design Guide for parts of the AF_INET6
family. The structure of an Internet socket address is defined by the following sockaddr_in6 structure,
which is found in header file IN.H:

struct in6_addr
{
 union
 {
 uint8_t_ S6_u8[16];
 uint32_t_ S6_u32[4];
 }
 _S6_un;
};

#define s6_addr_S6_un._S6_u8

#define SIN6_LEN

struct sockaddr_in6
{
 uint8_t sin6_len;
 sa_family_t sin6_family;
 in_port_t sin6_port;
 uint32_t sin6_flowinfo;
 struct in6_addr sin6_addr;
 uint32_t sin6_scope_id;
};

The sin6_family field is set to AF_INET6. The sin6_port field is a halfword binary field that is the port used
by the application, in network byte order. The sin6_addr field specifies a 128-bit Internet address. The
sin6_addr field is the Internet address of the network interface used by the application; it is also in
network byte order. The sin6_flowinfo field is a fullword binary field specifying the traffic class and flow
label. This field is currently not implemented. The sin6_scope_id field identifies a set of interfaces as
appropriate for the scope of the address carried in the sin6_addr field.

Chapter 1. Introducing TCP/IP concepts 11

12 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 2. Organizing a TCP/IP application program

This information explains how to organize a TCP/IP application program. All examples are shown using an
address family of AF_INET (IPv4). All concepts described below can also be applied to an address family
of AF_INET6 (IPv6).

• Client and server socket programs
• Call sequence in socket programs
• Blocking, nonblocking, and asynchronous socket calls
• Testing a program using a miscellaneous server
• Testing a local machine using a loopback address
• Accessing required data sets

Client and server socket programs
The terms client and server are common within the TCP/IP community, and many definitions exist. In the
TCP/IP context, these terms are defined as follows:

Server
A process that waits passively for requests from clients, processes the work specified, and returns the
result to the client that originated the request.

Client
A process that initiates a service request.

No matter which socket programming interface you select, function is identical. The syntax might vary,
but the underlying concept is the same.

While clients communicate with one server at a time, servers can serve multiple clients. When you design
a server program, plan for multiple concurrent processes. Special socket calls are available for that
purpose; they are called concurrent servers, as opposed to the more simple type of iterative server.

To distinguish between these generic socket program categories, the following terms are used:

• Client program identifies a socket program that acts as a client.
• Iterative server program identifies a socket program that acts as a server, and processes fully one

client request before accepting another client request.
• Concurrent server main program identifies that part of a concurrent server that manages child

processes, accepts client connections, and schedules client connections to child processes.
• Concurrent server child program identifies that part of a concurrent server that processes the client

requests.

In a concurrent server main program, the child program might be active in many parallel child processes,
each processing a client request. In an MVS environment, a process is either an MVS task, a CICS
transaction, or an IMS transaction.

Client/server socket programs: Iterative server socket programs
An iterative server processes requests from clients in a serial manner; one connection is served and
responded to before the server accepts a new client connection.

Figure 6 on page 14 shows the iterative server main logic.

© Copyright IBM Corp. 2000, 2020 13

Iterative Server

1

Client process

2

3

4

Connect to server
Send data

Receive reply
Close connection

Do Forever
Accept a connection request
Receive client data
Process data
Send reply to client
Close connection

end

Figure 6. Iterative server main logic

The following list describes the iterative server socket process.

1. When a connection request arrives, it accepts the connection and receives the client data.
2. The iterative server processes the received data and does whatever has to be done to build a reply.
3. The server sends the data back to the client.
4. The iterative server closes the socket and waits for the next connection request from the network.

An MVS iterative server can be implemented as follows:

• As a batch job or MVS task started manually, or by automation software. The job remains active until it is
closed by operator intervention.

• As a TSO transaction. For a production implementation, submit a job that executes a batch terminal
monitor program (TMP).

• As a long-running CICS task. The task normally begins during CICS startup, but it can be started by an
authorized CICS operator entering the appropriate CICS transaction code.

• As a batch message program (BMP) in IMS.

From a socket programming perspective, there is no difference between an iterative server that runs in a
native MVS environment (batch job, started task, or TSO) and one that runs as a CICS task, or as a BMP
under IMS.

You can terminate the server process in various ways. For jobs that execute in traditional MVS address
spaces (batch job, started task, TSO, IMS BMP), you can implement functions in the server to enable an
operator to use the MVS MODIFY command to signal stop; for example F SERVER,STOP. (This technique
cannot be used for CICS tasks.) Alternatively, you can include a shutdown message in the application
protocol. By doing so, you can develop a shutdown client program that connects to the server and sends a
shutdown message. When the server receives a shutdown message from a socket client, it terminates
itself.

Client/server socket programs: Concurrent server socket programs
A concurrent server accepts a client connection, delegates the connection to a child process of some kind,
and immediately signals its availability to receive the next client connection.

The following list describes the concurrent server process.

1. When a connection request arrives in the main process of a concurrent server, it schedules a child
process and forwards the connection to the child process.

2. The child process takes the connection from the main process.
3. The child process receives the client request, processes it, and returns a reply to the client.
4. The connection is closed, and the child process terminates or signals to the main process that it is

available for a new connection.

You can implement a concurrent server in the following MVS environments:

14 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• Native MVS (batch job, started task, or TSO). In this environment you implement concurrency by using
traditional MVS subtasking facilities. These facilities are available from assembler language programs or
from high-level languages that support multitasking or multithreading; for example, C/370.

• CICS. The concurrent main process is started as a long-running CICS task that accepts connection
requests from clients, and initiates child processes by way of the EXEC CICS START command. CICS
sockets include a generic concurrent server main program called the CICS LISTENER.

• IMS. The concurrent main process is started as a BMP that accepts connection requests from clients
and initiates child processes by way of the IMS message switch facilities. The child processes execute
as IMS message processing programs (MPP). IMS sockets include a generic concurrent server main
program called the IMS LISTENER.

In the iterative and concurrent server scenarios described above, client and server processes could have
exchanged a series of request and reply sequences before closing the connection.

Client/server socket programs: Call sequence in socket programs
The following topics describe call sequence concepts for different types of socket sessions.

Call sequence in stream socket sessions
This topic describes a typical stream socket session.

Use stream sockets for both passive (server) and active (client) processes. While some calls are necessary
for both types, others are role specific. See “Sample C socket programs” on page 164 for sample socket
communication client and server programs. All connections exist until closed by the socket. During the
connection, data is delivered, or an error code is returned by TCP/IP.

Figure 7 on page 16 shows the general sequence of calls for most socket routines using stream sockets.

Chapter 2. Organizing a TCP/IP application program 15

1 1

4

8 8

2 2

5

5

3

6,76,7 7,6
Read and write data on socket s, using the

send() and recv() calls, until all data has

been exchanged.

Create a stream socket s with the socket()

call.

Create a stream socket s with the socket()

call.

(Optional)

Bind socket s to a local address with the

bind()

Connect socket s to a foreign host with the

connect()

Close socket s and end the TCP/IP session

with the close() call.

Bind socket s to a local address with the

bind()

With the listen() call, alert the TCP/IP

machine of your willingness to accept

connections.

Accept the connection and receive a

second socket, for example ns, with the

accept()

For the server, socket s remains available

to accept new connections. Socket ns is

dedicated to the client.

Read and write data on socket ns, using

the send() and recv() calls, until all

data has been exchanged.

Close socket ns with the close() call.

Accept another connection from a client,

or close the original socket s with the

close()

CLIENT SERVER

Figure 7. A typical stream socket session

Call sequence in datagram socket sessions
Datagram socket processes, unlike stream socket processes, are not clearly distinguished by server and
client roles. The distinction lies in connected and unconnected sockets. An unconnected socket can be
used to communicate with any host, but a connected socket can send data to and receive data from one
host only.

Both connected and unconnected sockets transmit data without verification. After a packet has been
accepted by the datagram interface, neither its integrity nor its delivery can be assured.

Figure 8 on page 17 shows the general sequence of calls for socket routines using datagram sockets.

16 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Figure 8. A typical datagram socket session

Client/server socket programs: Blocking, nonblocking, and
asynchronous socket calls

A socket is in blocking mode when an I/O call waits for an event to complete. If the blocking mode is set
for a socket, the calling program is suspended until the expected event completes.

If nonblocking is set by the FCNTL() or IOCTL() calls, the calling program continues even though the I/O
call might not have completed. If the I/O call could not be completed, it returns with ERRNO
EWOULDBLOCK. (The calling program should use SELECT() to test for completion of any socket call
returning an EWOULDBLOCK.)

Note: The default mode is blocking.

If data is not available to the socket, and the socket is in blocking and synchronous modes, the READ call
blocks the caller until data arrives.

All IBM TCP/IP Services socket APIs support nonblocking socket calls. Some APIs, in addition to
nonblocking calls, support asynchronous socket calls.

Blocking
The default mode of socket calls is blocking. A blocking call does not return to your program until the
event you requested has been completed. For example, if you issue a blocking recvfrom() call, the call
does not return to your program until data is available from the other socket application. A blocking
accept() call does not return to your program until a client connects to your socket program.

Nonblocking

Change a socket to nonblocking mode using the ioctl() call that specifies command FIONBIO and a
fullword (four byte) argument with a nonzero binary value. Any succeeding socket calls against the
involved socket descriptor are nonblocking calls.

Alternatively, use the fcntl() call using the F_SETFL command and FNDELAY as an argument.

Nonblocking calls return to your program immediately to reveal whether the requested service was
completed. An error number may mean that your call would have blocked had it been a blocking call.

Chapter 2. Organizing a TCP/IP application program 17

If the call was, for example, a recv() call, your program might have implemented its own wait logic and
reissued the nonblocking recv() call at a later time. By using this technique, your program might have
implemented its own timeout rules and closed the socket, failing receipt of data from the partner
program, within an application-determined period of time.

A new ioctl() call can be used to change the socket from nonblocking to blocking mode using
command FIONBIO and a fullword argument of value 0 (F'0').

Asynchronous
Like nonblocking calls, asynchronous calls return control to your program immediately. But in this
case, there is no need to reissue the call. Asynchronous calls are available with the macro API. For
more information, see “Task management and asynchronous function processing” on page 198.

Table 1 on page 18 lists the actions taken by the socket programming interface.

Table 1. Socket programming interface actions

Call type Socket state blocking Nonblocking

Types of read() calls Input is available Immediate return Immediate return

No input is available Wait for input Immediate return with
EWOULDBLOCK error number
(select() exception: READ)

Types of write() calls Output buffers available Immediate return Immediate return

No output buffers
available

Wait for output
buffers

Immediate return with
EWOULDBLOCK error number
(select() exception: WRITE)

accept() call New connection Immediate return Immediate return

No connections queued Wait for new
connection

Immediate return with
EWOULDBLOCK error number
(select() exception: READ)

connect() call Wait Immediate return with
EINPROGRESS error number
(select() exception: WRITE)

Test pending activity on a number of sockets in a synchronous program by using the select() call. Pass the
list of socket descriptors that you want to test for activity to the select() call; specify by socket descriptor
the following type of activity you want test to find:

• Pending data to read
• Ready for new write
• Any exception condition

When you use select() call logic, you do not issue any socket call on a given socket until the select() call
tells you that something has happened on that socket; for example, data has arrived and is ready to be
read by a read() call. By using the select() call, you do not issue a blocking call until you know that the call
cannot block.

The select() call can itself be blocking, nonblocking, or, for the macro API, asynchronous. If the call is
blocking and none of the socket descriptors included in the list passed to the select() call have had any
activity, the call does not return to your program until one of them has activity, or until the timer value
passed on the select() call expires.

The select() call and selectex() call are available. The difference between select() and selectex() calls is
that selectex() call allows you to include nonsocket related events in the list of events that can trigger the
selectex() call to complete. You do so by passing one or more MVS event control blocks (ECBs) on the
selectex() call. If there is activity on any of the sockets included in the select list, if the specified timer
expires, or if one of the external events completes, the selectex() call returns to your program.

18 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Typically, a server program waits for socket activity or an operator command to shut it down. By using the
selectex() call, a shutdown ECB can be included in the list of events to be monitored for activity.

Client/server socket programs: Testing a program using a
miscellaneous server

To test your program using either a stream or a datagram socket session, you can use the MISCSERV
server. You must start MISCSERV before a client application can connect to it. If Ports 7, 9, or 19 are used
by another application, or using another copy of MISCSERV, this MISCSERV command cannot operate
properly. Available MISCSERV servers are:

Tool
Server description

Echo
Specify Port 7 when you want MISCSERV to return data exactly as it is received (stream and datagram
sessions).

Discard
Specify Port 9 when you want MISCSERV to discard the data.

Character Generator
Specify Port 19 when you want MISCSERV to return random data regardless of the data it receives.
For a stream session, data is returned continuously until you end the session; the received data
stream is discarded. For a datagram session, random data is returned for each datagram received; the
received datagram is discarded.

Note: The server uses MAXSOC=50. This value limits the sockets available to the server.

For more information, see RFC 862, RFC 863, RFC 864, and the z/OS Communications Server: IP
Configuration Reference.

Client/server socket programs: Testing a local machine using a
loopback address

You can use a local loopback address to test your local TCP/IP host without accessing the network. For
the AF_INET family, the class A network address 127.0.0.1 is the default loopback address. For
AF_INET6, the network address ::1 is the default loopback address. Depending on the address family, you
can specify 127.0.0.1 (AF_INET) or ::1 (AF_INET6). Additional loopback addresses can be configured by
your TCP/IP administrator.

You can use the loopback address with any TCP/IP command that accepts IP addresses, although you
might find it particularly useful in conjunction with FTP and PING commands. When you issue a command
with a loopback address, the command is sent from your local host client to the local TCP/IP host where it
is recognized as a loopback address and is sent to your local host server.

Using a loopback address on commands allows you to test client and server functions on the same host
for proper operation.

Note: Any command or data that you send using the loopback address never actually leaves your local
TCP/IP host.

The information you receive reflects the state of your system and tests the client and server code for
proper operation. If the client or server code is not operating properly, a command message is returned.

Client/server socket programs: Accessing required data sets
Table 2 on page 20 lists the data sets and applications to which TCP/IP applications must have access to
compile and link-edit.

Chapter 2. Organizing a TCP/IP application program 19

Table 2. TCP/IP data sets and applications

Data set Application

SEZACMAC Client Pascal macros, C headers, and assembler macros

SEZACMTX Sockets and Pascal API

SEZADPIL SNMP DPI

SEZALIBN NCS

SEZAOLDX X Release 10 compatibility routines

SEZANMAC C headers and assembler macros for z/OS UNIX and TCP/IP Services
APIs

SEZARNT1 Sockets, X11, and PEXlib (reentrant)

SEZARNT2 Athena widget (reentrant)

SEZARNT3 Motif widget (reentrant)

SEZARPCL Remote procedure calls

SEZAXAWL Athena widget set

SEZAXMLB OSF/Motif-based widget set

SEZAXTLB Xt Intrinsics

SEZAX11L Xlib, Xmu, Xext, and Xau routines

20 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Part 2. Designing programs

Describes ways to design various types of programs including the following information:

• Chapter 3, “Designing an iterative server program,” on page 23
• Chapter 4, “Designing a concurrent server program,” on page 33
• Chapter 5, “Designing a client program,” on page 47
• Chapter 6, “Designing a program to use datagram sockets,” on page 49
• Chapter 7, “Transferring data between sockets,” on page 51
• Chapter 8, “Designing IPv6 programs ,” on page 61
• Chapter 9, “Designing multicast programs ,” on page 63

© Copyright IBM Corp. 2000, 2020 21

22 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 3. Designing an iterative server program

This information uses an address family of AF_INET (IPv4). All of the concepts described can also be
applied to an address family of AF_INET6 (IPv6).

• “Allocating sockets in an iterative server program” on page 23
• “Binding sockets in an iterative server program” on page 25
• “Listening for client connection requests in an iterative server program” on page 27
• “Accepting client connection requests in an iterative server program” on page 28
• “Transferring data between sockets in an iterative server program” on page 30
• “Closing a connection in an iterative server program” on page 30

Allocating sockets in an iterative server program
The server must allocate a socket to provide an endpoint to which clients connect. All commands that
pass a socket address must be consistent with the address family specified when the socket was opened.

• If the socket was opened with an address family of AF_INET, then any command for that socket that
includes a socket address must use an AF_INET socket address.

• If the socket was opened with AF_INET6, then any command for that socket that includes a socket
address must use an AF_INET6 socket address.

A socket is actually an index into a table of connections to the TCP/IP address space, so socket numbers
are usually assigned in ascending order. In C, the programmer issues the socket() call to allocate a new
socket, as shown in the following example:

s = socket(AF_INET, SOCK_STREAM, 0);

The socket function requires specification of the address family (AF_INET), the type of socket
(SOCK_STREAM), and the particular networking protocol to be used. When 0 is specified, the TCP/IP
address space automatically uses the protocol appropriate to the socket type specified. A new socket is
allocated and returned.

An application must first get a socket descriptor using the socket() call, as seen in the following example.
For a complete description, see “socket() ” on page 158.

int socket(int domain, int type, int protocol);
⋮
int s;
⋮
s = socket(AF_INET, SOCK_STREAM, 0);

The code fragment allocates socket descriptor s in the internet addressing family. The domain parameter
is a constant that specifies the domain in which the communication is taking place. A domain is a
collection of applications using a single addressing convention. The type parameter is a constant that
specifies the type of socket; it can be SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW. The protocol
parameter is a constant that specifies the protocol to be used. This parameter is ignored, unless type is
set to SOCK_RAW. Passing 0 chooses the default protocol. If successful, the socket() call returns a
positive integer socket descriptor.

The server obtains a socket by way of the socket call. You must specify the domain to which the socket
belongs, and the type of socket you want.

Figure 9 on page 24 lists the socket call() variables using the CALL API.

© Copyright IBM Corp. 2000, 2020 23

* Variables used for the SOCKET call *

 01 afinet pic 9(8) binary value 2.
 01 soctype-stream pic 9(8) binary value 1.
 01 proto pic 9(8) binary value 0.
 01 socket-descriptor pic 9(4) binary value 0.

* Get us a socket descriptor *

 call 'EZASOKET' using soket-socket
 afinet
 soctype-stream
 proto
 errno
 retcode.
 if retcode < 0 then
 - process error -
 else
 Move retcode to socket-descriptor.

Figure 9. Socket call variables

The internet domain has a value of 2. A stream socket is requested by passing a type value of 1. The proto
field is normally 0, which means that the socket API should choose the protocol to be used for the domain
and socket type requested. In this example, the socket uses TCP protocols.

A socket descriptor representing an unnamed socket is returned from the socket() call. An unnamed
socket has no port and no IP address information associated with it; only protocol information is available.
The socket descriptor is a 2-byte binary field and must be passed on subsequent socket calls as such.

A socket is an inconvenient concept for a program because it consists of three different items: a protocol
specification, a port number, and an IP address. To represent the socket conveniently, we use the socket
descriptor.

The socket descriptor is not in itself a socket, but represents a socket and is used by the socket library
routines as an index into the table of sockets owned by a given MVS TCP/IP client. On all socket calls that
reference a specific socket, you must pass the socket descriptor that represents the socket with which
you want to work.

Figure 10 on page 24 lists the MVS TCP/IP socket descriptors.

--
Socket Descriptor Socket
0 Our listen socket
1 Our connected socket
--

Figure 10. MVS TCP/IP socket descriptor table

The first socket descriptor assigned to your program is 0 (for a sockets extended program). If your
program is written in C, socket descriptors 0, 1, and 2 are reserved for std.in, std.out and std.err, and the
first socket descriptor assigned for your AF_INET sockets is numeral 3 or higher.

When a socket is closed, the socket descriptor becomes available; it is returned as a new socket
descriptor representing a new socket in response to a succeeding request for a socket.

Note: In reference documentation, the socket descriptor is normally represented by a single letter: S, or
by two letters: SD.

When you possess the socket descriptor, you can request the socket address structure from the socket
programming interface by way of call getsockname(). A socket does not include both port and IP
addresses until after a successful bind(), connect(), or accept() call has been issued.

If your socket program is capable of handling sockets simultaneously, you must keep track of your socket
descriptors. Build a socket descriptor table inside of your program to store information related to the
socket and the status of the socket. This information is sometimes needed, and can help in debug
situations.

24 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Binding sockets in an iterative server program
At this point in the process, an entry in the table of communications has been reserved for your
application. However, the socket has no port or IP address associated with it until you use the bind()
function. The bind() function requires three parameters:

• The socket just given to the server.
• The number of the port to which the server is to provide service.
• The IP address of the network connection from which the server is to accept connection. If this address

is 0, the server accepts connection requests from any address.

Binding with a known port number
In C, the server puts the port number and IP address into structure sockaddr_, x, passing it, and the
socket, to the bind() function. For example:

bind(s, (struct sockaddr *)&x, sizeof(struct sockaddr));

After an application possesses a socket descriptor, it can explicitly bind() a unique address to that socket,
as in the example listed in Figure 11 on page 25. For more information about binding, see “bind() ” on
page 95.

int bind(int s, struct sockaddr *name, int namelen);
.
.
.
int rc;
int s;
struct sockaddr_in myname;

 /* clear the structure to clear the sin_zero field */
 memset(&myname,; 0, sizeof(myname));
 myname.sin_family = AF_INET;
 myname.sin_addr = inet_addr(“129.5.24.1”); /* specific interface */
 myname.sin_port = htons(1024);
⋮
 rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

Figure 11. An application using the bind() call

This example binds socket descriptor s to the address 129.5.24.1, and port 1024 to the internet
domain. Servers must bind to an address and port to be accessible to the network. The example in Figure
11 on page 25 lists two utility routines:

• Socket call inet_addr() takes an internet address in dotted decimal form and returns it in network byte
order. For a description, see “inet_addr() ” on page 126.

• Socket call htons() takes a port number in host byte order and returns the port number in network byte
order. For a description, see “htons() ” on page 125.

Binding using socket call gethostbyname
Figure 12 on page 26 shows another example of socket call bind(). It uses the utility routine
gethostbyname() to find the internet address of the host, rather than using socket call inet_addr with a
specific address.

Chapter 3. Designing an iterative server program 25

int bind(int s, struct sockaddr *name, int namelen);
.
.
.
int rc;
int s;
char *hostname = “myhost”;
struct sockaddr_in myname;
struct hostent *hp;

 hp = gethostbyname(hostname);

 /* clear the structure to clear the sin_zero field */
 memset(&myname,0,sizeof(myname));
 myname.sin_family = AF_INET;
 myname.sin_addr.s_addr = *((unsigned long *)hp->h_addr);
 myname.sin_port = htons(1024);
⋮
rc = bind(s,(struct sockaddr *) &myname, sizeof(myname));

Figure 12. A bind() call using gethostbyname()

Binding a socket to a specific port number
By binding the socket to a specific port number, you avoid having an ephemeral port number assigned to
the socket.

Servers find it inconvenient to have an ephemeral port number assigned, because clients have to connect
to a different port number for every instance of the server. By using a predefined port number, clients can
be developed to always connect to a given port number.

Client programs can use the socket call bind(), but client programs rarely benefit from using the same port
number every time they execute.

Figure 13 on page 26 shows a list of BIND call variables.

* Variables used for the BIND Call *

 01 server-socket-address.
 05 server-afinet pic 9(4) binary value 2.
 05 server-port pic 9(4) binary value 9998.
 05 server-ipaddr pic 9(8) binary value 0.
 05 filler pic x(8) value low-value.
 01 socket-descriptor pic 9(4) binary.

* Bind socket to our server port number *

 call 'EZASOKET' using soket-bind
 socket-descriptor
 server-socket-address
 errno
 retcode.
 if retcode < 0 then
 - process error -

Figure 13. Variables used for the BIND call

Before you issue this call, you must build a socket address structure for your own socket using the
following information:

• The address family is two, indicating (AF_INET). See z/OS Communications Server: IPv6 Network and
Application Design Guide for a description of binding to an AF_INET6 socket.

• Port number for your server application. For a sockets extended program, you have to create a
predefined port number; this is either a constant in your program, or a variable passed to your program
as an initialization parameter. If you develop your socket program in C, you can issue a getservbyname()
call to locate the port number reserved for your server application in data set hlq.ETC.SERVICES.

• IP address on which your server application is to accept incoming requests. If your application is
executing on a multihomed host, and you want to accept incoming requests over all available network
interfaces, you must set this field to binary zeros.

26 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• For TCP connections, 0 allows a server to accept incoming connections to the specified port regardless
of which destination IP address for this host is used.

• For UDP, 0 allows a server to receive all datagrams destined for the specified port and any destination
address for this host.

• For TCP and UDP client applications, specifying a 0 address for the BIND() indicates that TCP/IP will
select the source IP address to be used.

Normally, the IP address is set to INADDR_ANY, but there are situations in which you might want to use a
specific IP address. Consider the case of a TCP/IP system address space having been configured with two
virtual IP addresses (VIPA). One VIPA address is returned by the named server when clients resolve one
host name, and the other VIPA address is returned by the name server when clients resolve the other host
name. In fact, both host names represent the same TCP/IP system address space, but the host names can
be used to represent two different major socket applications on that MVS host. If your Server A and your
Server B can generate a very high amount of network traffic, your network administrator might want to
implement what is known as session traffic splitting. This means that IP traffic for one server comes in on
one network adapter while traffic for the other server comes in on another adapter. To facilitate such a
setup, you must be able to bind the server listener socket to one of the two VIPA addresses.

At this point in the process, you have not told TCP/IP anything about the purpose of the socket you
obtained. You are free to use it as a client to issue connect requests to servers in the IP network, or use it
to become a server yourself. In terms of the socket, it is, at the moment, active; this is the default status
for a newly created socket.

Listening for client connection requests in an iterative server
program

After the bind is issued, the server has been specified a particular IP address and port. It now must notify
the TCP/IP address space that it intends to listen for connections on this socket. The listen() function puts
the socket into passive open mode and allocates a backlog queue for pending connections. In passive
open mode, the socket is open to client contact. For example:

listen(s, backlog_number);

The server gives to the socket on which it will be listening the number of requests that can be queued (the
backlog_number). If a connection request arrives before the server can process it, the request is queued
until the server is ready.

When you call listen, you inform TCP/IP that you intend to be a server and accept incoming requests from
the IP network. By doing so, socket status is changed from active status to passive.

A passive socket does not initiate a connection; it waits for clients to connect to it.

The listen() call variables are shown in Figure 14 on page 27.

* Variables used by the Listen Call *

 01 backlog-queue pic 9(8) binary value 10.
 01 socket-descriptor pic 9(4) binary.

* Issue passive open via Listen call *

 call 'EZASOKET' using soket-listen
 socket-descriptor
 backlog-queue
 errno
 retcode.
 if retcode < 0 then
 - process error -

Figure 14. Variables used by the listen call

The backlog queue value is used by the TCP/IP system address space when a connect request arrives and
your server program is busy processing the previous client request. TCP/IP queues new connection

Chapter 3. Designing an iterative server program 27

requests to the number you specify in the backlog queue parameter. If additional connection requests
arrive, they are silently ignored by TCP/IP, since there is a limit to the size of the backlog queue parameter.

The system-wide limit is set in the TCP/IP system address space PROFILE.TCP/IP configuration data set
by parameter SOMAXCONN. The default value of SOMAXCONN is ten, but you can configure it higher as
follows:

;
; ***
; * Set the listen queue to a maximum of 100 *
; ***
;
SOMAXCONN 100

The value you specify on the listen() call in the backlog parameter cannot exceed the value set for
SOMAXCONN in TCPIP.PROFILE. If you specify a backlog parameter of 200 and SOMAXCONN is set to 20,
no error is returned, but your backlog queue size will be set to 20 instead of the 200 you requested.

There is a C header file called SOCKET.H (datasetprefix.SEZACMAC member SOCKET) in which there is a
variable called SOMAXCONN. The shipped value of this variable is 10, as illustrated below:

/*
 *Maximum queue length specifiable by listen
/*
#define SOMAXCONN 10

The listen () call does not establish connections; it merely changes the socket to a passive state, so it is
prepared to receive connection requests coming from the IP network. If a connection request for this
server arrives between the time of the listen() call and the succeeding accept() call, it is queued according
to the backlog value passed on the listen() call.

Accepting client connection requests in an iterative server program
To this point in the process, the server has allocated a socket, bound the socket to an IP address and port,
and issued a passive open. The next step is for the server to connect with a client. The accept() call blocks
the server until a connection request arrives; if there are connection requests in the backlog queue, a
connection is established with the first client in the queue. The following example shows the accept() call:

client_sock = accept(s);

The server passes its socket to the accept call. When the connection is established, the accept call
returns a new socket representing the connection with the client. When the server wants to communicate
with the client, or to end the connection, it uses this new socket, client_sock. The original socket s is
now ready to accept connection to other clients. The original socket is still allocated, bound, and passively
opened. To accept another connection, the server calls accept() again. By repeatedly calling accept(), the
server can establish simultaneous sessions with multiple clients.

The accept() call dequeues the first queued connection request or blocks the caller until a connection
request arrives over the IP network.

The accept() call uses the variables listed in Figure 15 on page 29.

28 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* Variables used by the ACCEPT Call *

 01 client-socket-address.
 05 client-afinet pic 9(4) binary value 0.
 05 client-port pic 9(4) binary value 0.
 05 client-ipaddr pic 9(8) binary value 0.
 05 filler pic x(8) value low-value.
 01 accepted-socket-descriptor pic 9(4) binary value 0.
 01 socket-descriptor pic 9(4) binary.

* Start iterative server loop with a blocking Accept Call *

 call 'EZASOKET' using soket-accept
 socket-descriptor
 client-socket-address
 errno
 retcode.
 if retcode < 0 then
 - process error -
 else
 Move retcode to accepted-socket-descriptor.

Figure 15. Variables used by the ACCEPT call

This call works with the following socket descriptors:

• The first socket descriptor represents the socket that was obtained, bound to the server port and
(optionally) the IP address, and changed to the passive state using the listen() call.

• The accept() call returns a new socket descriptor, to represent a complete association:

Accepted_socket_descriptor represents:
{TCP, server IP address, server port, client IP address, client port}

The original socket, which was passed to the accept() call, is unchanged and is still representing our
server half association only:

Original_socket_descriptor represents:
{TCP, server IP address, server port}

When control returns to your program, the socket address structure passed on the call has been filled
with the socket address information of the connecting client. Figure 16 on page 30 illustrates the socket
states.

Chapter 3. Designing an iterative server program 29

Remote client

10.10.2.34,2300,

TCP

IP address of remote host: 10.10.2.34

10.10.1.1, 999,

TCP

TCP Listener Socket

SD3

IP address of server host: 10.10.1.1

Local Iterative server

local: 10.0.1.1, 999, TCP

remote: 10.10.2.34, 2300, TCP

Connected Socket

SD4

Socket Descriptor Table for the local Iterative server

SD4

Local part
(IP addr, port, protocol)

SD3

Descriptor#

10.10.2.34, 2300, TCP

Remote part
(IP addr, port, protocol)

10.0.1.1, 999, TCP

10.0.1.1, 999, TCP

connect (10.10.1.1, 999)

Figure 16. Socket states

When a socket is created, we know the protocol that we are going to use with this socket, but nothing
else. When a server calls the bind() function, a local address is assigned to the socket, but the socket still
only represents a half-association; the remote address is still empty. When the client connects to the
listener socket and a new socket is created, this new socket represents a fully bound socket possessing
both a local address (that of the listener socket) and a remote address (that of the client socket). Figure
16 on page 30 illustrates a fully bound socket.

Subsequent socket calls for the exchange of data between the client and the server use the new socket
descriptor. The original socket descriptor remains unused until the iterative server has finished processing
the client request and closed the new socket. The iterative server then reissues the accept() call using the
original socket descriptor and waits for a new connection.

Transferring data between sockets in an iterative server program
See Chapter 7, “Transferring data between sockets,” on page 51.

Closing a connection in an iterative server program
Closing a socket imposes some problems because the TCP protocol layer must ensure that all data has
been successfully transmitted and received before the socket resources can be safely freed at both ends.

The following topics describe various ways to close a connection.

Active and passive closing in an iterative server program
The program that initiates the closedown process by issuing the first close() call is said to initiate an active
close. The program that closes in response to the initiation is said to initiate a passive close.

Figure 17 on page 31 illustrates socket closing.

30 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Program A
TCP Layer A

TCP Layer B Program B

Socket into

TIMEWAIT

state

(2*MSL)

Socket into

CLOSED

state

Socket into

CLOSED

state

FIN segment seq. x

FIN segment seq. y

ACK seq. y+1

ACK seq. x+1

Call CLOSE

Program end

RC=0 on

READ

Call CLOSE

Program end

Figure 17. Closing sockets

In Figure 17 on page 31, Program A initiates the active close, while Program B initiates the passive close.
When a program calls the close socket function, the TCP protocol layer sends a segment known as FIN
(FINish). When Program B receives the final acknowledgment segment, it knows that all data has been
successfully transferred and that Program A has received and processed the FIN segment. The TCP
protocol layer for Program B can then safely remove the resources that were occupied by the Program
socket. The TCP protocol layer for Program A sends an acknowledgment to the FIN segment it received
from Program B, but the Program A TCP protocol layer does not know whether that ACK segment arrived
at the Program B TCP protocol layer. It must wait a reasonable amount of time to see whether the FIN
segment from Program B is retransmitted, indicating that Program B never received the final ACK segment
from Program A. In that case, Program A must be able to retransmit the final ACK segment. The Program
A socket cannot be freed until this time period has elapsed. The time period is defined as twice the
maximum segment life time, normally in the range of 1 to 4 minutes, depending on the TCP
implementation.

If Program A is the client in a TCP connection, this TIMEWAIT state does not create any major problems. A
client normally uses an ephemeral port number; if the client restarts before the TIMEWAIT period has
elapsed, it is merely assigned another ephemeral port number. If Program A, on the other hand, is the
server in a TCP connection, this TIMEWAIT state does create a problem. A server binds its socket to a
predefined port number; if the server tries to restart and bind the same port number before the
TIMEWAIT period has elapsed, it receives an EADDRINUSE error code on the bind() call. This situation
could arise when a server crashes and you try to restart it before the TIMEWAIT period has elapsed. You
must wait to restart your server.

If the server cannot wait for one to four minutes, you can use the setsockopt() call in the server to specify
SO_REUSEADDR before it issues the bind() call. In that case, the server will be able to bind its socket to
the same port number it was using before, even if the TIMEWAIT period has not elapsed. However, the
TCP protocol layer still prevents it from establishing a connection to the same partner socket address. As
clients normally initiate connections and clients use ephemeral port numbers, the likelihood of this is low.

Shutdown call in an iterative server program
If you want to close the stream in one direction only, use the shutdown socket call instead of the close()
call. On the shutdown() call, you can specify the direction in which the stream is to be closed.

When a shutdown() call is issued for receive and there is unread data queued to the socket, the
connection is aborted. If data arrives inbound on a connection that has been shut down for receive, the
connection is aborted. When the connection is aborted, all outstanding socket calls on the socket will be
posted with an ECONNABORTED error. The abort discards all unsent and unreceived data on the local and

Chapter 3. Designing an iterative server program 31

remote end of the connection, and the connection is destroyed. The application should issue a close() on
the socket.

See Table 3 on page 32 for a list of the effect on read and write calls when the stream is shut down in
one or both directions.

Table 3. Effect of shutdown socket call

Socket calls in local
program

Local program Remote program

Shutdown SEND Shutdown
RECEIVE

Shutdown
RECEIVE

Shutdown SEND

Write calls Error number
EPIPE on first call

Error number
EPIPE on second
call*

Read calls Zero length return
code

Zero length return
code

* If you issue two write calls immediately, both might be successful, and an EPIPE error number might
not be returned until a third write call is issued.

Linger option in an iterative server program
By default, a close socket call returns control to your program immediately, even where there is unsent
data on the socket. This data will be transmitted by the TCP protocol layer, but your program is not
notified of any error. This is true of both blocking and nonblocking sockets.

You can request that no control be returned to your program before unsent data has been transmitted and
acknowledged by the receiver. To do so, issue the SO_LINGER option on call setsockopt. Before you issue
the actual close() call, pass the following option value fields:

ONOFF
This fullword is used to enable or disable the SO_LINGER option. Any nonzero value enables the
option; a 0 value disables it.

LINGER
This is the linger time, in seconds; this is the maximum delay the close call observes. If data is
successfully transmitted before this time expires, control is returned to your program. If this time
interval expires before data has been successfully transmitted, control is returned to your program
also. You cannot distinguish between the two return events.

Note: If you set a 0 linger time, the connection cannot close in an orderly manner, but stops, resulting
in a RESET segment being sent to the connection partner. Also, if the aborting socket is in nonblocking
mode, the close call is treated as though no linger option had been set.

32 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 4. Designing a concurrent server program

This information describes concurrent server programs. All examples are shown using an address family
of AF_INET (IPv4). All concepts also can be applied to an address family of AF_INET6 (IPv6). These
programs include:

• “Concurrent servers in native MVS environment” on page 33
• “MVS subtasking considerations in a concurrent server program” on page 34
• “Understanding the structure of a concurrent server program” on page 37
• “Selecting requests in a concurrent server program” on page 37
• “Client connection requests in a concurrent server program” on page 41
• “Transferring data between sockets in a concurrent server program” on page 45
• “Closing a concurrent server program” on page 45

For the MVS address space examples presented in this topic, the more traditional MVS subtasking
facilities are used; the main process and the child process operate as tasks within the same address
space.

You can implement your concurrent server in an IMS, a CICS, or a traditional MVS address space
environment, but unlike the implementation of an iterative server, the implementation of a concurrent
server is unique to its environment. In this topic, the implementation of a concurrent server in an MVS
address space is used as an example.

A server handling more than one client simultaneously acts like a dispatcher. The server receives client
requests and then creates and dispatches tasks to handle each client.

In the UNIX operating system, a new process is dispatched using the fork() system call after the server
has established the connection; this new process automatically inherits the socket attached to the client.
In MVS, an independent task is started using the supervisor call instruction ATTACH. A server can
complete the call after each connection is established (similar to the UNIX operating system), or it can
repeatedly request an ATTACH when it begins execution, and pass clients to tasks that exist. In either
case, the server must manually give the new socket to the subtask. Because each task has its own socket
table, it is not sufficient to pass only the socket number to the subtask; for example, socket Number 4 for
Task A is not the same as socket Number 4 for Task B. You must specify the task as well as the socket
number.

Concurrent servers in native MVS environment
The concurrent server is complicated to implement. Logic must be split into a main program and a child
program. In addition, you have to manage all processes within your application.

In the MVS environment, you implement such logic by means of the UNIX fork() call. Because this call is
not available in a traditional MVS environment, you must improvise.

In the UNIX environment, the fork function is implemented using APPC/MVS to schedule and initiate a
child process in an MVS address space other than the address space of the original process.

Note: For simplicity, the scope of our applications is limited to the AF_INET addressing family and stream
sockets.

If you want to implement a high-performance server application that creates or accesses MVS resource of
various kinds (especially MVS data sets), you will probably implement your server as a concurrent server
in an MVS address space. This address space can be TSO, batch, or started task.

To implement concurrence in an MVS address space, use MVS multitasking facilities. This limits available
programming interfaces to the sockets extended assembler macro programming interface or to C sockets.

© Copyright IBM Corp. 2000, 2020 33

For the sockets extended assembler macro interface, use standard MVS subtasking facilities: ATTACH and
DETACH assembler macros.

For C sockets, use the subtasking facilities that are part of the IBM implementation of C in an MVS
environment.

The following topics show sockets extended assembler macro examples to illustrate the implementation
of a concurrent server in an MVS address space environment.

MVS subtasking considerations in a concurrent server program
Using multiple tasks in a single address space brings unique challenges that apply equally to assembler
programming and to high-level languages that support subtasking.

For example, tasks might be concurrently dispatched on different processors, for example, running your
application on an n-way system. Two or more tasks might execute in parallel, one perhaps passing the
other.

Access to shared storage areas in a concurrent server program
If two tasks access the same storage area, you need full control over the use of the storage area unless
the storage is read-only. If the storage area is used to pass parameters between the tasks, you must
serialize access to the shared resource (the storage area).

In an MVS environment, you can use MVS latching services or traditional enqueue and dequeue system
calls to access the shared resource. For MVS latching services, use the ISGLOBT and ISGLREL callable
services. In assembler, use the ENQ and DEQ macros for enqueue and dequeue functions.

Figure 18 on page 34 illustrates access to a shared storage area.

Task 2

Task 1

t1 t2 t3 t4

Shared Storage Area

ENQ

Time ticks:

DEQ

ENQ DEQ

Figure 18. Serialized access to a shared storage area

The following steps describe this process.

1. At time t1, Task 1 issues a serialize request by means of an enqueue call. On the enqueue() call it
passes two character fields to uniquely identify the resource in question. The literal value of these two
fields does not matter; the other tasks must use these same values when they access this storage
area. As no other task has issued an enqueue for the resource in question, Task 1 gets access to it and
continues to modify the storage area.

2. At time t2, Task 2 needs to access the same storage area, and issues an enqueue() call using the same
resource names used by Task 1. Because Task 1 has enqueued, Task 2 is placed in a wait and stays
there until Task 1 releases the resource.

3. At time t3, Task 1 releases the resource with a dequeue system() call, and Task 2 is immediately taken
out of its wait and begins to modify the shared storage area.

4. At time t4, Task 2 has finished updating the shared storage area and releases the resource with a
dequeue system() call. (In this example, we assumed we need serialized access only when the tasks
need to update information in the shared storage area.)

34 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

There are situations in which this assumption does not suffice. If you use a storage area to pass
parameters to some kind of service task inside your address space, you must ensure that the service task
has read the information and acted on it before another task in your address space tries to pass
information to the service task using the same storage area, like running a log or trace. This is illustrated
in Figure 19 on page 35.

Service task

Task 2

t1 t2 t3 t4 T5

POST
Task 1

and
WAIT for new

request

Time ticks:

ENQ

Task 1
ENQ DEQ

Storage
Area

POST
service task

and
WAIT

Figure 19. Synchronized use of a common service task

Follow these steps to synchronize a common service task:

1. At time t1, Task 1 gains access to the common storage area to implicitly use the service task in
question.

2. At time t2, Task 2 also needs to use the service task services, but it is placed into a wait, because Task
1 already has the resource.

3. At time t3, Task 1 has finished placing values into the common storage area, and signals the service
task to start processing it. This is done with a POST system call. Immediately following this call, Task 1
enters a wait, where it stays until the service task has completed its processing. The service task
starts, processes the data in the common storage, and prints.

4. At time t4, the service task has finished its work and signals to Task 1 that Task 1 can continue, while
the service task enters a new wait and waits for a new work request.

5. At time t5, Task 1 releases the lock it obtained at time t1, and Task 2 is immediately taken out of its
wait and starts filling its values into the common storage area before posting the same service task to
process a new request.

This technique is relatively simple. It can be made more complicated, and more efficient, by using internal
request queues so the requesting task does not need to wait for the service task to complete the active
request.

When you use the enqueue system call, you have the option to test whether a resource is available. In
some situations, you might choose this to avoid the wait at a particular point in your processing, so you
can divert to some other actions when the resource is not available.

Data set access in MVS
When you access MVS data sets in a multitasking environment, observe these general rules:

Chapter 4. Designing a concurrent server program 35

• A given DD-name can be used by only one open data control block (DCB) at a time. If you need to have
more DCBs open for the same data set, you must use different DD names. This strategy works best for
read access only.

• Only the task that opens a DCB can issue read and write requests using that DCB. You cannot let your
main task open a DCB, and then have your subtasks issue read or write requests to that DCB. You can
deal with this by using the technique described, but include a special services task that opens a DCB to
a particular data set. Other tasks then issue requests to this service task for access to the data set. Such
a service task is generally called a data services task (DST). One very common implementation of a DST
is the example used above: print log and trace information to a sysout file.

• Authorization checking for access to a data set is done when the data set is opened, not for every read
or write request. If you develop a multitasking server where you establish task level security
environments for each transaction entering your server, you must plan to authorize access to the
information in a data set owned by a DST. You can, of course, open and close the data set for each
transaction, but that might degrade performance.

Task and workload management in a concurrent server program
When a program is started by MVS, it runs as the main task of the address space in which it was started.
In the examples in this topic, the main task is used as the main process of our concurrent server
implementation. The child processes are then started as subtasks to the main.

Generally, there are two ways to manage your processes:

• Each time a connection request arrives, a new subtask is started. The subtask makes one connection
and then terminates.

• During initialization, the main task starts a number of subtasks. Each subtask initializes and enters wait-
for-work status. When a connection request arrives, the main process selects the first subtask waiting
for work and schedules the connection to that subtask. The subtask processes the connection and,
when complete, reenters wait-for-work status.

The second process is most efficient because it limits the overhead of creating new tasks to one time
during server startup. But, it is also more complicated to implement than the other process because:

• You must decide on the number of server subtasks to be started during initialization. If more connection
requests arrive than you have server subtasks available, you must include code to deal with that
situation. (Reject the connection or dynamically change the number of subtasks in your concurrent
server address space. This is called workload management.)

• The subtasks must be reusable and include logic to enter wait-for-work status; they must be able to
process connection requests serially.

• The main process must be able to manage situations in which a server subtask abends or terminates.
• To achieve a graceful shutdown, you must implement a technique to terminate subtasks in an orderly

manner. A simple technique is to post the subtask from the main process with a return code. For
example, use a return code of 0 for work and some other value for termination.

In the concurrent MVS server example (Figure 20 on page 37), the technique using a pool of subtasks
that waited for work was presented. We did not implement a dynamic increase of subtasks, but sent a
negative reply back to the requester when no server subtasks were available.

Security considerations in a concurrent server program
When you start your server address space in MVS, a security environment is established for that address
space. This environment is based on the user ID of your batch job or TSO user, or based on the started
task user ID associated with the started task procedure named in the RACF started task table
(ICHRIN03).

Unless you specify otherwise, all tasks in your address space execute under the security environment of
the address space. MVS resources access authorization is based on the MVS address space security
environment.

36 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

If this setup does not meet your needs, MVS allows you to build and delete task-level security
environments using the RACROUTE REQUEST=VERIFY function in MVS. The task must run in an
authorized state.

Reentrant code in a concurrent server program
Reentrant code is not required but is efficient. Non-reentrant code is loaded into virtual storage as many
times as subtasks requiring it are started. Reentrant code is loaded once.

High-level languages usually make reentrancy a compile option. In assembler language, it might be more
complicated; however, good use of macros for program initiation and termination can simplify the
process.

Understanding the structure of a concurrent server program
Figure 20 on page 37 shows the basic logic in a multitasking concurrent server.

1

3

4

2

5
6

Connect

Send request

Read reply

Close socket

Client Process

Server Main Process

Select
If new connection

Accept
Find free
Givesocket
Post subtask

If exception
Close socket

Initapi
Start subtasks
Obtain a socket
Bind socket
Listen
Do forever

End

Server Subtask

Wait for work
Takesocket
Read client request
Send client reply
Close socket

Initapi
Do forever

End

7

8

9

Figure 20. Concurrent server in an MVS address space

Selecting requests in a concurrent server program
At this point in the process, the server is ready to handle requests on this port from any client on a
network from which the server is accepting connections. Until this point however, it had been assumed
that the server was handling one socket only. Now, an application is not limited to one socket. Typically, a
server listens for clients on a particular socket, but it allocates a new socket for each client it handles. For
maximum performance, a server should operate only on those sockets ready for communication. The
select() call allows an application to test for activity on a group of sockets.

To test any number of sockets with one call to select(), place the sockets to test into a bit set, passing the
bit set to the select() call. A bit set is a string of bits where each member of the set is represented by 0 or
1. If the members bit is 0, the member is not in the set; if the members bit is 1, the member is in the set.
For example, if socket 3 is a member of a bit set, then bit 3 is set; otherwise, bit 3 is cleared.

In C language, the following functions are used to manipulate the bit sets:

Chapter 4. Designing a concurrent server program 37

FD_SET
Sets the bit corresponding to a socket.

FD_ISSET
Tests whether the bit corresponding to a socket is set or cleared.

FD_ZERO
Clears the entire bit set.

If a socket is active, it is ready for read or write data. If the socket is not active, an exception condition
might have occurred. Therefore, the server specifies three bit sets of sockets in its call to the select() call
as follows:

• One bit set for sockets on which to receive data
• One bit set for sockets on which to write data
• Any sockets with exception conditions

The select() call tests each socket in each bit set for activity and returns only those sockets that are
active.

A server that processes many clients at once can be written to process only those clients that are ready
for activity.

When all initialization is complete, and the server main process is ready to enter normal work, it builds a
bit mask for a select() call. The select() call is used to test pending activity on a list of socket descriptors
owned by this process. Before issuing the select() call, construct three bit strings representing the sockets
you want to test, as follows:

• Pending read activity
• Pending write activity
• Pending exceptional activity

The length of a bit string must be expressed as a number of fullwords. If the highest socket descriptor you
want to test is socket descriptor number 3, you must pass a 4-byte bit string, because this is the minimum
length. If the highest number is 32, you must pass 8 bytes (2 fullwords).

The number of fullwords in each select mask can be calculated as follows:

INT(highest socket descriptor / 32) + 1

Table 4 on page 38 shows the first fullword passed using a bit string.

Table 4. First fullword passed in a bit string select()

Socket descriptor
numbers
represented by
byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 0 31 30 29 28 27 26 25 24

Byte 1 23 22 21 20 19 18 17 16

Byte 2 15 14 13 12 11 10 9 8

Byte 3 7 6 5 4 3 2 1 0

Using standard assembler numbering notation, the leftmost bit or byte is relative to 0.

If you want to test socket descriptor number 5 for pending read activity, you raise bit 2 in byte 3 of the
first fullword (X'00000020'). To test both socket descriptors 4 and 5, raise both bit 2 and bit 3 in byte 3 of
the first fullword (X'00000030').To test socket descriptor Number 32, pass 2 fullwords, where the
numbering scheme for the second fullword resembles that of the first. Socket descriptor Number 32 is bit

38 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

7 in byte 3 of the second fullword. To test socket descriptors Number 5 and Number 32, pass 2 fullwords
with the following content: X'0000002000000001'. The bits in the second fullword represent the socket
descriptor numbers shown in Table 5 on page 39.

Table 5. Second fullword passed in a bit string using select()

Socket descriptor
numbers
represented by
byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 4 63 62 61 60 59 58 57 56

Byte 5 55 54 53 52 51 50 49 48

Byte 6 47 46 45 44 43 42 41 40

Byte 7 39 38 37 36 35 34 33 32

Subsequent mask words continue this pattern; word 3 for sockets 64-95, word 4 for sockets 96-127, and
so on.

To set and test these bits in another way, use the following assembler macro, found in file SEZACMAC:

.**

.* *

.* Part Name: TPIMASK *

.* *

.* SMP/E Distribution Name: EZABCTPI *

.* *

.* Component Name: SOK *

.* *

.* Copyright: Licensed Materials - Property of IBM *

.* This product contains "Restricted Materials of IBM"*

.* 5645-001 5655-HAL (C) Copyright IBM Corp. 1996. *

.* All rights reserved. *

.* US Government Users Restricted Rights - *

.* Use, duplication or disclosure restricted by *

.* GSA ADP Schedule Contract with IBM Corp. *

.* See IBM Copyright Instructions. *

.* *

.* Status: TCP/IP for MVS *

.* *

.* Function: Macro used to set or test bits in the *

.* read, write and exception masks used *

.* in the SELECT/SELECTEX macro or calls. *

.* *

.* Part Type: MACRO - assembler *

.* *

.* Usage: *

.* TPIMASK SET,MASK=READMASK,SD=SOCKDESC *

.* or TEST, or WRITEMASK, *

.* or EXCEPTMASK, *

.* *

.* SET - Set the SD bit on in MASK *

.* TEST - Test SD bit in MASK for on/off *

.* Follow the macro invocation with: *

.* BE (Branch Equal) - Bit was on *

.* BNE (Branch Not Equal) - Bit was off *

.* *

.* Change Activity: *

.* CFD List: *

.* *

.* $xn= workitem release date pgmr: description *

.* *

.* End CFD List: *

.* *

.**
 MACRO
 TPIMASK &TYPE, SET or TEST bit setting X
 &MASK=, Read, Write or Except array X
 &SD= Socket descriptor TOR PARAMETER
 SR 14,14 Clear Reg14
 AIF ('&SD'(1,1) EQ '(').SDREG

Chapter 4. Designing a concurrent server program 39

 LH 15,&SD Get Socket Descriptor
 AGO .SDOK
.SDREG ANOP
 LR 15,&SD Get Socket Descriptor
.SDOK ANOP
 D 14,=A(32) Divide by 32, R15 = word bit is in
 SLL 15,2 Multiply word by word length: 4
 AIF ('&MASK'(1,1) EQ '(').MASKREG
 LA 1,&MASK Mask starts here
 AGO .MASKOK
.MASKREG ANOP
 LR 1,&MASK Mask starts here
.MASKOK ANOP
 AR 15,1 Increment to word bit is in
 LA 1,1 Set rightmost bit on
 SLL 1,0(14) Shift left remainder from division
 O 1,0(15) Or with word from mask
 AIF ('&TYPE' EQ 'SET').DOSET
 C 1,0(15) If equal, bit was set on
 MEXIT
.DOSET ANOP
 ST 1,0(15) Update new mask after SET
 MEND

Figure 21. To set/test bits for SELECT calls

If you develop your program using another programming language, you might be able to benefit from the
EZACIC06 routine, which is provided as part of TCP/IP Services. This routine translates between a
character string mask (1 byte per flag) and a bit string mask (1 bit per flag). If you use the select() call in
COBOL, EZACIC06 can be very useful.

Build the three bit strings for the socket descriptors you want to test, and the select() call passes back
three corresponding bit strings with bits raised for those of the tested socket descriptors with activity
pending. Test the socket descriptors using the following sample:

* Test for socket descriptor activity with the SELECT call *

 EZASMI TYPE=SELECT, *Select call C
 MAXSOC=TPIMMAXD, *Max. this many descr. to test C
 TIMEOUT=SELTIMEO, *One hour timeout value C
 RSNDMSK=RSNDMASK, *Read mask C
 RRETMSK=RRETMASK, *Returned read mask C
 WSNDMSK=WSNDMASK, *Write mask C
 WRETMSK=WRETMASK, *Returned write mask C
 ESNDMSK=ESNDMASK, *Exception mask C
 ERETMSK=ERETMASK, *Returned exception mask C
 ECB=ECBSELE, *Post this ECB when activity occurs C
 ERRNO=ERRNO, *- ECB points to an ECB plus 100 C
 RETCODE=RETCODE, *- bytes of workarea for socket C
 ERROR=EZAERROR *- interface to use.
 ICM R2,15,RETCODE *If Retcode < zero it is
 BM EZAERROR *- an error
*
SELMASKS DS 0F
RSNDMASK DC XL8'00000000' *Read mask
RRETMASK DC XL8'00000000' *Returned read mask
WSNDMASK DC XL8'00000000' *Write mask
WRETMASK DC XL8'00000000' *Returned write mask
ESNDMASK DC XL8'00000000' *Exception mask
ERETMASK DC XL8'00000000' *Returned exception mask
*
NOSELCD DC A(0) *Keep track of selected sd's
SELTIMEO DC A(3600,0) *One hour timeout
ECBSELE DC A(0) *Select ECB
 DC 100X'00' *Required by EZASMI
*
TPIMMAXD DC AL4(50) *Maximum descriptor number
*
ERRNO DC A(0) *Error number from EZASMI
RETCODE DC A(0) *Returncode from EZASMI

In the above select() call, the asynchronous facilities of the socket assembler macro interface is used. By
placing an ECB parameter on the EZASMI macro call, the select() call does not block the process; we

40 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

receive control immediately, even if none of the specified socket descriptors had activity. Use this
technique to enter a wait, which waits for a series of events of which the completion of a select() call is
just one. In the sample application, the main process was placed into a wait from which it would return
when any of the following events occurred:

• Socket descriptor activity occurred, and the select() call was posted.
• One of your subtasks terminated unexpectedly.
• The MVS operator issued a MODIFY command to stop the server.

The number of socket descriptors with pending activity is returned in the RETCODE field. You must
process all selected socket descriptors before you issue a new select() call. A selected socket descriptor
is selected only once.

When a connection request is pending on the socket for which the main process issued the listen() call, it
is reported as a pending read.

When the main process has given a socket, and the subtask has taken the socket, the main process
socket descriptor is selected with an exception condition. The main process is expected to close the
socket descriptor when this happens.

Applications can handle multiple sockets. In such situations, use the select() call to determine the
sockets that have data to be read, those that are ready for data to be written, and the sockets that have
pending exceptional conditions. An example of how the select() call is used is shown in Figure 22 on page
41.

fd_set readsocks;
fd_set writesocks;
fd_set exceptsocks;
struct timeval timeout;
int number_of_sockets;
int number_found;
⋮
/* set bits in read write except bit masks.
* To set mask for a descriptor’s use
* FD_SET(s, &readsocks)
* FD_SET(s, &writesocks)
* FD_SET(s, &exceptsocks)
*
* set number of sockets to be checked (plus 1)
* number_of_sockets = x;
*/
⋮
number_found = select(number_of_sockets,
 &readsocks, &writesocks, &exceptsocks, &timeout)

Figure 22. An application using the select() call

In this example, the application uses bit sets to indicate that the sockets are being tested for certain
conditions, and also indicates a timeout. If the timeout parameter is NULL, the call does not wait for any
socket to become ready. If the timeout parameter is nonzero, the select() call waits for the amount of time
required for at least one socket to become ready under the indicated condition. This process is useful for
applications servicing multiple connections that cannot afford to block, thus waiting for data on one
connection. For a description, see “select() ” on page 140.

Client connection requests in a concurrent server program
As shown in Figure 20 on page 37, the listener socket is selected with a pending read. Then, a new
connection request arrives, and the following socket() call must accept.

Figure 23 on page 42 illustrates this type of connection request.

Chapter 4. Designing a concurrent server program 41

* ACCEPT the connection from a client *

 EZASMI TYPE=ACCEPT, *Accept new connection C
 S=TPIMSNO, *On listener socket descriptor C
 NAME=SOCSTRUC, *Returned client socket structure C
 ERRNO=ERRNO, C
 RETCODE=RETCODE,C C
 ERROR=EZAERROR
 ICM R15,15,RETCODE *OK ?
 BM EZAERROR *- No, error indicated
 STH R15,NEWSOC *Returned new socket descriptor
*
SOCSTRUC DS 0F *ACCEPT Socket address structure
SSTRFAM DC AL2(2) *TCP/IP Addressing family
SSTRPORT DC AL2(0) *Port number
SSTRADDR DC AL4(0) *IP Address
SSTRRESV DC 8X'00' *Reserved
*
TPIMSNO DC AL2(0) *Listen socket descriptor
*
NEWSOC DC AL2(0) *Returned socket descriptor
*
ERRNO DC A(0) *Error number from EZASMI
RETCODE DC A(0) *Returncode from EZASMI

Figure 23. Accepting a client connection

The accept call returns a new socket descriptor representing the connection with the client. The original
listen socket descriptor is available to a new select() call.

Passing sockets in a concurrent server program
This topic contains concepts and tasks information about passing sockets.

Common interface concepts
To help you better understand socket passing, the following topics explain common interface concepts.

• Blocking versus nonblocking

A socket is in blocking mode when an I/O() call waits for an event to complete. If blocking mode is set
for a socket, the calling program is suspended until the expected event completes.

If nonblocking is set by calls FCNTL() or IOCTL(), the calling program continues even though the I/O()
call might not have completed. If the I/O() call could not be completed, it returns with ERRNO 35
(EWOULDBLOCK). The calling program should use select() to test for completion of any socket call
returning an ERRNO 35.

The default mode is blocking.
• If data is not available for the socket, and the socket is in blocking and synchronous modes, the read()

call blocks the caller until data arrives.
• Concurrent servers versus iterative servers

An iterative server handles one client at a time. A concurrent server receives connection requests from
multiple clients and creates subtasks to process those client requests.

When a subtask is created, the concurrent server gets a new socket, passes the new socket to the
subtask, and disassociates itself from the connection. (The CICS listener program is an example of a
concurrent server.)

– To pass a socket, the concurrent server first calls givesocket(). If the subtask address space name
and subtask ID are specified in the givesocket() call, only a subtask having a matching address space
and subtask ID can take the socket. If this field is set to blanks, any MVS address space requesting a
socket can take this socket.

– The concurrent server starts the subtask and passes to it the socket descriptor and concurrent server
ID obtained from earlier socket() and getclientid() calls.

42 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

– The subtask calls takesocket() using the concurrent server ID and socket descriptor.
– The concurrent server issues the select() call to test the socket for the takesocket-completion

exception condition.
– When takesocket() has successfully completed, the concurrent server issues the close() call to free

the socket.
• If the queue has no pending connection requests, accept() blocks the socket when blocking mode is set

on. You can set the socket to nonblocking by calling FCNTL or IOCTL.
• Issuing a select() call before the accept() call ensures that a connection request is pending. Using the

select() call in this way prevents the accept() call from blocking.
• TCP/IP does not screen clients, but you can control the connection requests accepted by closing a

connection immediately after you determine the identity of the client.
• A given TCP/IP host can have multiple aliases and multiple host internet addresses.

A server handling more than one client simultaneously acts like a dispatcher at a messenger service. A
messenger dispatcher gets telephone calls from people who want items delivered, and the dispatcher
sends out messengers to do the work. In a similar manner, the server receives client requests, and then
spawns tasks to handle each client.

Tasks can pass sockets with the givesocket() and takesocket() calls. The task passing the socket uses
givesocket(), and the task receiving the socket uses takesocket(). The following topics describe these
processes.

givesocket and takesocket
In the UNIX operating system, a new process is dispatched with the fork() system call after the server has
established the connection; the new process automatically inherits the socket attached to the client. In
MVS, an independent task is started using the attach() supervisor call instruction. A server can perform an
attach() call for a subtask after each connection is established in a way similar to the UNIX operating
system, or it can request an attach() several times when it begins execution and pass clients to tasks that
exist. In either case, the server must manually give the new socket to the subtask. Because each task has
its own socket table, it is not sufficient to pass only the socket number to the subtask. Socket Number 4
for Task A is not the same as socket Number 4 for Task B.

For C programs using TCP/IP Services, each task is given a unique 8-byte name. The task uses the
getclientid() call to determine its unique name. The main server task passes the following arguments to
the givesocket() call:

• The socket number it wants to give
• Its own name
• The name of the task to which it wants to give the socket

If the server does not know the name of the subtask to receive the socket, it blanks out the name of the
subtask. The first subtask calling takesocket() using the server unique name receives the socket.
However, the subtask must know the main task unique name, and the number of the socket it is to
receive. This information can be passed in a common work area that you define.

When takesocket() acquires the socket, it assigns a new socket number for the subtask to use, but the
new socket number represents the same line of communication as the parent socket. The transferred
socket can be referred to as socket Number 4 by the parent task, and as socket Number 3 by the subtask.
However, both sockets represent the same connection to the TCPIP address space.

After the socket has successfully been transferred, the TCPIP address space posts an exception condition
on the parent socket. The parent uses the select() call to test for this condition. After the notification, the
parent task must issue close() call on its socket to deallocate the socket.

Appendix A, “Multitasking C socket sample program,” on page 735 contains examples of a server, a
subtask, and a client. Three examples are written in C, and one example is written in System/370
assembler language.

Chapter 4. Designing a concurrent server program 43

The C sample programs are included as members of the file SEZAINST partitioned data set. The member
names are:

• MTCSRVR
• MTCCSUB
• MTCCLNT

For information about the JCL needed to use the multitasking facility (MTF), see IBM C/370 User’s Guide.

Giving a socket to a subtask
The socket represented by the new socket descriptor has to be passed to an available subtask. Which
technique the main process uses to find an available subtask is not important. Assume that the main
process has located an available subtask to which it gives the socket by way of a givesocket() call as
shown in Figure 24 on page 44:

*Give socket to subtask *

 MVC CLNNAME,TPIMCNAM *Our Client ID Address Space Name
 MVC CLNTASK,TPISTCBE *Give to this subtask
 EZASMI TYPE=GIVESOCKET, *Givesocket C
 S=NEWSOC, *Give this socket descriptor C
 CLIENT=CLNSTRUC, *- to a specific child process C
 ERRNO=ERRNO, C
 RETCODE=RETCODE, C
 ERROR=EZAERROR
 ICM R15,15,RETCODE *OK ?
 BM EZAERROR *- No, tell about it.
*
* CLNSTRUC DS 0F *GIVESOCKET: Client structure
CLNFAM DC A(2) *TCP/IP Addressing family
CLNNAME DC CL8' ' *Address space name of target
CLNTASK DC CL8' ' *Task ID of child process subtask
CLNRESV DC XL20'00' *Reserved
*
NEWSOC DC AL2(0) *Socket descriptor from Accept
*
ERRNO DC A(0) *Error number from EZASMI
RETCODE DC A(0) *Returncode from EZASMI

Figure 24. Giving a socket to a subtask

If you are programming in C, you might not be able to determine the full client ID of the subtask. In that
case, you can pass the task ID field as eight blanks on the givesocket() call, which means that any task
within your own address space can take the socket, but only the task to which you pass the socket
descriptor number will actually take it.

After you have issued the givesocket() call, you must include the given socket descriptor in the exception
select mask on the next select() call.

Your main process is now ready to wake up the selected subtask by way of a post system call.

If no other sockets were selected on the previous select() call, your main process can build a new set of
select masks, and issue a new select() call.

Taking sockets from the main process
As shown in Figure 20 on page 37, the subtask is reactivated by the post() call issued from the main
process, and immediately issues a takesocket() call to receive the socket passed from the main process.
Figure 25 on page 45 illustrates this process.

44 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* Take socket from main process *

 EZASMI TYPE=TAKESOCKET, *Takesocket C
 CLIENT=TPIMCLNI, *Main task client id structure C
 SOCRECV=TPISSOD, *Main task socket descriptor C
 ERRNO=ERRNO, C
 RET CODE=RETCODE, C
 ERROR=EZAERROR
 ICM R15,15,RETCODE *Did we do well ?
 BM EZAERROR *- No, deal with it.
 STH R15,TPISNSOD *Server subtask socket descr.no
*
TPIMCLNI DS 0C *Main task client id
TPIMCDOM DC A(0) *Domain: AF-INET
TPIMCNAM DC CL8' ' *Our address space name
TPIMCTSK DC CL8' ' *Main task TCB address in EBCDIC
 DC 20X'00' *Reserved (part of clientid)
*
TPISSOD DC AL2(0) *Parent socket descr. no.
TPISNSOD DC AL2(0) *Subtask socket descr. no.

Figure 25. Taking sockets from the main process

In order to take a socket, the subtask must know the client ID of the task that gave the socket, and the
socket descriptor used by that task. These values must be passed to the subtask from the main process
before a takesocket() call can be issued.

On the takesocket() call, you specify the full client ID of the process that gave the socket, and you specify
the socket descriptor number used by the process that gave the socket.

A new socket descriptor number to be used by the subtask is returned in the RETCODE when the
takesocket() call is successful. As soon as your subtask has taken the socket, the main process is posted
in its pending select with a pending exception activity; this means that the main process must close its
socket descriptor.

In Figure 25 on page 45, the client sends its request to the subtask, which processes it and sends back a
reply.

Finally, the client process and the server subtask close their sockets, and the server subtask reenters
wait-for-work status.

Transferring data between sockets in a concurrent server program
See Chapter 7, “Transferring data between sockets,” on page 51.

Closing a concurrent server program
See Chapter 3, “Designing an iterative server program,” on page 23.

Chapter 4. Designing a concurrent server program 45

46 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 5. Designing a client program

This information explains how to design a client program. All examples are shown using an address family
of AF_INET (IPv4). All concepts also can be applied to an address family of AF_INET6 (IPv6).

• “Allocating a socket in a client program” on page 47
• “Connecting to a server in a client program” on page 47
• “Transferring data between sockets in a client program” on page 48
• “Closing a client program” on page 48

Allocating a socket in a client program
From their own perspective, clients must first issue the socket() call to allocate a socket from which to
communicate as follows:

s = socket(AF_INET, SOCK_STREAM, 0);

For more information, see “Allocating sockets in an iterative server program” on page 23.

Connecting to a server in a client program
To connect to a server, the client must know the server name. This topic describes how to determine a
server name and connect to that server.

Note: Examples are written in C language and REXX.

To connect to the server, the client places the port number and the IP address of the server into a
sockaddr_in structure like the bind() call. If the client does not know the server IP address, but it does
know the server host name, the gethostbyname() call is called to translate the host name into its IP
address. Any trailing blanks will be removed from the specified name before trying to resolve it to an IP
address.

The client then calls connect() as shown in the following C language example of the connect() call:

connect(s, name, namelen);

When the connection is established, the client uses its socket to communicate with the server.

If you need to determine a server name while writing in REXX and you know only the host name, you must
resolve the host name into one or more IP addresses using the gethostbyname() call as shown in Figure
26 on page 47:

 /*--*/
 /* Find IP addresses of server host */
 /*--*/
 servipaddr = DoSocket('Gethostbyname', tpiserver)
 if sockrc <> 0 then do
 say 'Gethostbyname failed, rc='sockrc
 say sockval
 x=Doclean
 exit(sockrc)
end

Figure 26. Finding the IP address of a server host using gethostbyname()

The REXX gethostbyname() call returns a list of IP addresses if the host is multiply defined as a home
host. You can parse the REXX string and place the IP addresses into a REXX stem variable using the
following piece of REXX code:

© Copyright IBM Corp. 2000, 2020 47

 /*--*/
 /* Parse returned IP address list */
 /*--*/
 numips = words(servipaddr)
 do i = 1 to numips
 sipaddr.i = word(servipaddr, i)
 end
 sipaddr.0 = numips

If you issue a connect call to an IP address currently not available, your connect call times out with an
error number of 60 (ETIMEDOUT). The socket you used on such a failed connect call cannot be reused for
another connect() call. You have to close the existing socket and get a new socket before you reissue the
connect call using the next IP address in the list of IP addresses returned by the gethostbyname() call.

The connect call can be placed in a loop that terminates when a connect is successful, or the list of IP
addresses is exhausted. The following sample illustrates this process.

 /*--*/
 /* */
 /* Get a socket and try to connect to the server */
 /* */
 /* If connect fails (ETIMEDOUT), we must close the socket, */
 /* get a new one and try to connect to the next IP address */
 /* in the list, we received on the gethostbyname call. */
 /* */
 /*--*/
i=1
connected = 0
do until (i > sipaddr.0 | connected)
 sockdescr = DoSocket('Socket')
 if sockrc <> 0 then do
 say 'Socket failed, rc='sockrc
 exit(sockrc)
 end
 name = 'AF_INET '||tpiport||' '||sipaddr.i
 sockval = DoSocket('Connect', sockdescr, name)
 if sockrc = 0 then do
 connected = 1
 end
 else do
 sockval = DoSocket('Close', sockdescr)
 if sockrc <> 0 then do
 say 'Close failed, rc='sockrc
 exit(sockrc)
 end
 end
 i = i + 1
end
if connected then do
 say 'Connect failed, rc='sockrc
 exit(sockrc)
end

Transferring data between sockets in a client program
See Chapter 7, “Transferring data between sockets,” on page 51.

Closing a client program
See Chapter 3, “Designing an iterative server program,” on page 23.

48 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 6. Designing a program to use datagram
sockets

This information explains how to design a program to use datagram sockets. All examples are shown
using an address family of AF_INET (IPv4). All concepts also can be applied to an address family of
AF_INET6 (IPv6). Topics include:

• “Datagram socket characteristics” on page 49
• “Understanding datagram socket program structure” on page 49
• “Allocating a datagram socket” on page 50
• “Binding datagram sockets to port numbers” on page 50
• “Streamline data transfer using connect call” on page 50
• “Transferring data between datagram sockets” on page 50

Datagram socket characteristics
The most significant characteristics of datagram sockets follow:

• Datagram sockets are connectionless.

There is no connection setup affected by the UDP protocol layer. No data is exchanged between sending
and receiving UDP protocol layers until your application issues its first send call.

If your UDP server program has not been started or it resides on a host that cannot be reached from
your client host, your client UDP application can wait forever to receive a reply to the datagram it sent to
a UDP server. You have to implement timeout logic in your client UDP program to recognize this
situation.

• The UDP protocol layer does not implement reliability functions.

The implicit significance of this fact is that a datagram sent from one UDP program to another might
never arrive. Neither the sending program nor the target program ever learns from the UDP protocol
layer that such a condition exists.

If your UDP application must be reliable, you must add reliability code to your UDP client and server
programs. Such code must include the ability to detect missing datagrams, datagrams arriving out of
sequence, duplicate datagrams, and corrupt datagrams.

You can use TCP protocols instead of UDP protocols if your application must be reliable.
• Unlike a TCP socket, where there is no one-to-one relationship between send() and recv() calls, UDP

socket send corresponds exactly to a UDP socket recv() call.

Understanding datagram socket program structure
The datagram socket program terms client and server can be misleading. Two socket programs that have
each bound a socket to a local address can send any number of datagrams to each other in any sequence.
The program that sends the first data will act as a client. Any datagram sent to a destination address for
which no program has bound a socket is lost. Care must be taken so that the program you intend to be the
client does not begin sending datagrams until the server program has bound its socket to the destination
address expected.

Typically, the structure for a datagram socket resembles the iterative server discussed in Chapter 3,
“Designing an iterative server program,” on page 23.

© Copyright IBM Corp. 2000, 2020 49

Allocating a datagram socket
See “Allocating sockets in an iterative server program” on page 23.

Binding datagram sockets to port numbers
The server program must bind its socket to a predefined server port number, so the clients know the port
to which they should send their datagrams. In the socket address structure that the server passes on the
bind() call, it can specify if it will accept datagrams from the available network interfaces, or whether only
from a specific network interface. This is done by setting the IP address field of the socket address
structure to either INADDR_ANY, or a specific IP address.

The client program needs to bind its socket to a local address if it wants the server program to be able to
return a datagram to it. In contrast to the server, the client does not need to specify a specific port
number on the bind() call; an ephemeral port number chosen by the UDP protocol layer is sufficient. This
is called a dynamic bind.

Streamline data transfer using connect call
While you can use the connect() call on a datagram socket, it does not act for a datagram socket as it acts
for a stream socket.

On a connect() call, you specify the remote socket address with which you want to exchange datagrams.
This serves the following purposes:

• On succeeding calls to send datagrams, you can use the send() call without specifying a destination
socket address; the datagram is sent to the socket address you specified on the connnect() call.

• On succeeding calls to receive datagrams, only datagrams that originate from the socket address
specified on the connect() call are passed to your program from the UDP protocol layer.

Note: A connect() call for a datagram socket does not establish a connection. No data is exchanged over
the IP network as the result of the connect() call. The functions performed are local, and control is
returned immediately to your application.

Transferring data between datagram sockets
See Chapter 7, “Transferring data between sockets,” on page 51.

50 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 7. Transferring data between sockets

This topic contains information about transferring data between sockets. All examples are shown using an
address family of AF_INET (IPv4). All concepts also can be applied to an address family of AF_INET6
(IPv6). The following topics are included:

• “Transferring data between sockets: Streams and messages” on page 51
• Data representation

AF_INET6 (IPv6) sockets can communicate with AF_INET (IPv4) sockets using mapped addresses. See
z/OS Communications Server: IPv6 Network and Application Design Guide for details.

• Using send() and recv() calls
• Using sendto() and recvfrom() calls

Transferring data over a datagram socket is similar to working with MVS records. You send and receive
data records. One send() call results in exactly one recv() call.

If your sending program sends a datagram of 8192 bytes, and your receiving program issues a recv() call
in which it specifies a buffer size of, for example, 4096 bytes, it will receive the 4096 bytes it requested.
The remaining 4096 bytes in the datagram are discarded by the UDP protocol layer without further
notification to either sender or receiver.

z/OS Communications Server includes a performance enhancement that when both the source and
destination of a packet are known to and managed by a single TCP/IP stack, the IP layer can be bypassed.
This provides an overall pathlength savings when processing such packets, and the decrease in
pathlength through the stack results in an overall throughput improvement for applications that reside on
the same MVS systems and communicate with each other through the same TCP/IP stack. Socket
application programmers can take advantage of this performance enhancement by using a non-loopback
home address when sending data between applications that reside on the same MVS system and
communicate with each other through the same TCP/IP stack. See z/OS Communications Server: New
Function Summary for additional information.

Transferring data between sockets: Streams and messages
This topic describes how to design an application protocol so that the partner program can divide the
receive stream into individual messages.

Some socket applications are simple, and the receiver can continue to receive data until the sender closes
the socket, for example, a simple file transfer application. Most applications are not that simple and
usually require that the stream can be divided into a number of distinct messages.

A message exchanged between two socket programs must imbed information so that the receiver can
decide how many bytes to expect from the sender and (optionally) what to do with the received message.

A few common techniques are used to imbed information about the length of a message into the stream,
as follows:

• The message type identifier technique

If your messages are fixed length, you can implement a message ID per message type worked with.
Each message type has a predefined length that is known by your client and server programs. If you
place the message ID at the start of each message, the receiving program can determine how long the
message is if it knows the content of the first few bytes in the message. This is illustrated in Figure 27 on
page 52:

© Copyright IBM Corp. 2000, 2020 51

* Layout of a message between TPI client and TPI server *

 01 tpi-message.
 05 tpi-message-id pic x.
 88 tpi-request-add value '1'.
 88 tpi-request-update value '2'.
 88 tpi-request-update value '2'.
 88 tpi-request-query value '3'.
 88 tpi-request-query value '3'.
 88 tpi-request-delete value '4'.
 88 tpi-query-reply value 'A'.
 88 tpi-response value 'B'.
 05 tpi-constant pic x(4).
 88 tpi-identifier value 'TPI '.

Figure 27. Layout of a message between a TPI client and a TPI server

Each message ID is associated with a fixed length known to your application.
• The record descriptor word (RDW) technique

If your messages are variable length, you can implement a length field in the beginning of each
message. Normally, you would implement the length in a halfword binary length with the value encoded
in network byte order, but you can implement it as a text field, as shown in Figure 28 on page 52.

* Transaction Request Message segment *

01 TRM-message.
 05 TRM-message-length pic 9(4) Binary Value 20.
 05 filler pic x(2) Value low-value.
 05 TRM-identifier pic x(8) Value '*TRNREQ*'.
 05 TRM-trancode pic x(8) Value '?????'.

Figure 28. Transaction request message segment
• The end-of-message marker technique

A third technique most often seen in C programs is to send a null-terminated string. A null-terminated
string is a string of bytes terminated by a byte of binary 0. The receiving program reads whatever data is
on the stream and then loops through the received buffer separating each record at the point where a
null-byte is found. When the received records have been processed, the program issues a new read for
the next block of data on the stream.

If your messages contain only character data, you can designate any non-display byte value as your
end-of-message marker. Although this technique is most often seen in C programs, it can be used with
any programming language.

• The TCP/IP buffer flushing technique

This technique is based on the observed behavior of the TCP protocol, where a send() call followed by a
recv() call forces the sending TCP protocol layer to flush its buffers and forward whatever data might
exist on the stream to the receiving TCP protocol layer. You can use this method to implement a half-
duplex, flip-flop application protocol, where your two partner programs acknowledge the receipt of
each message with, for example, a 1-byte application acknowledgment message.

Figure 29 on page 53 shows the TCP buffer flush technique.

52 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SEND 80 bytes

Client Program

XXXXXXX XXXXXXX

XXXXXXX XXXXXXX

YYYYYYY YYYYYYY

YYYYYYY YYYYYYY

A A <flushing>

<flushingRECV 1 byte RETCODE=85

---- and so it continues ----

A A

SEND 1 byte ACK

A A

SEND 1 byte ACK

SEND 85 bytes

Client TCP
Buffer

Server TCP
Buffer

Server Program

RECV 1000 bytes

Figure 29. The TCP buffer flush technique

In Figure 29 on page 53, the client sends an 80-byte message. The server has issued a recv() call for 1000
bytes, but receives only the 80 bytes (RETCODE=80). This presents a problem because there is no
guarantee the server will receive the full 80-byte message on its receive call. It might only receive 30
bytes, but with this technique it has no way of knowing that it is missing another 50 bytes. The smaller the
messages are, the less likely the server will receive only a part of the full message.

Note: This technique is widely used, but you should use it only in controlled environments, or in programs
where you use non-blocking socket calls to implement your own timeout logic.

The message type identifier and the record descriptor word techniques require that the receiving program
be able to learn the content of the first bytes in the message before it reads the entire message.

If this is a problem for your application, use the peek flag on a recv socket() call.

A recv() call with the peek flag on does not remove the data from the TCP buffers, but copies the number
of bytes you requested into the application buffer you specified on the recv() call.

For example, if your message length field or message ID field is located within the first 5 bytes of each
message, issue the following recv() call:

* Peek buffer and length fields for RECV call *

01 soket-recv pic x(16) value 'RECV'.
01 recv-flag-peek pic 9(8) binary value 2.
01 recv-peek-len pic 9(8) binary value 5.
01 recv-peek-buffer.
 05 message-id pic x value space.
 88 tpi-query-reply value 'A'.

Chapter 7. Transferring data between sockets 53

 88 tpi-response value 'B'.
 05 message-constant pic x(4).
 88 tpi-identifier value 'TPI'.
01 socket-descriptor pic 9(4) binary value 0.
01 errno pic 9(8) binary value 0.
01 retcode pic s9(8) binary value 0.

* Peek at first 5 bytes of client data *

 call 'EZASOKET' using soket-recv
 socket-descriptor
 recv-flag-peek
 recv-peek-len
 recv-peek-buffer
 errno
 retcode.
 if retcode < 0 then
 - process error -
 if retcode = 0 then
 - process client closed socket -
 if not TPI-identifier then
 - translate recv-peek-buffer from ASCII to EBCDIC -

The recv() call blocks until some bytes have been received or the sender closes its socket. The above
example is not complete since you cannot be sure that you actually received the 5 bytes requested. Your
call might come back to you with only 1 byte received. In order to manage the situation, you need to
repeat your recv() call until all 5 bytes have been received and recognized as such.

If the other half of the connection closes the socket, the recv() call returns 0 in the retcode field.

The data is copied into your application program buffer only, but it is still available to a recv() call, in which
you can specify the full length of the message you now know to be available.

Transferring data between sockets: Data representation
If you use the socket API, your application must handle the issues related to different data
representations occurring on different hardware platforms. For character-based data, some hosts use
ASCII, while other hosts use EBCDIC. Translation between the two representations must be handled by
your application.

For integers, some hardware platforms use big endian byte order (S/370/390, Motorola style), while
others use little endian byte order (Intel style). An example of the difference between big and little endian
byte orders is shown in Figure 30 on page 54.

little endian

big endian

low-order byte high-order byte

high-order byte low-order byte

addr A+1addr A

Figure 30. Big or little endian byte order for a 2-byte integer

IBM S/370 and IBM S/390®-based computers all use big endian byte order, while the IBM PS/2 uses the
little endian byte order. TCP/IP has defined a network byte order standard to be used for all 16-bit and
32-bit integers that appear in protocol headers. This network byte order is based on the big endian byte
order. This is the reason you find the following information in the C-socket interface:
htons

Translates a short integer (two bytes) from host byte order to network byte order
ntohs

Translates a short integer from network byte order to host byte order

54 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

htonl
Translates a long integer (four bytes) from host byte order to network byte order

ntohl
Translates a long integer from network byte order to host byte order

The socket-based application should manage the application data portion of a message. If you develop a
server that serves clients on different hardware platforms, define your own standard and implement it as
part of your application protocol.

In some cases, it is easier to base your messages on text data. If you, as part of your message design,
define a fixed text string in the beginning of each message, your application can test the contents of this
string and decide whether the data is in EBCDIC or ASCII. If the data is in ASCII, you can translate the full
message from ASCII to EBCDIC on input, and translate from EBCDIC to ASCII on output from MVS. An
example of this design is the transaction request message (TRM) format used by the IMS Listener
program. Bytes 4 to 11 have a fixed value of *TRNREQ*, which is used both to distinguish this message
from other messages and to find out whether the client is transmitting data in ASCII or EBCDIC.

If you mix text data and binary data in your messages, be sure to apply translation only between ASCII
and EBCDIC to the text fields in your message.

If you use binary integer fields in your messages, you can use the network byte order standard that
TCP/IP uses for all integers in protocol headers. If you design your messages according to the network
byte order standard, your MVS programs do not need to translate or rearrange the bytes in binary integer
fields. Your programs executing on little endian hosts must use the integer conversion routines to convert
integers between local format and the format used in the messages they exchange with your MVS
programs.

Text data and 2- and 4-byte binary integers are easy to handle in a heterogeneous computer environment.
In more complex data types like floating point numbers or packed decimal, it becomes much more
complicated because there is no generally accepted standard and there is no easy support for
transformation between the formats. If you include these data types in your messages, be sure that the
partner program knows how to interpret them. If the two computer systems use the same architecture,
this is valid. If you exchange messages by way of socket programs between two MVS systems, you do not
need to be concerned about conversion.

Using send() and recv() calls
This topic provides information about sending and receiving calls.

The send() and recv() call conversation
Client and server communicate using send() and recv() as shown below:

num = send(s, addr_of_data, len_of_data, 0);
num = recv(s, addr_of_buffer, len_of_buffer, 0);

The send() and recv() calls specify:

• The socket s on which to communicate
• The address in storage of the buffer that contains, or will contain, the data (addr_of_data,

addr_of_buffer)
• The size of this buffer (len_of_data, len_of_buffer)
• A flag that tells how the data is to be sent

Flag 0 tells TCP/IP to transfer the data normally. The server uses the socket that is returned from the
accept() call.

These functions return the amount of data that was sent or received. Because stream sockets send and
receive information in streams of data, it can take more than one send() or recv() to transfer all of the
data. It is up to the client and the server to agree on some mechanism to signal that all of the data has
been transferred.

Chapter 7. Transferring data between sockets 55

When the conversation is over, both the client and the server call close() to end the connection. Close()
also deallocates the socket, freeing its space in the table of connections. To end a connection with a
specific client, the server closes the socket returned by accept(). If the server closes its original socket, it
can no longer accept new connections, but it can still converse with the clients to which it is connected.
The close() call is represented as follows:

close(s);

If you are writing a client application, you might want to verify the processes the server will use. Both
client applications and the servers with which they communicate must be aware of the sequence of
events each will follow.

Using socket calls in a network application
You can use the following example to write a socket network application. The example is written using C
socket syntax conventions, but the principles described apply to all of the following APIs:

• TCP/IP C socket API
• X/Open Transport Interface
• Macro API for IPv4 or IPv6 that is written in z/OS assembler language
• Call instruction API for IPv4 or IPv6 socket applications
• z/OS Communications Server socket API for REXX
• Pascal language for IPv4 socket API

Clients and servers wanting to transfer data have many calls from which to choose. The read() and write(),
readv() and writev(), and the send() and recv() calls can be used only on sockets that are connected. The
sendto() and recvfrom(), and sendmsg() and recvmsg() calls can be used at any time. The example listed
in Figure 31 on page 56 illustrates the use of send() and recv() calls:

int send(int socket, char *buf, int buflen, int flags);
int recv(int socket, char *buf, int buflen, int flags);
.
.
.
int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
int s;
.
.
.
bytes_sent = send(s, data_sent, sizeof(data_sent), 0);
.
.
.
bytes_received = recv(s, data_received, sizeof(data_received), 0);

Figure 31. An application using the send() and recv() calls

The example in Figure 31 on page 56 shows an application sending data to a connected socket and
receiving data in response. The flags field can be used to specify additional options to send() or recv(),
such as sending out-of-band data. For more information about these routines, see the following
information:

• “read() ” on page 134
• “readv() ” on page 135
• “recv() ” on page 136
• “send() ” on page 144
• “write() ” on page 162
• “writev() ” on page 163

56 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

There are three groups of calls to use for reading and writing data over sockets:
read and write

These calls can be used only with connected sockets. No processing flags can be passed on these
calls.

recv and send
These calls also work with connected sockets only. You can pass processing flags on these calls:

• NOFLAG - Read or write data as a read call or a write call would.
• OOB - Read or write Out Of Band data (expedited data).
• PEEK - Peek at data, but do not remove data from the buffers.

recvfrom and sendto
These calls work with both connected and non-connected sockets. You can pass addressing
information directly (as parameters) on these calls. The available flags are the same as those for recv
and send.

A connected socket is either a stream socket for which a connection has been established, or it is a
datagram socket for which you have issued a connect() call to specify the remote datagram socket
address.

Reading and writing data from and to a socket
Stream sockets during read and write calls might behave in a way that you would expect to be an error.
The read() call might return fewer bytes, and the write() call may write fewer bytes, than requested. This
is not an error, but a normal situation that your programs must deal with when they read or write data over
a socket.

You might need to use a series of read calls to read a given number of bytes from a stream socket. Each
successful read() call returns in the retcode field the number of bytes actually read. If you know you have
to read, for example, 4000 bytes and the read call returns 2500, you have to reissue the read call with a
new requested length of 4000 minus the 2500 already received (1500).

If you develop your program in COBOL, the following example shows an implementation of such logic. In
this example, the message to be read has a fixed size of 8192 bytes:

 * Variables used by the READ call *

 01 read-request-read pic 9(8) binary value 0.
 01 read-request-remaining pic 9(8) binary value 0.
 01 read-buffer.
 05 read-buffer-total pic x(8192) value space.
 05 read-buffer-byte redefines read-buffer-total
 pic x occurs 8192 times.

* Read 8K block from server *

 move zero to read-request-read.
 move 8192 to read-request-remaining.
 Perform until read-request-remaining = 0
 call 'EZASOKET' using soket-read
 socket-descriptor
 read-request-remaining
 read-buffer-byte(read-request-read + 1)
 errno
 retcode
 if retcode < 0 then
 - process error and exit -
 end-if
 add retcode to read-request-read
 subtract retcode from read-request-remaining
 if retcode = 0 then
 Move zero to read-request-remaining
 end-if
 end-perform.

Chapter 7. Transferring data between sockets 57

An actual execution of the program, following the above logic, used four read calls to retrieve 8K of data.
The first call returned 1960 bytes, the second call 3920 bytes, the third call 1960 bytes and the final call
352 bytes. It is not possible to predict how many calls will be needed to retrieve the message. That
depends on the internal buffer utilization of a TCP/IP. In some cases, only two calls were needed to
retrieve 8K of data.

It is good programming practice, whenever you know the number of bytes to read, to issue read calls
imbedded in logic, which is similar to the method described above.

If you work with short messages, you usually receive the full message on the first read() call, but there is
no guarantee.

The behavior of a write() call is similar to that of a read() call. You might need to repeat more write() calls
to write out all the data you want written. The following example illustrates this technique.

* Buffer and length fields for write operation *

01 send-request-sent pic 9(8) binary value 0.
01 send-request-remaining pic 9(8) binary value 0.
01 send-buffer.
 05 send-buffer-total pic x(8192) value space.
 05 send-buffer-byte redefines send-buffer-total
 pic x occurs 8192 times.

* Send 8K data block *

 move 8192 to send-request-remaining.
 move 0 to send-request-sent.
 Perform until send-request-remaining = 0
 call 'EZASOKET' using soket-write
 socket-descriptor
 send-request-remaining
 send-buffer-byte(send-request-sent + 1)
 errno
 retcode
 if retcode < 0 then
 - process error and exit -
 end-if
 add retcode to send-request-sent
 subtract retcode from send-request-remaining
 if retcode = 0 then
 Move zero to send-request-remaining
 end-if
 end-perform.

Using sendto() and recvfrom() calls
If the socket is not in a connected state, additional address information must be passed to sendto() and
can be (optionally) returned from recvfrom(). An example of the sendto() and recvfrom() calls is listed in
Figure 32 on page 59:

58 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

int sendto(int socket, char *buf, int buflen, int flags,
 struct sockaddr *addr, int addrlen);
int recvfrom(int socket, char *buf, int buflen, int flags,
 struct sockaddr *addr, int *addrlen);
⋮int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
struct sockaddr_in to;
struct sockaddr from;
int addrlen;
int s;
⋮
memset(&to, 0, sizeof(to));
to.sin_family = AF_INET;
to.sin_addr = inet_addr(“129.5.24.1”);
to.sin_port = htons(1024);
⋮
bytes_sent = sendto(s, data_sent, sizeof(data_sent), 0,
 (struct sockaddr*)&to, sizeof(to));
⋮
addrlen = sizeof(from); /* must be initialized */
bytes_received = recvfrom(s, data_received,
 sizeof(data_received), 0, &from, &addrlen)

Figure 32. An application using the sendto() and recvfrom() Calls

The sendto() and recvfrom() calls take additional parameters to allow the caller to specify the recipient of
the data, or to be notified of the sender of the data. See “recvfrom() ” on page 137, “sendmsg() ” on page
145, and “sendto() ” on page 147 for more information about these additional parameters. Usually,
sendto() and recvfrom() are used for datagram sockets, and send() and recv() are used for stream sockets.

Chapter 7. Transferring data between sockets 59

60 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 8. Designing IPv6 programs

The following information contain details on how to enable an IPv6 application:

• z/OS Communications Server: IPv6 Network and Application Design Guide
• RFC 2553, Basic Socket Interface Extensions for IPv6. The Basic Socket API extension covers the socket

calls that the majority of TCP/IP applications use.
• See “Introducing TCP/IP concepts: Socket libraries” on page 6 for information on which APIs support

IPv6.
• See Appendix C, “Address family cross reference,” on page 763 for information about which commands

support IPv6. Refer to the description and syntax for each command that was enhanced for IPv6
support.

© Copyright IBM Corp. 2000, 2020 61

62 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 9. Designing multicast programs

This topic describes IP multicasting and how an application can exploit multicasting using the TCP/IP
socket APIs. IP multicasting concepts in IPv4 and IPv6 protocols are very similar; however there are
some differences, such as the IP addresses used for multicasting with each protocol. The topic that
follows introduces the basic concepts for IP multicasting with an emphasis on IPv4. However, most of the
concepts described here apply to IPv6 multicast applications as well. A more detailed description of IPv6
multicast options follows in the next topic.

IPv4 has three types of IP addresses: unicast, broadcast, and multicast. When an IP datagram is sent to
an individual IP address, it is called a unicast IP datagram. The process of sending the datagram is called
unicasting. Unicasting is used when two IP nodes are communicating with each other.

When an IP datagram is sent to all nodes on a specific network, it is called broadcasting. Broadcasting
support can be both limited and directed.

Multicasting is used to send an IP datagram to a group of systems identified by a class D address. The
class D address is used as the destination address. When an application program requests that it receive
datagrams with a particular class D destination IP address, it is said to have joined a multicast group.
Multicast datagrams (datagrams with a class D destination address) are discarded by a host system
unless an application on that host has joined the matching multicast group. The UDP application must
bind in order to receive multicast datagrams, after which the application can then receive an IP datagram.
The application can receive an IP datagram in two ways:

• The application must bind to the same port that is being used by the sender of the multicast datagram.
• The application can bind to a unicast address, inaddr_any, or to a class D address. However, if multiple

applications need to receive datagrams for the same multicast group, they should bind to the class D
address and set the SO_REUSEADDR socket option.

When a host is added to a group that group is referred to as a host group. A host group may span multiple
networks. Hosts may join and leave a host group as necessary and there is no restriction to the number of
hosts involved in a group. A host does not have to belong to a group to send a message to that group. Any
hosts on an IP Internet can join a multicast group. The hosts need not be on a single LAN and may be
separated by routers. When an application joins a group, it joins the multicast group on a specific
interface. Routers use this information to determine if multicast datagrams should be forwarded from one
interface to another.

Routers and hosts use a multicast routing protocol called Internet Group Management Protocol (IGMP) to
share information about multicast groups. Through this protocol, hosts inform routers when they join or
leave a multicast group. Routers can query hosts about groups they have joined and use this information
in determining whether to forward multicast datagrams. Some multicast group addresses are referred to
as permanent host groups. These addresses are assigned by the Internet Assigned Numbers Authority
group as well-known addresses similar to the well-known TCP and UDP port numbers. For example,
224.0.0.1 means all systems on this subnet, and 224.0.0.2 means all routers on this subnet. For a review
of The Internet Assigned Number RFC to familiarize yourself with more of the well-known standard
multicast address see http://www.iana.org/assignments/multicast-addresses for IPv4 multicast address
assignments and RFC 2375 for IPv6 multicast address assignments.

Note: z/OS (OMPROUTE) does not support a multicast routing protocol.

Designing multicast programs: Multicast source filters
Source filter APIs enable an application to filter the datagrams that it receives based on the source
address. There are two categories of source filter APIs: Basic and advanced. Both categories enable
multicast receiver applications to designate the unicast addresses (source addresses) and the multicast
group (destination address).

© Copyright IBM Corp. 2000, 2020 63

http://www.iana.org/assignments/multicast-addresses

Basic (delta-based) APIs
Some applications need the simplicity of a delta-based API in which each function call specifies a
single source address to be added to or removed from the filter. Such applications typically fall into
the following types:
Any-source multicast

By default, all source addresses are accepted. Individual source addresses can be turned off and
back on as needed. This type is also known as the exclude mode, because the source filter
contains a list of excluded sources. The following SETSOCKOPT options are included.

Address family SETSOCKOPT options

IPv4 IP_ADD_MEMBERSHIP

IP_BLOCK_SOURCE

IP_DROP_MEMBERSHIP

IP_UNBLOCK_SOURCE

Protocol independent MCAST_BLOCK_SOURCE

MCAST_JOIN_GROUP

MCAST_LEAVE_GROUP

MCAST_UNBLOCK_SOURCE

Source-specific multicast
Only the source addresses that are specified in a list are accepted. The list is initially empty; IP
addresses can be added to or deleted from the list one at a time. This filter type also is known as
the include mode, because the source filter contains a list of included sources. The following
SETSOCKOPT options are included.

Address family SETSOCKOPT options

IPv4 IP_ADD_SOURCE_MEMBERSHIP

IP_DROP_MEMBERSHIP

IP_DROP_SOURCE_MEMBERSHIP

Protocol independent MCAST_JOIN_SOURCE_GROUP

MCAST_LEAVE_GROUP

MCAST_LEAVE_SOURCE_GROUP

Advanced (full-state) APIs
These APIs enable an application to use a source filter that is comprised of zero or more source
addresses. The application can retrieve the current filter or replace it with a new filter. The following
IOCTL commands are included:

• SIOCGIPMSFILTER
• SIOCGMSFILTER
• SIOCSIPMSFILTER
• SIOCSMSFILTER

Consider the following points about multicast source filters:

• Sockets cannot mix IPv4 group-membership APIs with protocol-independent group-membership APIs.
Within each API type, delta-based options cannot be mixed with full-state options. Mixing these calls for
the same socket results in an EINVAL error.

64 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• The number of groups that can be joined depends on the socket type; there is a maximum of 20 groups
for UDP sockets and a maximum of 256 groups for RAW sockets. Exceeding this limit results in an
ETOOMANYREFS error.

• Within each group or group and interface pair, an application can use calls for only one type of basic API,
either any-source multicast or source-specific multicast. Mixing options will result in an EINVAL error.
However, an application can use different methods for different sockets.

• If the filter mode is set to include and the source list is empty, then the entry corresponding to the
requested interface and multicast address is deleted, if present. If no such entry is present, then the
request is ignored.

• For each socket, you can specify a maximum of 64 source filters for each multicast address and
interface address pair. If the call causes the number of filters to exceed this maximum, an ENOBUFS
error is returned.

Tip: z/OS UNIX Assembler Callable Services and z/OS Language Environment C/C++ APIs also support
the multicast source filter APIs. See z/OS XL C/C++ Runtime Library Reference and z/OS UNIX System
Services Programming: Assembler Callable Services Reference for more information.

Designing multicast programs: IPv4 multicast options
IPv4 multicast supports the following socket options for the Macro, Callable, and REXX Sockets APIs:

• IP_ADD_MEMBERSHIP
• IP_ADD_SOURCE_MEMBERSHIP
• IP_BLOCK_SOURCE
• IP_DROP_MEMBERSHIP
• IP_DROP_SOURCE_MEMBERSHIP
• IP_MULTICAST_IF
• IP_MULTICAST_LOOP
• IP_MULTICAST_TTL
• IP_UNBLOCK_SOURCE

IPv4 multicast supports the following socket options for the C Sockets API:

• IP_ADD_MEMBERSHIP
• IP_DROP_MEMBERSHIP
• IP_MULTICAST_IF
• IP_MULTICAST_LOOP
• IP_MULTICAST_TTL

Use the C, Macro, Callable, or REXX Sockets API SETSOCKOPT call to set these options. Use the C, Macro,
Callable or REXX Sockets API GETSOCKOPT call to get the current settings. The status of the
IP_ADD_MEMBERSHIP, IP_DROP_MEMBERSHIP, IP_ADD_SOURCE_MEMBERSHIP,
IP_DROP_SOURCE_MEMBERSHIP, IP_BLOCK_SOURCE, and IP_UNBLOCK_SOURCE options are
exceptions, because they are SETSOCKOPT options only.

IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP
Use the IP_ADD_MEMBERSHIP option to join an IPv4 multicast group on a local IPv4 interface. Use the
SETSOCKOPT API and specify the address of the IP_MREQ structure that contains these addresses. The
application can join multiple multicast groups on a single socket; it also can join the same group on
multiple interfaces on the same socket. However, there is a maximum limit of 20 groups for a single UDP
socket, and there is a maximum limit of 256 groups for a single RAW socket. The stack chooses a default
multicast interface if an interface with the value 0 is passed. The format of the IP_MREQ structure is in the
BPXYSOCK macro. The assembler program example in Figure 33 on page 68 shows this socket option
using the EZASMI macro:

Chapter 9. Designing multicast programs 65

* *
* Issue INITAPI to connect to interface *
* *

 POST ECB,1 NEXT IS ALWAYS SYNCH
 EZASMI TYPE=INITAPI, ISSUE INITAPI MACRO X
 SUBTASK=SUBTASK, SPECIFY SUBTASK IDENTIFIER X
 MAXSOC=MAXSOC, SPECIFY MAXIMUM NUMBER OF SOCKETS X
 MAXSNO=MAXSNO, (HIGHEST SOCKET NUMBER ASSIGNED) X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 APITYPE=APITYPE, (SPECIFY APITYPE FIELD) X
 ERROR=ERROR ABEND IF ERROR ON MACRO
 BAL R14,RCCHECK --> DID IT WORK?

* *
* Issue SOCKET Macro to obtain a datagram socket descriptor *
* *

 EZASMI TYPE=SOCKET, ISSUE SOCKET MACRO X
 AF='INET', INET OR IUCV X
 SOCTYPE='DATAGRAM', DATAGRAM(UDP) X
 PROTO=ZERO, PROTOCOL X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

* Get socket descriptor number *

 STH R8,S SAVE RETCODE (=SOCKET DESCRIPTOR)

* *
* ISSUE GETHOSTID CALL *
* *

 EZASMI TYPE=GETHOSTID, ISSUE GETHOSTID MACRO X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
 ST R8,ADDR SAVE OUR ID

* *
* Issue SETSOCKOPT to allow multiple application on the same *
* stack to bind to the same multicast address and port. *
* *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN4, OPTION LENGTH X
 OPTNAME='SO_REUSEADDR', OPTION NAME X
 OPTVAL=OPTVALON, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

* *
* Issue BIND socket *
* *

 MVC PORT(2),PORTS Load port #
 MVC ADDRESS(4),ADDR Load IP address
 EZASMI TYPE=BIND, ISSUE BIND MACRO X
 S=S, DATAGRAM X
 NAME=NAME, SOCKET ADDRESS STRUCTURE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

*
* Here you will add code to set the multicast interface, time-to-live,
* or determine if outgoing datagrams are copied to loopback. See the

66 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* next sections for the details.
*

* *
* Issue SETSOCKOPT - IP_ADD_MEMBERSHIP *
* *

 MVC IMR_MULTIADD,MY_MULTICAST_ADDRESS
 MVC IMR_INTERFAC,MY_MULTICAST_INTERFACE
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN8, OPTION LENGTH X
 OPTNAME='IP_ADD_MEMBERSHIP', OPTION NAME X
 OPTVAL=IP_MREQ, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

*
* Here your program will perform normal processing such as sending or
* receiving message.
*

* *
* Issue SETSOCKOPT - IP_DROP_MEMBERSHIP *
* *

 MVC IMR_MULTIADD,MY_MULTICAST_ADDRESS
 MVC IMR_INTERFAC,MY_MULTICAST_INTERFACE
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN8, OPTION LENGTH X
 OPTNAME='IP_DROP_MEMBERSHIP', OPTION NAME X
 OPTVAL=IP_MREQ, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

* *
* Terminate Connection to API *
* *

 POST ECB,1 FOLLOWING IS ALWAYS SYNCH
 EZASMI TYPE=TERMAPI ISSUE EZASMI MACRO FOR TERMAPI API
*
* GETSOCKOPT and SETSOCKOPT parms
*
OPTLEN1 DC F'1'
OPTLEN4 DC F'4'
OPTLEN8 DC F'8'
OPTLEN12 DC F'12'
*
OPTVAL4 DC CL4' '
SAMEINTERFACE DC F'0'
SAMESUBNET DC F'1'
SAMESITE DC F'32'
SAMEREGION DC F'64'
OPTVALON DC F'1' OPTVAL field ON
OPTVALOFF DC F'0' OPTVAL field OFF
*
* BIND PARMS
*
 CNOP 0,4
NAME DC 0CL16' ' SOCKET NAME STRUCTURE
 DC AL2(2) FAMILY
PORT DC H'0' PORT
ADDRESS DC F'0' IP ADDRESS
 DC XL8'00' RESERVED
ADDR DC AL1(224),AL1(9),AL1(9),AL1(9) IP ADDRESS TO BIND
PORTS DC H'11007' PORT TO BIND
*
* My multicast address, source, and interface
*
MY_MULTICAST_ADDRESS DC AL1(224),AL1(9),AL1(9),AL1(9) X

Chapter 9. Designing multicast programs 67

 Multicast address
MY_MULTICAST_INTERFACE DC AL1(204),AL1(59),AL1(83),AL1(19) Internet
* address
MY_MULTICAST_SOURCE DC AL1(203),AL1(12),AL1(83),AL1(19) Internet
* address
* Multicast Interface
MULTIFA DC AL1(204),AL1(59),AL1(83),AL1(19) Internet Address
*
MULTIFO DC CL4' ' SOCKET MULTICAST INTERFACE OUTPUT
 BPXYSOCK DSECT=NO,LIST=YES
 IP_MREQ DS 0F 01-BPXYSOCK
 IMR_MULTIADDR DS CL4 IP MULTICAST ADDR OF GROUP 01-BPXYSOCK
 IMR_INTERFACE DS CL4 LOCAL IP ADDR OF INTERFACE 01-BPXYSOCK
 IP_MREQ_SOURCE DS 0F 01_BPXYSOCK
 IMRS_MULTIADDR DS CL4 IP MULTICAST ADDR OF GROUP 01_BPXYSOCK
 IMRS_SOURCEADDR DS CL4 IP ADDRESS OF SOURCE 01_BPXYSOCK
 IMRS_INTERFACE DS CL4 LOCAL IP ADDR OF INTERFACE 01_BPXYSOCK

Figure 33. IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP

To remove the host from the multicast host group you must issue a SETSOCKOPT call with the
IP_DROP_MEMBERSHIP option. Using this call is similar to using the IP_ADD_MEMBERSHIP option; both
use the IP_MREQ structure to declare the IPv4 multicast address and the local IPv4 address interface.
You can also use the IP_DROP_MEMBERSHIP option to remove all sources for a given multicast group
(see Figure 33 on page 68).

While the application is a member of the multicast host group, datagrams can be sent or received as
required. To see the multicast groups that are joined on an interface, use the Netstat DEvlinks/-d
command. To see the multicast groups that are joined on a socket, use the Netstat ALL/-A command.

IP_ADD_SOURCE_MEMBERSHIP and IP_DROP_SOURCE_MEMBERSHIP
Use the IP_ADD_SOURCE_MEMBERSHIP option to join an IPv4 multicast group on an IPv4 interface and
specify the IPv4 source-filter address. Set these values by using the SETSOCKOPT API and specifying the
address of the IP_MREQ_SOURCE structure that contains these addresses. The application can join
multiple source multicast groups on a single socket and can also join the same group on multiple
interfaces on the same socket. However, there is a maximum limit of 20 groups per single UDP socket and
there is a maximum limit of 256 groups per single RAW socket. The stack chooses a default multicast
interface if an interface with the value 0 is passed. The format of the IP_MREQ_SOURCE structure is in the
BPXYSOCK macro. The assembler program example in Figure 34 on page 69 shows this socket option
using the EZASMI macro:

68 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* *
* Issue SETSOCKOPT - IP_ADD_SOURCE_MEMBERSHIP *
* *

 MVC IMRS_MULTIADD,MY_MULTICAST_ADDRESS
 MVC IMRS_SOURCEADDR,MY_MULTICAST_SOURCE
 MVC IMRS_INTERFAC,MY_MULTICAST_INTERFACE
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN12, OPTION LENGTH X
 OPTNAME='IP_ADD_SOURCE_MEMBERSHIP', OPTION NAME X
 OPTVAL=IP_MREQ_SOURCE, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
*
* Here your program will perform normal processing such as sending or
* receiving message.
*

* *
* Issue SETSOCKOPT - IP_DROP_SOURCE_MEMBERSHIP *
* *

 MVC IMR_MULTIADD,MY_MULTICAST_ADDRESS
 MVC IMRS_SOURCEADDR,MY_MULTICAST_SOURCE
 MVC IMRS_INTERFAC,MY_MULTICAST_INTERFACE
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN12, OPTION LENGTH X
 OPTNAME='IP_DROP_SOURCE_MEMBERSHIP', OPTION NAME X
 OPTVAL=IP_MREQ_SOURCE, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 34. IP_ADD_SOURCE_MEMBERSHIP and IP_DROP_SOURCE_MEMBERSHIP

To remove the host from the source multicast host group you must issue a SETSOCKOPT call with the
IP_DROP_SOURCE_MEMBERSHIP option. Using this call is similar to using the
IP_ADD_SOURCE_MEMBERSHIP option; both use the IP_MREQ_SOURCE structure to declare the IPv4
multicast address, IPv4 source address, and the local IPv4 address interface.

While the application is a member of the source multicast host group, datagrams can be sent or received
as required. To see the multicast groups that are joined on an interface, use the Netstat DEvlinks/-d
command. To see the multicast groups that are joined on a socket, use the Netstat ALL/-A command.

IP_BLOCK_SOURCE and IP_UNBLOCK_SOURCE
The IP_BLOCK_SOURCE socket option enables the application to block IPv4 multicast packets that have a
source address that matches the given IPv4 source address. The specified multicast group must have
been joined previously. The IP_UNBLOCK_SOURCE socket option enables the application to unblock a
previously blocked source for a given multicast group.

To block or unblock IPv4 multicast packets, use the SETSOCKOPT API and specify the IP_MREQ_SOURCE
structure containing IPv4 multicast address, IPv4 source address, and the local IPv4 interface address.
The format of the IP_MREQ_SOURCE structure is in the BPXYSOCK macro. The assembler program
example in Figure 35 on page 70 shows this socket option using the EZASMI macro:

Chapter 9. Designing multicast programs 69

* *
* Issue SETSOCKOPT - IP_BLOCK_SOURCE *
* *

 MVC IMRS_MULTIADD,MY_MULTICAST_ADDRESS
 MVC IMRS_SOURCEADDR,MY_MULTICAST_SOURCE
 MVC IMRS_INTERFAC,MY_MULTICAST_INTERFACE
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN12, OPTION LENGTH X
 OPTNAME='IP_BLOCK_SOURCE', OPTION NAME X
 OPTVAL=IP_MREQ_SOURCE, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
*
* Here your program will perform normal processing such as sending or
* receiving message.
*

* *
* Issue SETSOCKOPT - IP_UNBLOCK_SOURCE *
* *

 MVC IMRS_MULTIADD,MY_MULTICAST_ADDRESS
 MVC IMRS_SOURCEADDR,MY_MULTICAST_SOURCE
 MVC IMRS_INTERFAC,MY_MULTICAST_INTERFACE
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN12, OPTION LENGTH X
 OPTNAME='IP_UNBLOCK_SOURCE', OPTION NAME X
 OPTVAL=IP_MREQ_SOURCE, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 35. IP_BLOCK_SOURCE and IP_UNBLOCK_SOURCE

While the application is a member of the multicast host group, datagrams can be sent or received as
required. To see the multicast groups that are joined on an interface, use the Netstat DEvlinks/-d
command. To see the multicast groups that are joined on a socket, use the Netstat ALL/-A command.

IP_MULTICAST_IF
In order to control which interface multicast datagrams will be sent on, the API provides the
IP_MULTICAST_IF socket option. This option can be used to set the interface for sending outbound
multicast datagrams from the sockets application. Multicast datagrams can be transmitted on only one
interface at a time. You can determine the interface being used by the way of the GETSOCKOPT API with
IP_MULTICAST_IF as the OPTNAME. Figure 36 on page 71 illustrates the use of IP_MULTICAST_IF by the
use of the SETSOCKOPT and GETSOCKOPT APIs.

70 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* *
* Issue SETSOCKOPT/GETSOCKOPT - IP_MULTICAST_IF *
* *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN4, OPTION LENGTH X
 OPTNAME='IP_MULTICAST_IF', OPTION NAME X
 OPTVAL=MULTIF, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 XC MULTIFO,MULTIFO
 EZASMI TYPE=GETSOCKOPT, ISSUE GETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN4, OPTION LENGTH X
 OPTNAME='IP_MULTICAST_IF', OPTION NAME X
 OPTVAL=MULTIFO, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 36. IP_MULTICAST_IF

IP_MULTICAST_LOOP
The API uses IP_MULTICAST_LOOP socket option to enable or disable the loopback of outgoing multicast
datagrams. The default is enabled. This option is used to enable an application with multiple senders and
receivers on a system to loop datagrams back so that each process receives the transmissions of the
other senders on the system. Figure 37 on page 72 illustrates the use of IP_MULTICAST_IF by the use of
the SETSOCKOPT and GETSOCKOPT APIs.

Chapter 9. Designing multicast programs 71

* *
* Issue SETSOCKOPT/GETSOCKOPT - IP_MULTICAST_LOOP ENABLED *
* *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IP_MULTICAST_LOOP', OPTION NAME X
 OPTVAL=OPTVALON, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
*
 XC OPTVAL4,OPTVAL4
 EZASMI TYPE=GETSOCKOPT, ISSUE GETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IP_MULTICAST_LOOP', OPTION NAME X
 OPTVAL=OPTVAL4, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

* *
* Issue SETSOCKOPT/GETSOCKOPT - IP_MULTICAST_LOOP DISABLED *
* *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IP_MULTICAST_LOOP', OPTION NAME X
 OPTVAL=OPTVALOFF, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 XC OPTVAL4,OPTVAL4
 EZASMI TYPE=GETSOCKOPT, ISSUE GETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IP_MULTICAST_LOOP', OPTION NAME X
 OPTVAL=OPTVAL4, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 37. IP_MULTICAST_LOOP

IP_MULTICAST_TTL
The IP_MULTICAST_TTL socket option allows the application to primarily limit the lifetime of the packet in
the Internet and prevent it from circulating indefinitely. This option also serves to allow the application to
specify administrative boundaries. This administrative region is specified in terms such as "this site", "this
company", or "this state", and is relative to the starting point of the packet. The region associated with a
multicast packet is called its scope. The default value is 1, meaning multicast is available only to the local
subnet. Figure 38 on page 73 illustrates the use of IP_MULTICAST_TTL by the use of the SETSOCKOPT
and GETSOCKOPT APIs.

72 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* *
* Issue SETSOCKOPT/GETSOCKOPT - IP_MULTICAST_TTL *
* *

*
* SET TTL TO SAME SITE
*
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IP_MULTICAST_TTL', OPTION NAME X
 OPTVAL=SAMESITE, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
*
* DISPLAY TTL, SHOULD BE 32
*
 XC OPTVAL4,OPTVAL4
 EZASMI TYPE=GETSOCKOPT, ISSUE GETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IP_MULTICAST_TTL', OPTION NAME X
 OPTVAL=OPTVAL4, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 38. IP_MULTICAST_TTL

Designing multicast programs: IPv6 multicast options
To enable your application to support the IPv6 version of multicast support, the following socket options
will be discussed:

• IPV6_JOIN_GROUP
• IPV6_LEAVE_GROUP
• IPV6_MULTICAST_IF
• IPV6_MULTICAST_LOOP
• IPV6_MULTICAST_HOPS

Use the Macro, Callable, and REXX Sockets API SETSOCKOPT call to set these options. Use the Macro,
Callable, or REXX Sockets API GETSOCKOPT call to get the current settings. The status of the
IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP are exceptions as they are SETSOCKOPT options only.

If you want to enable your application to support the IPv6 multicast source filter, see “Designing multicast
programs: Protocol-independent multicast options” on page 78.

IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP
IPV6_JOIN_GROUP is used to join a multicast group. This is accomplished by using the SETSOCKOPT API
and specifying the address of the IPV6_MREQ structure containing the IPv6 multicast address and the
local IPv6 multicast interface index. The stack chooses a default multicast interface if an interface index
of 0 is passed. The values specified in the IPV6_MREQ structure used by IPV6_JOIN_GROUP and
IPV6_LEAVE_GROUP must be symmetrical. The format of the IPV6_MREQ structure can be found in the
BPXYSOCK macro.

The assembler program example in Figure 39 on page 76 illustrates this socket option in EZASMI Macro
form:

* *
* Issue INITAPI to connect to interface *
* *

 POST ECB,1 NEXT IS ALWAYS SYNCH
 EZASMI TYPE=INITAPI, ISSUE INITAPI MACRO X

Chapter 9. Designing multicast programs 73

 SUBTASK=SUBTASK, SPECIFY SUBTASK IDENTIFIER X
 MAXSOC=MAXSOC, SPECIFY MAXIMUM NUMBER OF SOCKETS X
 MAXSNO=MAXSNO, (HIGHEST SOCKET NUMBER ASSIGNED) X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 APITYPE=APITYPE, (SPECIFY APITYPE FIELD) X
 ERROR=ERROR ABEND IF ERROR ON MACRO
 BAL R14,RCCHECK --> DID IT WORK?

* *
* Issue SOCKET Macro to obtain a socket descriptor *
* *

 EZASMI TYPE=SOCKET, ISSUE SOCKET MACRO X
 AF='INET6', INET OR IUCV X
 SOCTYPE='DATAGRAM', DATAGRAM(UDP) X
 PROTO=ZERO, PROTOCOL X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

* Get socket descriptor number

 STH R8,S SAVE RETCODE (=SOCKET DESCRIPTOR)

* *
* ISSUE GETHOSTID CALL *
* *

 EZASMI TYPE=GETHOSTID, ISSUE GETHOSTID MACRO X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
 ST R8,ADDR SAVE OUR ID

* *
* Issue SETSOCKOPT to allow multiple application on the same *
* stack to bind to the same multicast address and port. *
* *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN4, OPTION LENGTH X
 OPTNAME='SO_REUSEADDR', OPTION NAME X
 OPTVAL=OPTVALON, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

* *
* Issue BIND socket *
* *

 MVC PORT(2),PORTS Load port #
 MVC ADDRESS(16),ADDR Load IPv6 internet address
 EZASMI TYPE=BIND, ISSUE BIND MACRO X
 S=S, DATAGRAM X
 NAME=NAME, SOCKET ADDRESS STRUCTURE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

*
* Here you will add code to set the multicast interface, hops,
* or determine if outgoing datagrams are copied to loopback. See the
* next sections for the details.
*

* *
* Issue SETSOCKOPT - IPV6_JOIN_GROUP *
* *

*
* Either hard code a multicast address and index or use the
* SIOCGIFNAMEINDEX IOCTL to obtain the interface index from the stack.

74 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

*

 MVC IV6MR_MULTIADD,MY_MULTICAST_ADDRESS
 MVC IV6MR_INTERFAC,MY_MULTICAST_INTERFACE
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN20, OPTION LENGTH X
 OPTNAME='IPV6_JOIN_GROUP', OPTION NAME X
 OPTVAL=IPV6_MREQ, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

*
* Here your program will perform normal processing such as sending or
* receiving messages.
*

* *
* Issue SETSOCKOPT - IPV6_LEAVE_GROUP *
* *

*
* Either hard code a multicast address and index or use the
* SIOCGIFNAMEINDEX IOCTL to obtain the interface index from the stack.
*

 MVC IV6MR_MULTIADD,MY_MULTICAST_ADDRESS
 MVC IV6MR_INTERFAC,MY_MULTICAST_INTERFACE
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN20, OPTION LENGTH X
 OPTNAME='IPV6_LEAVE_GROUP', OPTION NAME X
 OPTVAL=IPV6_MREQ, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

* *
* Terminate Connection to API *
* *

 POST ECB,1 FOLLOWING IS ALWAYS SYNCH
 EZASMI TYPE=TERMAPI ISSUE EZASMI MACRO FOR TERMAPI
*
* GETSOCKOPT and SETSOCKOPT parms
*
OPTLEN1 DC F'1'
OPTLEN4 DC F'4'
OPTLEN8 DC F'8'
OPTLEN20 DC F'20'
OPTVAL4 DC CL4' '
SAMEINTERFACE DC F'0'
SAMESUBNET DC F'1'
SAMESITE DC F'32'
SAMEREGION DC F'64'
OPTVALON DC F'1' OPTVAL field ON
OPTVALOFF DC F'0' OPTVAL field OFF
*
* BIND PARMS
*
NAME DC 0CL16' ' SOCKET NAME STRUCTURE
 DC AL2(2) FAMILY
PORT DC H'0' PORT
FLOWINFO DC F'0' FLOWINFO
ADDRESS DC F'0' IP ADDRESS
SCOPEID DC F'0' SCOPEID
ADDR DC XL16'FF020101010101010505050505050505' IP ADDR TO BIND
PORTS DC H'11007' PORT TO BIND
*
* My Multicast address and interface
*
MY_MULTICAST_ADDRESS DC XL16'FF020101010101010505050505050505' X
 Multicast Address
MY_MULTICAST_INTERFACE DC XL4'0000000E' Interface Index
*
MULTIFO DC CL4' ' SOCKET MULTICAST INTERFACE OUTPUT *
*
 BPXYSOCK DSECT=NO,LIST=YES

Chapter 9. Designing multicast programs 75

IPV6_MREQ DS 0F 01-BPXYS
IPV6MR_MULTIADDR DS CL16 IPv6 Addr 01-BPXYS
IPV6MR_INTERFACE DS F Interface Index 01-BPXYS

Figure 39. IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP

IPV6_LEAVE_GROUP is used to remove a host from the multicast group. You must issue a SETSOCKOPT
API and specify the address of the IPV6_MREQ structure containing the IPv6 multicast address and the
local IPv6 multicast interface index. See also Figure 39 on page 76.

While the application is a member of the multicast host group, datagrams may be sent or received as
required. To see the multicast groups that are joined on an interface, use the Netstat DEvlinks/-d
command. To see the multicast groups that are joined on a socket, use the Netstat ALL/-A command.

IPV6_MULTICAST_IF
In order to control which interface multicast datagrams will be sent on, the API provides the
IPV6_MULTICAST_IF socket option. This option can be used to set the interface for sending outbound
multicast datagrams from the sockets application. Multicast datagrams can be transmitted on only one
interface at a time. You can determine the interface being used by the way of the GETSOCKOPT API with
IPV6_MULTICAST_IF as the OPTNAME. The IPV6_MULTICAST_IF socket option requires that the option
value be the value of the IPv6 interface index.

Figure 40 on page 76 illustrates the use of IPV6_MULTICAST_IF by the use of the SETSOCKOPT and
GETSOCKOPT APIs.

 * *
 * Issue SETSOCKOPT/GETSOCKOPT - IPV6_MULTICAST_IF *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN4, OPTION LENGTH X
 OPTNAME='IPV6_MULTICAST_IF', OPTION NAME X
 OPTVAL=MY_MULTICAST_INTERFACE, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 XC MULTIFO,MULTIFO
 EZASMI TYPE=GETSOCKOPT, ISSUE GETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN4, OPTION LENGTH X
 OPTNAME='IPV6_MULTICAST_IF', OPTION NAME X
 OPTVAL=MULTIFO, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 40. IPV6_MULTICAST_IF

IPV6_MULTICAST_LOOP
The API uses IPV6_MULTICAST_LOOP socket option to enable or disable the loopback of outgoing
multicast datagrams. The default is enabled. This option is used to enable an application with multiple
senders and receivers on a system to loop datagrams back so that each process receives the
transmissions of the other senders on the system. Figure 41 on page 77 illustrates the use of
IPV6_MULTICAST_LOOP by the use of the SETSOCKOPT and GETSOCKOPT APIs.

76 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 * *
 * Issue SETSOCKOPT/GETSOCKOPT - IPV6_MULTICAST_LOOP ENABLED *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IPV6_MULTICAST_LOOP', OPTION NAME X
 OPTVAL=OPTVALON, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 *
 XC OPTVAL4,OPTVAL4
 EZASMI TYPE=GETSOCKOPT, ISSUE GETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IPV6_MULTICAST_LOOP', OPTION NAME X
 OPTVAL=OPTVAL4, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

 * *
 * Issue SETSOCKOPT/GETSOCKOPT - IPV6_MULTICAST_LOOP DISABLED *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IPV6_MULTICAST_LOOP', OPTION NAME X
 OPTVAL=OPTVALOFF, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 :
 :
 XC OPTVAL4,OPTVAL4
 EZASMI TYPE=GETSOCKOPT, ISSUE GETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IPV6_MULTICAST_LOOP', OPTION NAME X
 OPTVAL=OPTVAL4, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 41. IPV6_MULTICAST_LOOP

IPV6_MULTICAST_HOPS
The IPV6_MULTICAST_HOPS socket option allows the application to primarily limit the lifetime of the
packet in the Internet and prevent it from circulating indefinitely. The default value is 1, meaning
multicast is available only to the local subnet.

Figure 42 on page 78 illustrates the use of IPV6_MULTICAST_HOPS by the use of the SETSOCKOPT and
GETSOCKOPT APIs.

Chapter 9. Designing multicast programs 77

 * *
 * Issue SETSOCKOPT/GETSOCKOPT - IPV6_MULTICAST_HOPS *
 * *

 *
 * SET TTL TO SAME SITE
 *
 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IPV6_MULTICAST_HOPS', OPTION NAME X
 OPTVAL=SAMESITE, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 *
 * DISPLAY HOPS, SHOULD BE 32
 *
 XC OPTVAL4,OPTVAL4
 EZASMI TYPE=GETSOCKOPT, ISSUE GETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTLEN1, OPTION LENGTH X
 OPTNAME='IPV6_MULTICAST_HOPS', OPTION NAME X
 OPTVAL=OPTVAL4, OPTION VALUE X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 42. IPV6_MULTICAST_HOPS

Designing multicast programs: Protocol-independent multicast
options

The following socket options enable your application to support IPv4 and IPv6 multicast:

• MCAST_BLOCK_SOURCE
• MCAST_JOIN_GROUP
• MCAST_JOIN_SOURCE_GROUP
• MCAST_LEAVE_GROUP
• MCAST_ LEAVE_SOURCE_GROUP
• MCAST_UNBLOCK_SOURCE

Use the Macro, Callable, and REXX Sockets API SETSOCKOPT call to set these options.

MCAST_JOIN_GROUP and MCAST_LEAVE_GROUP
Use the MCAST_JOIN_GROUP socket option to join a multicast group and set the IPv4 or IPv6 multicast
address and the local interface index. Use the SETSOCKOPT API and specify the address of the
GROUP_REQ structure that contains the address and the interface index. The application can join multiple
multicast groups on a single socket and can also join the same group on multiple interfaces on the same
socket. However, there is a maximum limit of 20 groups per single UDP socket and there is a maximum
limit of 256 groups per single RAW socket. The stack chooses a default multicast interface if the interface
index 0 is passed. The format of the GROUP_REQ structure is in the BPXYSOCK macro. The assembler
program example in Figure 43 on page 79 shows this socket option using the EZASMI macro:

78 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 * *
 * Issue SETSOCKOPT - MCAST_JOIN_GROUP *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTL136, OPTION LENGTH X
 OPTNAME='MCAST_JOIN_GROUP', OPTION NAME X
 OPTVAL=GROUP_REQ1, OPTION VALUE X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 *
 * Here your program will perform normal processing such as sending or
 * receiving message.
 *

 * *
 * Issue SETSOCKOPT - MCAST_LEAVE_GROUP *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTL136, OPTION LENGTH X
 OPTNAME='MCAST_LEAVE_GROUP', OPTION NAME X
 OPTVAL=GROUP_REQ1, OPTION VALUE X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

 *
 * GETSOCKOPT and SETSOCKOPT parms
 *
 OPTLEN1 DC F'1'
 OPTLEN4 DC F'4'
 OPTLEN8 DC F'8'
 OPTL136 DC F'136'
 OPTL264 DC F'264'
 --
 * Group_Req Structure
 --
 GROUP_REQ1 DS 0CL136
 GR_INTF1 DC XL4'00010005' Interface Index
 DS CL4 Padding
 GR_GROUP1 DS 0CL128 Group Address
 DC XL16'10020000E01111110000000000000000'
 DC XL112'00'
 --
 * Group_Source_Req Structure
 --
 GSR_REQ1 DS 0CL264
 GSR_INTF1 DC XL4'00010005' Interface Index
 DS CL4 Padding
 GSR_GROUP1 DS 0CL128 Group Address
 DC XL16'10020000E01111110000000000000000'
 DC XL112'00'
 GSR_SRCAD1 DS 0CL128 Source Address
 DC XL16'10020000424242420000000000000000'
 DC XL112'00'

Figure 43. MCAST_JOIN_GROUP and MCAST_LEAVE_GROUP

To remove the host from the multicast host group you must issue a SETSOCKOPT call with the
MCAST_LEAVE_GROUP option. Using this call is similar to using the MCAST_JOIN_GROUP option because
it also uses the GROUP_REQ structure to declare the multicast address and the local interface index. You
can also use MCAST_LEAVE_GROUP option to remove all sources for a given multicast group.

Chapter 9. Designing multicast programs 79

While the application is a member of the multicast host group, datagrams can be sent or received as
required. To see the multicast groups that are joined on an interface, use the Netstat DEvlinks/-d
command. To see the multicast groups that are joined on a socket, use the Netstat ALL/-A command.

MCAST_JOIN_SOURCE_GROUP and MCAST_LEAVE_SOURCE_GROUP
Use the MCAST_JOIN_SOURCE_GROUP option to set the IPv4 or IPv6 multicast address, source address,
and the local interface index. Use the SETSOCKOPT API and specify the address of the
GROUP_SOURCE_REQ structure that contains these addresses and the interface index. The application
can join multiple source multicast groups on a single socket and can also join the same group on multiple
interfaces on the same socket. However, there is a maximum limit of 20 groups per single UDP socket and
there is a maximum limit of 256 groups per single RAW socket. The stack chooses a default multicast
interface if the interface index 0 is passed. The format of the GROUP_SOURCE_REQ structure is in the
BPXYSOCK macro. The assembler program example in Figure 44 on page 80 shows this socket option
using the EZASMI macro:

 * *
 * Issue SETSOCKOPT - MCAST_JOIN_SOURCE_GROUP *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTL264, OPTION LENGTH X
 OPTNAME='MCAST_JOIN_SOURCE_GROUP', OPTION NAME X
 OPTVAL=GSR_REQ1, OPTION VALUE X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 *
 * Here your program will perform normal processing such as sending or
 * receiving message.
 *

 * *
 * Issue SETSOCKOPT - MCAST_LEAVE_SOURCE_GROUP *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTL264, OPTION LENGTH X
 OPTNAME='MCAST_LEAVE_SOURCE_GROUP', OPTION NAME X
 OPTVAL=GSR_REQ1, OPTION VALUE X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 44. MCAST_JOIN_SOURCE_GROUP and MCAST_LEAVE_SOURCE_GROUP

To remove the host from the source multicast host group you must issue a SETSOCKOPT call with the
MCAST_LEAVE_SOURCE_GROUP option. This call is similar to the MCAST_JOIN_SOURCE_GROUP option
because it also uses the GROUP_SOURCE_REQ structure to declare the IPv4 or IPv6 multicast address,
source address, and the local interface index (see Figure 44 on page 80). You can also use the
MCAST_LEAVE_GROUP option to remove all sources for a given multicast group.

While the application is a member of the source multicast host group, datagrams can be sent or received
as required. To see the multicast groups that are joined on an interface, use the Netstat DEvlinks/-d
command. To see the multicast groups that are joined on a socket, use the Netstat ALL/-A command.

MCAST_BLOCK_SOURCE and MCAST_UNBLOCK_SOURCE
The MCAST_BLOCK_SOURCE socket option enables the application to block IPv4 or IPv6 multicast
packets that have a source address that matches the given source address. The specified multicast group
must have been joined previously. The MCAST_UNBLOCK_SOURCE socket option enables the application

80 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

to unblock a previously blocked source for a given source multicast group. Use the SETSOCKOPT API and
specify the GROUP_SOURCE_REQ structure that contains the multicast address, the source address, and
the local interface address. The format of the GROUP_SOURCE_REQ structure is in the BPXYSOCK macro.
The assembler program example in Figure 45 on page 81 shows the socket option using the EZASMI
macro:

 * *
 * Issue SETSOCKOPT - MCAST_BLOCK_SOURCE *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTL264, OPTION LENGTH X
 OPTNAME='MCAST_BLOCK_SOURCE', OPTION NAME X
 OPTVAL=GSR_REQ1, OPTION VALUE X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT
 *
 * Here your program will perform normal processing such as sending or
 * receiving message.
 *

 * *
 * Issue SETSOCKOPT - MCAST_UNBLOCK_SOURCE *
 * *

 EZASMI TYPE=SETSOCKOPT, ISSUE SETSOCKOPT X
 S=S, SOCKET DESCRIPTOR X
 OPTLEN=OPTL264, OPTION LENGTH X
 OPTNAME='MCAST_UNBLOCK_SOURCE', OPTION NAME X
 OPTVAL=GSR_REQ1, OPTION VALUE X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
 BAL R14,RCCHECK --> CHECK IT

Figure 45. MCAST_BLOCK_SOURCE and MCAST_UNBLOCK_SOURCE

While the application is a member of the multicast host group, datagrams can be sent or received as
required. To see the multicast groups that are joined on an interface, use the Netstat DEvlinks/-d
command. To see the multicast groups that are joined on a socket, use the Netstat ALL/-A command.

Designing multicast programs: IOCTL multicast commands
The following IOCTL commands enable applications to support the advanced (full-state) multicast API for
IPv4 and IPv6 addresses:

• SIOCGIPMSFILTER
• SIOCGMSFILTER
• SIOCSIPMSFILTER
• SIOCSMSFILTER

Use the Macro, Callable, and REXX Sockets API IOCTL call for these options.

SIOCGIPMSFILTER
An SIOCGIPMSFILTER IOCTL enables an application to retrieve a list of the IPv4 source addresses that
comprise the source filter, with the current mode on a given interface and a multicast group for a socket.
The source filter can include or exclude the set of source addresses, depending on the filter mode
(MCAST_INCLUDE or MCAST_EXCLUDE), which is defined in the IP_MSFILTER structure of the BPXYIOCC
macro.

Chapter 9. Designing multicast programs 81

SIOCGMSFILTER
An SIOCGMSFILTER IOCTL enables an application to retrieve a list of the IPv4 or IPv6 source addresses
that comprise the source filter along with the current mode on a given interface index and a multicast
group for a socket. The source filter may either include or exclude the set of source address, depending
on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE), which is defined in the GROUP_FILTER
structure of the BPXYIOCC macro.

SIOCSIPMSFILTER
An SIOCSIPMSFILTER IOCTL enables an application to specify or modify a list of IPv4 source addresses
on a given interface and to specify or modify a multicast group for a socket. The source filter can include
or exclude the set of source addresses, depending on the filter mode (MCAST_INCLUDE or MCAST_
EXCLUDE), which is defined in the IP_MSFILTER structure of the BPXYIOCC macro. The application can
join multiple source multicast groups on a single socket; it also can join the same group on multiple
interfaces on the same socket. However, there is a maximum limit of 20 groups per single UDP socket and
there is a maximum limit of 256 groups per single RAW socket.

SIOCSMSFILTER
An SIOCSMSFILTER IOCTL enables an application to specify or modify a list of IPv4 or IPv6 source
addresses on a given interface index and to specify or modify a multicast group for a socket. The source
filter can include or exclude the set of source address, depending on the filter mode (MCAST_INCLUDE or
MCAST_EXCLUDE), which is defined in the GROUP_FILTER structure of the BPXYIOCC macro. The
application can join multiple source multicast groups on a single socket; it also can join the same group on
multiple interfaces on the same socket. However, there is a maximum limit of 20 groups per single UDP
socket and there is a maximum limit of 256 groups per single RAW socket.

82 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Part 3. Application program interfaces

The following application programming interfaces (API's) are described:

• Chapter 10, “C Socket application programming interface,” on page 85
• Chapter 11, “X/Open Transport Interface ,” on page 173
• Chapter 12, “Macro application programming interface,” on page 193
• Chapter 13, “CALL instruction application programming interface,” on page 391
• Chapter 14, “REXX socket application programming interface,” on page 579
• Chapter 15, “Pascal application programming interface,” on page 689

© Copyright IBM Corp. 2000, 2020 83

84 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 10. C Socket application programming
interface

Note: The TCP/IP C socket API is not being enhanced for IPv6. The use of the UNIX C socket library is
encouraged for IPv4 application development and is required for IPv6 application development. For more
information, see z/OS XL C/C++ Runtime Library Reference.

This information describes the C IPv4 socket application program interface (API) provided with TCP/IP.
Use the socket routines to interface with the TCP, UDP, and IP protocols. The socket routines allow you to
communicate with other programs across networks. You can, for example, use socket routines when you
write a client program that must communicate with a server program running on another computer.

Topics include:

• Compiler restrictions
• Compiling and linking C applications
• Compiler messages
• Program abends
• C socket implementation
• C socket header files
• C structures
• Error messages and return codes
• C socket calls
• Sample C socket programs

To use the C socket API, you must know C language programming. For more information about C language
programming, see z/OS XL C/C++ Programming Guide.

Compiler restrictions with C applications
This topic tells you how to move your application to the z/OS Communications Server system.

• When you need to recompile, use the compiler shipped with this product.
• All applications linked to the TCP/IP C sockets library must run on the LE run-time library shipped with

z/OS Communications Server.
• To access system return values, you need only use include statement errno.h supplied with the

compiler. To access network return values, you must add the following include statement:

#include <tcperrno.h>

• To print system errors only, use perror(), a procedure available from the C compiler run-time library. To
print both system and network errors, use tcperror(), a procedure provided by IBM and included with
z/OS Communications Server.

Note to CICS users

Do not use tcperror(). Add statement #include <ezacichd.h> and compile the statement as non-
reentrant. For more information, see the information about C Language Programming in the z/OS
Communications Server: IP CICS Sockets Guide.

© Copyright IBM Corp. 2000, 2020 85

• If your C language statements contain information, such as sequence numbers, that are not part of the
input for the C/C++ compiler, you must exclude that information during compilation. The C/C++ compiler
provides several ways to do this, one of which is:

#pragma margins (1,72)

In this example, we are presuming you have sequence numbers in columns 73 through 80.
• By default, prototype C socket functions and their parameters for the current release are defined. If you

need to access the TCP/IP V3R1 definitions, specify the following information during a compile:

#define_TCP31_PROTOS

• Use of C socket functions by routines that are a part of fetched modules or DLLs might not yield the
desired results. Applications that use these C language features need to be designed so that only one
copy of the API code is used within the execution environment. Also note that proper cleanup of the
supporting data structures relies on the termination logic defined with the atexit() function and has all of
the corresponding restrictions listed for it (see z/OS XL C/C++ Runtime Library Reference for details).
Improper use will likely cause new copies of the associated data structures to be allocated in the
application's address space each time the fetched module or DLL is loaded.

Compiling and linking C applications
There are several ways to compile, link-edit, and execute z/OS Communications Server C source program
in MVS. To run a C source program under MVS batch using IBM supplied cataloged procedures, you must
include data sets. This topic contains information about the data sets that you must include.

The following data set name is used as an example in the sample Job Control Language (JCL) statements.
USER.MYPROG.H

Contains user #include files.

C application compatibility considerations
Unless noted in z/OS Communications Server: New Function Summary, an application program compiled
and link edited on a release of z/OS Communications Server IP can be used on higher level releases. That
is, the API is upward compatible.

Application programs that are compiled and link edited on a release of z/OS Communications Server IP
cannot be used on older releases. That is, the API is not downward compatible.

C socket API: Non-reentrant modules
You must make additions to the compile step of your cataloged procedure to compile a non-reentrant
module. The following lines describe these additions. Cataloged procedures are included in the IBM-
supplied samples for your MVS system.

Note: Compile all C code source using the def(MVS) preprocessor symbol.

• Add the following line as the first //SYSLIB DD statement:

//SYSLIB DD DSN=SEZACMAC,DISP=SHR

• Add the following //USERLIB DD statement:

//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

The following lines describe the additions that you must make to the link-edit step of your cataloged
procedure to link-edit a non-reentrant module.

• To link-edit programs that use C sockets library functions, add the following statement as the first //
SYSLIB DD statement:

86 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

//SYSLIB DD DSN=SEZACMTX,DISP=SHR

Figure 46 on page 87 shows a sample JCL to be used when compiling non-reentrant modules. Modify
the lines to conform to the naming conventions of your site:

//COMPIT JOB ,COMPILE,MSGLEVEL=(1,1)
//**
//* *
//* SAMPLE JCL THAT COMPILES A TEST PROGRAM AS NORENT *
//* USING THE C/C++ COMPILER C/MVS IN NON-OE ENVIRONMENT *
//* INPUT : USER71.TEST.SRC(&INFILE) *
//* OUTPUT : USER71.TEST.OBJ(&OUTFILE) *
//* *
//**
//*
//CPPC PROC CREGSIZ='4M',
// INFILE=CTEST,
// OUTFILE=CTEST,
// CPARM1=NORENT,
// CPARM2='LIS,SO,EXP,OPT,DEF(MVS)',
// DCB80='(RECFM=FB,LRECL=80,BLKSIZE=3200)',
// DCB3200='(RECFM=FB,LRECL=3200,BLKSIZE=12800)',
// LIBPRFX1='CEEL.OSV2R7',
// LIBPRFX2='CEE.OSV2R7',
// COMPRFX='CBC.OSV2R7'
//*
//*--
//* COMPILE STEP:
//*--
//COMPILE EXEC PGM=CCNDRVR,PARM=('&CPARM1','&CPARM2'),
// REGION=&CREGSIZ
//STEPLIB DD DSNAME=&LIBPRFX1..SCEERUN,DISP=SHR
// DD DSNAME=&COMPRFX..SCBCCMP,DISP=SHR
//SYSMSGS DD DUMMY,DSNAME=&COMPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSIN DD DSNAME=USER71.TEST.SRC(&INFILE),DISP=SHR

// DD DSN=&LIBPRFX2..SCEEH.H,DISP=SHR
//SYSLIN DD DSNAME=USER16.TEST.OBJ(&OUTFILE),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB80
//SYSUT5 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT6 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT7 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT8 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT9 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//*
// PEND
// EXEC PROC=CPPC

Figure 46. Sample JCL for compiling non-reentrant modules

Figure 47 on page 88 shows a sample JCL to be used when linking non-reentrant modules. Modify the
lines to conform to the naming conventions of your site:

Chapter 10. C Socket application programming interface 87

//LINKIT JOB ,LINK,MSGLEVEL=(1,1)
//**
//* *
//* SAMPLE JCL THAT LINKS A NON_REENTRANT TEST PROGRAM *
//* USING THE C/C++ COMPILER C/MVS *
//* INPUT LIBRARY: USER71.TEST.OBJ(&MEM) *
//* OUTPUT LIBRARY: USER71.TEST.LMOD(&MEM) *
//* *
//**
//EDCL PROC USER=USER71
//TCPIP EXEC PGM=IEWL,
// PARM=',MAP,RMODE(ANY),SIZE=(320K,64K)'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=&USER..TEST.LMOD(&MEM),DISP=SHR
//SYSLIN DD DSN=&USER..TEST.OBJ(&MEM),DISP=SHR

// DD DSN=CEE.OSV2R7.SCEELKED,DISP=SHR
// PEND
// EXEC EDCL,MEM=CTEST

Figure 47. Sample JCL for linking non-reentrant modules

Figure 48 on page 88 shows JCL to be used when running non-reentrant modules. Modify the lines to
conform to the naming conventions of your site:

//RUNTST JOB ,RUN,MSGLEVEL=(1,1),CLASS=A,REGION=4096K
//**
//* *
//* SAMPLE JCL THAT RUNS A TEST PROGRAM, CTEST *
//* *
//**
//S1 EXEC PGM=CTEST
//STEPLIB DD DSN=CEEL.OSV2R7.SCEERUN,DISP=SHR
// DD DSN=USER71.TEST.LMOD,DISP=SHR
//SYSPRINT DD SYSOUT=*

Figure 48. Sample JCL for running non-reentrant modules

Note: For more information about compiling and linking, see z/OS XL C/C++ Compiler and Runtime
Migration Guide for the Application Programmer.

C socket API: Reentrant modules
The following lines describe the additions that you must make to the compile step of your cataloged
procedure to compile a reentrant module. Cataloged procedures are included in the IBM-supplied
samples for your MVS system.

Note: Compile all C source code using the def(MVS) preprocessor symbol.

Be sure to use the RENT compiler option if your code is reentrant.

• Add the following line as the first //SYSLIB DD statement:

//SYSLIB DD DSN=SEZACMAC,DISP=SHR

• Add the following //USERLIB DD statement:

//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

The following lines describe the additions that you must make to the prelink-edit and link-edit steps of
your cataloged procedure to create a reentrant module.

To prelink programs that use the C sockets library function, put the following statement first in the SYSLIB
concatenation:

//SYSLIB DD DSN=SEZARNT1,DISP=SHR

88 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Guideline: The system administrator should have followed the instructions for program reentrancy in the
z/OS XL C/C++ Programming Guide topic that contains information related to restrictions for using MVS
TCP/IP API with z/OS UNIX.

To link-edit programs that have the C sockets library function, the following statement must be first in the
SYSLIB concatenation:

//SYSLIB DD DSN=SEZACMTX,DISP=SHR

Notes:

1. If Language Environment libraries are concatenated ahead of SEZACMTX, socket errors can occur
because the link-edit uses the Language Environment z/OS UNIX socket library, not the TCP/IP library.

2. For more information about compiling and linking, see z/OS XL C/C++ Compiler and Runtime Migration
Guide for the Application Programmer.

Figure 49 on page 89 shows sample JCL to be used when compiling a test program with reentrancy.
Modify the lines to conform to the naming conventions of your site:

//**
//* *
//* SAMPLE JCL THAT COMPILES A TEST PROGRAM, CTEST, AS 'RENT', *
//* USING THE C/C++ COMPILER C/MVS *
//* *
//**
//*
//CPPC PROC CREGSIZ='4M',
// INFILE=CTEST,
// CPARM1=RENT,
// CPARM2='LIS,SO,EXP,OPT,DEF(MVS),SHOWINC',
// DCB80='(RECFM=FB,LRECL=80,BLKSIZE=3200)',
// DCB3200='(RECFM=FB,LRECL=3200,BLKSIZE=12800)',
// LIBPRFX1='CEEL.OSV2R7',
// LIBPRFX2='CEE.OSV2R7',
// COMPRFX='CBC.OSV2R7'
//*
//*--
//* COMPILE STEP:
//*--
//COMPILE EXEC PGM=CCNDRVR,PARM=(,
// '&CPARM1','&CPARM2'),REGION=&CREGSIZ
//STEPLIB DD DSNAME=&LIBPRFX1..SCEERUN,DISP=SHR
// DD DSNAME=&COMPRFX..SCBCCMP,DISP=SHR
//SYSMSGS DD DUMMY,DSNAME=&COMPRFX..SCBC3MSG(EDCMSGE),DISP=SHR
//SYSIN DD DSNAME=USER71.TEST.SRC(&INFILE),DISP=SHR

// DD DSN=&LIBPRFX2..SCEEH.H,DISP=SHR
//SYSLIN DD DSNAME=USER71.TEST.RENTDS,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB80
//SYSUT5 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT6 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT7 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT8 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT9 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//*
// PEND
// EXEC PROC=CPPC

Figure 49. Sample JCL for compiling reentrant modules

Figure 50 on page 90 shows sample JCL to be used when prelinking and linking a reentrant program
using the C socket library. Modify the lines to conform to the naming conventions of your site:

Chapter 10. C Socket application programming interface 89

//**
//*
//* PRE-LINK AND LINK FOR REENTRANCY WITH C/C++ COMPILER,
//* z/OS RUNTIME LIBRARY.
//* NOTES:
//* - SPECIFY 'RENT' ON LINK STEP
//* - RENTDS WAS PREVIOUSLY COMPILED WITH 'RENT'
//* - THE MEMBER @@DC370$ CAN BE USED TO BRING IN ALL C SOCKET
//* MEMBERS. THIS IS EASIER THAN SPECIFYING ALL THE INDIVIDUAL
//* MEMBER INCLUDES.
//* - TCP.SEZARNT1 IS THE REENTRANT C SOCKET LIBRARY.
//* IT IS USED ON THE PRE-LINK STEP.
//* - TCP.SEZACMTX IS THE GENERIC SOCKET LIBRARY.
//* IT IS USED ON THE LINK STEP TO RESOLVE OTHER C SOCKET
//* MODULES THAT DO NOT EXIST IN TCP.SEZARNT1.
//* - THE PRE-LINK REQUIRES THE 'UPCASE' PARM SO THAT THE
//* OTHER MODULES FROM SEZACMTX (WHICH ARE KNOWN BY
//* THEIR UPPERCASE NAMES) CAN BE FOUND.
//**
//*
//*---
//* MODIFY THE FOLLOWING LINES TO CONFORM TO THE
//* NAMING CONVENTIONS AT YOUR SITE.
//*---
//RENTTEST PROC MYHLQ='USER71.TEST',
// LIBPRFX1='CEE',
// LIBPRFX2='CEE'
//*---
//* PRE-LINKEDIT STEP:
//*---
//PLKED EXEC PGM=EDCPRLK,
// REGION=2048K,PARM='UPCASE'
//STEPLIB DD DSNAME=&LIBPRFX1..SCEERUN,DISP=SHR
//SYSMSGS DD DSNAME=&LIBPRFX2..SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DSN=TCP.SEZARNT1,DISP=SHR
//SYSMOD DD DSNAME=&&PLKSET,UNIT=SYSDA,DISP=(MOD,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//OBJLIB DD DSN=&MYHLQ..OBJ,DISP=SHR
//MYRENT DD DSN=&MYHLQ..RENTDS,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
//*---
//* LINKEDIT STEP:
//*---
//LKED EXEC PGM=IEWL,COND=(4,LT,PLKED),
// REGION=2048K,PARM='RENT,AMODE=31,MAP'
//SYSLIB DD DSN=TCP.SEZACMTX,DISP=SHR
// DD DSNAME=&LIBPRFX2..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=*.PLKED.SYSMOD,DISP=(OLD,DELETE)
//SYSLMOD DD DSNAME=&MYHLQ..LMOD(CTESTRNT),DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30))
// PEND
//S1 EXEC PROC=RENTTEST
//PLKED.SYSIN DD *
 INCLUDE MYRENT
 INCLUDE SYSLIB(@@DC370$)
/*

Figure 50. Sample JCL for prelinking and linking reentrant modules

Figure 51 on page 90 shows sample JCL to be used when running the reentrant program prelinked and
linked in the previous JCL sample. Modify the lines to conform to the naming conventions of your site:

//RUNTST JOB ,RUN,MSGLEVEL=(1,1),CLASS=A,REGION=4096K
//**
//* *
//* SAMPLE JCL THAT RUNS A TEST PROGRAM, CTESTRNT *
//* *
//**
//S1 EXEC PGM=CTESTRNT
//STEPLIB DD DSN=CEEL.OSV2R7.SCEERUN,DISP=SHR
// DD DSN=USER71.TEST.LMOD,DISP=SHR
//SYSPRINT DD SYSOUT=*

Figure 51. Sample JCL for running the reentrant program

90 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

C program compiler messages
z/OS Communications Server uses the C/C++/390 compiler. For C programs, migrating from AD/Cycle to
the C/C++/390 compiler can pose a few minor problems. See z/OS XL C/C++ Messages or z/OS XL C/C++
Compiler and Runtime Migration Guide for the Application Programmer for more information.

C program abends
A C program might compile and link correctly, but at run-time it might abend or behave peculiarly. The
following lists some reasons for unexpected behavior, and suggests some fixes.
Errno values

Code depends on specific errno values. This might be a problem, as errno values can change from
release to release. Take the following actions:

1. Check for any error conditions.
2. Make sure your logic has a default section that can be used if the specific errno has changed or is

no longer available.

Printing errno values: The tcpserror() function converts errno values to strings, which you can then
print using printf() or a similar command. This procedure is provided by IBM and included with z/OS
Communications Server, and is similar to the strerror() function in the standard C library.

Return values
Code depends on a specific return value. Some RTL functions, such as remove(), specify that the
return code be nonzero on failure. In earlier releases, checking for -1 was sufficient; with release
V1R4, the correct check is for nonzero.

Unfortunately, there is no checklist of functions that might generate this problem. If you get an abend,
work backwards from the failure and examine prior RTL function return-code checking.

Built-in RTL functions
If RTL functions were built-in during your compile, ensure that they perform the same way as the non-
built-in functions from the RTL.

Functions that might have this problem include abs, cds, cs, decabs, decchk, decfix, fabs, fortrc,
memchr, memcpy, memcmp, memset, strcat, strchr, strcmp, strcpy, strlen, strncat, strncmp, strncpy,
strrchr, and tsched.

SCEERUN missing
Ensure that SCEERUN is the first library in STEPLIB encountered by your compile procedure.

Uninitialized storage
Check for uninitialized storage. Storage for automatic variables is guaranteed to be garbage.

C socket implementation
The IBM socket implementation differs from the Berkeley socket implementation. The following list
summarizes the differences in the two methods:

• The IBM implementation does not support AF_INET6 sockets.
• Under IBM implementation, you must make reference to the additional header file, TCPERRNO.H, if you

want to refer to the networking errors other than those described in the compiler-supplied ERRNO.H
file.

• Under IBM implementation, you must use the tcperror() routine to print the networking errno messages.
tcperror() should be used only after socket calls, and perror() should be used only after C library calls.

• Under IBM implementation, you must include MANIFEST.H to remap the socket function long names to
eight-character names.

• The IBM ioctl() call implementation might differ from the current Berkeley ioctl() call implementation.
See “ioctl() ” on page 129 for a description of the functions supported by the IBM implementation.

Chapter 10. C Socket application programming interface 91

• The IBM getsockopt() and setsockopt() calls support only a subset of the options available. See
“getsockopt() ” on page 119 and “setsockopt() ” on page 152 for details about the supported options.

• The IBM fcntl() call supports only a subset of the options available. See “fcntl() ” on page 103 for details
about the supported commands.

• The IBM implementation supports an increased maximum number (2000) of simultaneous sockets
through the use of the maxdesc() call. (Only 1997 simultaneous sockets can be used, however.) The
default maximum number of sockets is 47, any or all of which can be AF_INET sockets.

Keep the following information in mind while creating your C socket application:

• Compile all C source using the def(MVS) preprocessor symbol.
• During debugging, set sock_do_teststor (1) to on to validate all storage addresses. After debugging, use

sock_do_teststor (0) set to off.
• If the TCPIP stack of your C application is restarted, your C application must also be restarted.

Otherwise, its socket calls will fail with an error value of EIBMINVTCPCONNECTION.

C socket header files
To use the socket routines described in this topic, you must have the following header files available to
your compiler. They can be found in the SEZACMAC data set.

• bsdtime.h
• bsdtocms.h
• bsdtypes.h
• fcntl.h
• if.h
• in.h
• inet.h
• ioctl.h
• manifest.h
• netdb.h
• rtrouteh.h
• socket.h
• tcperrno.h
• types.h
• uio.h

Note: The C socket header files have been enhanced to allow the user to specify the coded character set
to be used. When including the header files in an application, the bsdtypes.h file must precede the
socket.h file.

Manifest.h header file
Under IBM implementation, MANIFEST.H is used to remap socket function long names to eight-character
names. To refer to the names, you must include the following statement as the first #include at the
beginning of each program:

#include <manifest.h>

92 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Prototyping
Under TCP/IP z/OS Communications Server, the prototyping of C socket functions and their parameters is
the default. If you are migrating your applications, you can bypass the new prototyping by specifying
#define_TCP31_PROTOS during a C compile.

C structures
The parameter lists for some C language socket calls include a pointer to a data structure defined by a C
structure. Table 6 on page 93 shows the C structures used, and the corresponding assembler language
syntax.

Table 6. C structures in assembler language format

C structure Assembler language equivalent

struct sockaddr_in
{
 short sin_family;
 ushort sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

FAMILY DS H
PORT DS H
ADDR DS F
ZERO DC XL8'00'

struct timeval
{
 long tv_sec;
 long tv_usec;
};

TVSEC DS F
TVUSEC DS F

struct linger {
 int l_onoff;
 int l_linger;
};

ONOFF DS F
LINGER DS F

struct ifreq {
#define IFNAMSIZ 16
 char ifr_name[IFNAMSIZ];
 union {
 struct sockaddr ifru_addr;
 struct sockaddr ifru_dstaddr;
 struct sockaddr ifru_broadaddr;
 short ifru_flags;
 int ifru_metric;
 caddr_t ifru_data;
 } ifr_ifru;
};

NAME DS 0CL16
ADDR.FAMILY DS H
ADDR.PORT DS H
ADDR.ADDR DS F
ADDR.ZERO DC XL8'00'
 ORG ADDR.FAMILY
DST.FAMILY DS H
DST.PORT DS H
DST.ADDR DS F
DST.ZERO DC XL8'00'
 ORG ADDR.FAMILY
BRD.FAMILY DS H
BRD.PORT DS H
BRD.ADDR DS F
BRD.ZERO DC XL8'00'
 ORG ADDR.FAMILY
FLAGS DS H
 ORG ADDR.FAMILY
METRIC DS F

struct ifconf {
 int ifc_len;
 union {
 caddr_t ifcu_buf;
 struct ifreq *ifcu_req;
 } ifc_ifcu;
};

IFCLEN DS F
IGNORED DS F

Chapter 10. C Socket application programming interface 93

Table 6. C structures in assembler language format (continued)

C structure Assembler language equivalent

struct clientid {
 int domain;
 char name[8];
 char subtaskname[8];
 char reserved[20];
};

DOMAIN DS F
NAME DS CL8
SUBTASK DS CL8
RESERVED DC XL20'00'

C socket API error messages and return codes
For information about error messages, see z/OS Communications Server: IP Messages Volume 1 (EZA).

The most common return codes (ERRNOs) returned by TCP/IP are listed following each socket call.

For information about all return codes see Appendix B, “Socket call error return codes,” on page 745.

C socket calls
This topic lists the syntax, parameters, and other information appropriate to each C socket call supported
by TCP/IP.

accept()
The accept() call is used by a server to accept a connection request from a client. The call accepts the first
connection on its queue of pending connections. The accept() call creates a new socket descriptor with
the same properties as s and returns it to the caller. If the queue has no pending connection requests,
accept() blocks the caller unless s is in nonblocking mode. If no connection requests are queued and s is
in nonblocking mode, accept() returns -1 and sets errno to EWOULDBLOCK. The new socket descriptor
cannot be used to accept new connections. The original socket, s, remains available to accept additional
connection requests.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
int accept(int s, struct sockaddr *addr, int *addrlen)

Parameter
Description

s
The socket descriptor.

addr
The socket address of the connecting client that is filled by accept() before it returns. The format of
addr is determined by the domain in which the client resides. addr is specified by accept() only when
both addr and addrlen are nonzero values.

addrlen
Must initially point to an integer that contains the size in bytes of the storage pointed to by addr. If
addr is NULL, then addrlen is ignored and can be NULL.

The s parameter is a stream socket descriptor created using the socket() call. It is usually bound to an
address using the bind() call. The listen() call marks the socket as one that accepts connections and
allocates a queue to hold pending connection requests. The listen() call allows the caller to place an
upper boundary on the size of the queue.

The addr parameter points to a buffer into which the connection requester address is placed. The addr
parameter is optional and can be set to NULL. If addr or addrlen is null or 0, addr is not specified. The
exact format of addr depends on the addressing domain from which the communication request

94 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

originated. For example, if the connection request originated in the AF_INET domain, addr points to a
sockaddr_in structure as defined in the header file IN.H. The addrlen parameter is used only when name
is not NULL. Before calling accept(), you must set the integer pointed to by addrlen to the size of the
buffer, in bytes, pointed to by addr. If the buffer is not large enough to hold the address, only the addrlen
number of bytes of the requester address is copied.

Note: This call is used only with SOCK_STREAM sockets. There is no way to screen requesters without
calling accept(). The application cannot determine which system from which requesters connections will
be accepted. However, the caller can choose to close a connection immediately after discovering the
identity of the requester.

A socket can be checked for incoming connection requests using the select() call.

Return values
A nonnegative socket descriptor indicates success; the value -1 indicates an error. Errno identifies the
specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.
ENOBUFS

Indicates insufficient buffer space available to create the new socket.
EINVAL

The s parameter is not of type SOCK_STREAM.
EFAULT

Using addr and addrlen would result in an attempt to copy the address into a portion of the caller
address space to which information cannot be written.

EWOULDBLOCK
The socket descriptor s is in nonblocking mode, and no connections are in the queue.

Example

Following are two examples of the accept() call. In the first, the caller wants to have the requester’s
address returned. In the second, the caller does not want the requester address returned’s.

int clientsocket;
int s;
struct sockaddr clientaddress;
int addrlen;
int accept(int s, struct sockaddr *addr, int *addrlen);
/* socket(), bind(), and listen() have been called */
/* EXAMPLE 1: I want the address now */
addrlen = sizeof(clientaddress);
clientsocket = accept(s, &clientaddress, &addrlen)
/* EXAMPLE 2: I can get the address later using getpeername() */
addrlen = 0;
clientsocket = accept(s, (struct sockaddr *) 0, (int *) 0);

Related calls
bind(), connect(), getpeername(), listen(), socket()

bind()
The bind() call binds a unique local name to the socket using descriptors. After calling socket(), the
descriptor does not have a name associated with it. However, it does belong to a particular addressing
family, as specified when socket() is called. The exact format of a name depends on the addressing family.
The bind() call also allows servers to specify the network interfaces from which they want to receive UDP
packets and TCP connection requests.

Chapter 10. C Socket application programming interface 95

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
int bind(int s, struct sockaddr *name, int namelen)

Parameter
Description

s
Socket descriptor returned by a previous socket() call

name
Points to a sockaddr structure containing the name to be bound to s

namelen
Size of name in bytes, which specifies the length of the sockaddr structure.

The s parameter is a socket descriptor of any type created by calling socket().

The name parameter points to a buffer containing the name to be bound to s. The namelen parameter is
the size, in bytes, of the buffer pointed to by name.

Related information
Socket descriptor created in the AF_INET domain

If the socket descriptor s was created in the AF_INET domain, then the format of the name buffer is
expected to be sockaddr_in, as defined in the header file IN.H.

struct in_addr
{
 u_long s_addr;
};
struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The sin_family field must be set to AF_INET.

The sin_port field identifies the port to which the application must bind. It must be specified in network
byte order. If sin_port is set to 0, the caller expects the system to assign an available port. The application
can call getsockname() to discover the port number assigned.

The in_addr sin_addr field is set to the internet address and must be specified in network byte order. On
hosts with more than one network interface (called multihomed hosts), a caller can select the interface to
which it should bind. Subsequently, only UDP packets and TCP connection requests from this interface
(the one value matching the bound name) are routed to the application. If this field is set to the constant
INADDR_ANY, as defined in IN.H, the caller is requesting that the socket be bound to all network
interfaces on the host. Subsequently, UDP packets and TCP connections from all interfaces matching the
bound name are routed to the application. This becomes important when a server offers a service to
multiple networks. By leaving the address unspecified, the server can accept all UDP packets and TCP
connection requests made of its port, regardless of the network interface on which the requests arrived.

The sin_zero field is not used and should be set to all zeros.

Socket descriptor created in the AF_IUCV domain

If the socket descriptor s is created in the AF_IUCV domain, the format of the name buffer is expected to
be sockaddr_iucv, as defined in the header file SAIUCV.H.

struct sockaddr_iucv
{
 short siucv_family; /* addressing family */
 unsigned short siucv_port; /* port number */

96 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 unsigned long siucv_addr; /* address */
 unsigned char siucv_nodeid[8]; /* nodeid to connect to */
 unsigned char siucv_userid[8]; /* userid to connect to */
 unsigned char siucv_name[8]; /* iucvname for connect */
};

• The siucv_family field must be set to AF_IUCV.
• The siucv_port, siucv_addr, and siucv_nodeid fields are reserved for future use.
• The siucv_port and siucv_addr fields must be set to zero.
• The siucv_nodeid field must be set to exactly eight blank characters.
• The siucv_userid field is set to the MVS user ID of the application making the bind call. This field must be

eight characters long, padded with blanks to the right. It cannot contain the NULL character.
• The siucv_name field is set to the application name by which the socket is to be known. It must be

unique, because only one socket can be bound to a given name. The preferred form of the name
contains eight characters, padded with blanks to the right. The eight characters for a connect() call
executed by a client must exactly match the eight characters passed in the bind() call executed by the
server.

Note: Internally, dynamic names are built using hexadecimal character strings representing the internal
storage address of the socket. You should choose names that contain at least one non-hexadecimal
character to prevent potential conflict. Hexadecimal characters include 0–9, and a–f. Uppercase A–F are
considered non-hexadecimal and can be used by the user to build dynamic names.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EADDRINUSE

The address is already in use. See the SO_REUSEADDR option described under “getsockopt() ” on
page 119 and the SO_REUSEADDR option described under the “setsockopt() ” on page 152 for more
information. This Errno might also be returned if the port is configured as RESERVED on a port
reservation statement in the TCP/IP profile. For details, see TCP/IP profile (PROFILE.TCPIP) and
configuration statement information in the z/OS Communications Server: IP Configuration Reference.

EADDRNOTAVAIL
The address specified is not valid on this host. For example, the internet address does not specify a
valid network interface.

EAFNOSUPPORT
The address family is not supported (it is not AF_INET).

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
The name or namelen parameter specified an address outside of the caller address space.

EINVAL
The socket is already bound to an address. For example, an attempt to bind a name to a socket that is
in the connected state. This Errno might also be returned if an invalid parameter was passed on the
bind() invocation. Check the passed parameter values and ensure that they are specified as described
above.

Example

The following examples show the bind() call. The internet address and port must be in network byte order.
To put the port into network byte order, the htons() utility routine is called to convert a short integer from
host byte order to network byte order. The address field is set using another utility routine, inet_addr(),
which takes a character string representing the dotted decimal address of an interface and returns the
binary internet address representation in network byte order. Finally, it is a good idea to clear the

Chapter 10. C Socket application programming interface 97

structure before using it to ensure that the name requested does not set any reserved fields. See
“connect() ” on page 99 for examples how a client might connect to servers.

This example illustrates the bind() call binding to interfaces in the AF_INET domain.

int rc;
int s;
struct sockaddr_in myname;
struct sockaddr_iucv mymvsname;
int bind(int s, struct sockaddr *name, int namelen);
/* Bind to a specific interface in the internet domain */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr = inet_addr(“129.5.24.1”); /* specific interface */
myname.sin_port = htons(1024);
⋮
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));
/* Bind to all network interfaces in the internet domain */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = INADDR_ANY; /* specific interface */
myname.sin_port = htons(1024);
⋮
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));
/* Bind to a specific interface in the internet domain.
 Let the system choose a port */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr = inet_addr(“129.5.24.1”); /* specific interface */
myname.sin_port = 0;
⋮
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

This example illustrates the bind() call binding to interfaces in the AF_IUCV domain.

/* Bind to a name in the IUCV domain */
/* make sure the siucv_addr, siucv_port fields are zeroed and the
 siucv_nodeid fields is set to blanks */
memset(&mymvsname, 0, sizeof(mymvsname));
strncpy(mymvsname.siucv_nodeid, “ ”, 8);
strncpy(mymvsname.siucv_userid, “ ”, 8);
strncpy(mymvsname.siucv_name, “ ”, 8);
mymvsname.siucv_family = AF_IUCV;
strncpy(mymvsname.siucv_userid, “MVSUSER1”, 8);
strncpy(mymvsname.siucv_name, “APPL”, 4);
⋮
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

The binding of a stream socket is not complete until a successful call to bind(), listen(), or connect() is
made. Applications using stream sockets should check the return values of bind(), listen(), and connect()
before using any function that requires a bound stream socket.

Related calls
gethostbyname(), getsockname(), htons(), inet_addr(), listen(), socket()

close()
The close() call shuts down the socket associated with the socket descriptor s and frees resources
allocated to the socket. If s refers to an open TCP connection, the connection is closed. If a stream socket
is closed when there is input data queued, the TCP connection is reset, not cleanly closed.

If you specify 0 on SO_LINGER on the setsockopt() call, the data is canceled and the CLOSE is
immediately returned. If you do not specify a value for SO_LINGER on the setsockopt() call, the CLOSE
returns and TCP/IP tries to immediately resend the data.

98 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Note: Issue a shutdown() call before issuing a close() call for any socket.

#include <manifest.h>
#include <socket.h>
int close(int s)

Parameter
Description

s
Descriptor of the socket to be closed

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.

Related calls
accept(), getsockopt(), setsockopt(), socket()

connect()
For stream sockets, the connect() call attempts to establish a connection between two sockets. For UDP
sockets, the connect() call specifies the peer for a socket. The s parameter is the socket used to originate
the connection request. The connect() call performs two tasks when called for a stream socket. First, it
completes the binding necessary for a stream socket [in case it has not been previously bound using the
bind() call]. Second, it attempts to connect to another socket.

The connect() call on a stream socket is used by the client application to connect to a server. The server
must have a passive open pending. If the server is using sockets, this means the server must successfully
call bind() and listen() before a connection can be accepted by the server using accept(). Otherwise,
connect() returns -1 and errno is set to ECONNREFUSED.

If s is in blocking mode, the connect() call blocks the caller until the connection is set up, or until an error
is received. If the socket is in nonblocking mode, then connect() returns -1 with errno set to
EINPROGRESS if the connection can be initiated (no other errors occurred). The caller can test completion
of the connection setup by calling select() and testing ability to write to the socket.

When called for a datagram or raw socket, connect() specifies the peer with which this socket is
associated. This gives the application the ability to use data transfer calls reserved for sockets that are in
the connected state. In this case, read(), write(), readv(), writev(), send(), and recv() calls are available in
addition to sendto(), recvfrom(), sendmsg(), and recvmsg() calls. Stream sockets can call connect() only
once, but datagram sockets can call connect() multiple times to change their association. Datagram
sockets can dissolve their association by connecting to an incorrect address, such as a null address (all
fields cleared).

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
int connect(int s, struct sockaddr *name, int namelen)

Parameter
Description

s
Socket descriptor

Chapter 10. C Socket application programming interface 99

name
Points to a socket address structure containing the address of the socket to which connection will be
attempted

namelen
Size of the socket address, in bytes, pointed to by name

The name parameter points to a buffer containing the name of the peer to which the application needs to
connect. The namelen parameter is the size, in bytes, of the buffer pointed to by name.

Related information
Servers in the AF_INET domain

If the server is in the AF_INET domain, the format of the name buffer is expected to be sockaddr_in as
defined in the header file IN.H.

struct in_addr
{
 u_long s_addr;
};
struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The sin_family field must be set to AF_INET. The sin_port field identifies the port to which the server is
bound; it must be specified in network byte order. The sin_addr field specifies a 32–bit Internet address.
The sin_zero field is not used, and must be set to all zeros.

Servers in the AF_IUCV domain

If the server is in the AF_IUCV domain, the format of the name buffer is expected to be sockaddr_iucv as
defined in the header file SAIUCV.H.

struct sockaddr_iucv
{
 short siucv_family; /* addressing family */
 unsigned short siucv_port; /* port number */
 unsigned long siucv_addr; /* address */
 unsigned char siucv_nodeid[8]; /* nodeid to connect to */
 unsigned char siucv_userid[8]; /* userid to connect to */
 unsigned char siucv_name[8]; /* iucvname for connect */
};

The siucv_family field must be set to AF_IUCV.

Note: The siucv_port, siucv_addr, and siucv_nodeid fields are reserved for future use.

The siucv_port and siucv_addr fields must be set to 0. Set the siucv_nodeid field to exactly eight blank
characters. The siucv_userid field is set to the MVS user ID of the application to which the application is
requesting a connection. This field must be eight characters long, padded with blanks to the right. It
cannot contain the null character. The siucv_name field is set to the application name by which the server
socket is known. The name should exactly match the eight characters passed in the bind() call executed
by the server.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description

100 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EADDRINUSE
The address is already in use. See the SO_REUSEADDR option described under “getsockopt() ” on
page 119 and the SO_REUSEADDR option described under the “setsockopt() ” on page 152 for more
information. This Errno might also be returned if the port is configured as RESERVED on a port
reservation statement in the TCP/IP profile. For details, see TCP/IP profile (PROFILE.TCPIP) and
configuration statement information in the z/OS Communications Server: IP Configuration Reference.

EADDRNOTAVAIL
Calling host cannot reach the specified destination.

EAFNOSUPPORT
Address family is not supported.

EALREADY
Socket descriptor s is marked nonblocking, and a previous connection attempt is incomplete.

EBADF
The s parameter is not a valid socket descriptor.

ECONNREFUSED
The connection request was rejected by the destination host.

EFAULT
The name or namelen parameter specified an address outside of the caller address space.

EINPROGRESS
The socket descriptor s is marked nonblocking, and the connection cannot be completed immediately.
The EINPROGRESS value does not indicate an error.

EISCONN
Socket descriptor s is already connected.

ENETUNREACH
Network cannot be reached from this host.

ETIMEDOUT
Connection attempt timed out before the connection was made.

Example

Following is a connect() call example. The internet address and port must be in network byte order. To put
the port into network byte order, the htons() utility is called to convert a short integer from host byte order
to network byte order. The address field is set using another utility, inet_addr(), which takes a character
string representing the dotted decimal address of an interface and returns the binary internet address in
network byte order. Set the structure to 0 before using it to ensure that the name requested does not set
any reserved fields.

These examples could be used to connect to the servers shown in the examples listed with the call
“bind() ” on page 95.

int s;
struct sockaddr_in servername;
struct sockaddr_iucv mvsservername;
int rc;
int connect(int s, struct sockaddr *name, int namelen);
/* Connect to server bound to a specific interface in the internet domain */
/* make sure the sin_zero field is cleared */
memset(&servername, 0, sizeof(servername));
servername.sin_family = AF_INET;
servername.sin_addr = inet_addr(“129.5.24.1”); /* specific interface */
servername.sin_port = htons(1024);
⋮
rc = connect(s, (struct sockaddr *) &servername, sizeof(servername));
/* Connect to a server bound to a name in the IUCV domain */
/* make sure the siucv_addr, siucv_port, siucv_nodeid fields are cleared
*/
memset(&mvsservername, 0, sizeof(mvsservername));
mvsservername.siucv_family = AF_IUCV;
strncpy(mvsservername.siucv_nodeid, “ ”,8);
/* The field is 8 positions padded to the right with blanks */
strncpy(mvsservername.siucv_userid, “MVSUSER1 ”, 8);

Chapter 10. C Socket application programming interface 101

strncpy(mvsservername.siucv_name, “APPL ”, 8);
⋮
rc = connect(s, (struct sockaddr *) &mvsservername, sizeof(mvsservername));

Related calls
bind(), htons(), inet_addr(), listen(), select(), selectex(), socket()

endhostent()

When indicated by sethostent(), the endhostent() call frees the cached information for the local host
tables. The endhostent() call is available only where RESOLVE_VIA_LOOKUP is defined before
MANIFEST.H is included. See z/OS Communications Server: IP Configuration Guide for information about
using local host tables.

#include <manifest.h>
#include <socket.h>
void endhostent()

Parameters
None

Related calls
gethostbyname(), gethostent(), sethostent()

endnetent()

When indicated by setnetent(), the endnetent() call frees the cached information for the local host tables.
The endnetent() call is available only where RESOLVE_VIA_LOOKUP is defined before MANIFEST.H is
included. See z/OS Communications Server: IP Configuration Guide for information about using local host
tables.

#include <manifest.h>
#include <socket.h>
void endnetent()

Parameters
None

Related calls
getnetbyname(), getnetent(), setnetent()

endprotoent()

The endprotoent() call closes the hlq.ETC.PROTO data set.

The hlq.ETC.PROTO data set contains information about networking protocols IP, ICMP, TCP, and UDP.

#include <manifest.h>
#include <socket.h>
 void endprotoent()

102 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameters
None

Related calls
getprotoent(), setprotoent()

endservent()

The endservent() call closes the hlq.ETC.SERVICES data set.

The hlq.ETC.SERVICES data set contains information about the networking services running on the host.
Example services are domain name server, FTP, and Telnet.

#include <manifest.h>
#include <socket.h>
void endservent()

Parameters
None

Related calls
getservbyport(), getservent(), setservent()

fcntl()

The operating characteristics of sockets can be controlled with the fcntl() call.

Note: COMMAND values that are supported by the UNIX Systems Services fcntl() callable service are also
supported.

#include <manifest.h>
#include <socket.h>
#include <bsdtypes.h>
#include <fcntl.h>
int fcntl(int s, int cmd, int arg)

Parameter
Description

s
Socket descriptor

cmd
Command to perform

arg
Data associated with cmd

The operations to be controlled are determined by cmd. The arg parameter is a variable, the meaning of
which depends on the value of the cmd parameter. The following commands are valid fcntl() commands:
Command

Description
F_SETFL

Sets the status flags of socket descriptor s. (One flag, FNDELAY, can be set.)

Chapter 10. C Socket application programming interface 103

F_GETFL
Returns the status flags of socket descriptor s. (One flag, FNDELAY, can be queried.)

The FNDELAY flag marks s as being in nonblocking mode. If data is not present on calls that can block
[read(), readv(), and recv()] the call returns with -1, and errno is set to EWOULDBLOCK.

Note: This function does not reject other values that might be rejected downstream.

Return values
For the F_GETFL command, the return value is the flags, set as a bit mask. For the F_SETFL command, the
value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.
EINVAL

The arg parameter is not a valid flag, or the command is not a valid command.

Example

int s;
int rc;
int flags;
⋮
/* Place the socket into nonblocking mode */
rc = fcntl(s, F_SETFL, FNDELAY);
/* See if asynchronous notification is set */
flags = fcntl(s, F_GETFL, 0);
if (flags & FNDELAY)
 /* it is set */
else
 /* it is not */

Related calls
ioctl(), getsockopt(), setsockopt(), socket()

getclientid()
The getclientid() call returns the identifier by which the calling application is known to the TCP/IP address
space. The clientid is used in givesocket() and takesocket() calls.

#include <manifest.h>
#include <socket.h>
#include <bsdtypes.h>
int getclientid(int domain, struct clientid *clientid)

Parameter
Description

domain
The value in domain must be AF_INET.

clientid
Points to a clientid structure to be provided.

Return values
The value 0 indicates success. The value -1 indicates an error. Errno identifies the specific error.

104 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Errno
Description

EFAULT
The clientid parameter as specified would result in an attempt to access storage outside the caller
address space, or storage that cannot be modified by the caller.

EAFNOSUPPORT
The domain is not AF_INET.

Related calls
takesocket()

getdtablesize()

The TCPIP address space reserves a fixed-size table for each address space using sockets. The size of this
table equals the number of sockets an address space can allocate simultaneously. The getdtablesize() call
returns the maximum number of sockets that can fit in the table.

To increase the table size, use maxdesc(). After calling maxdesc(), always use getdtablesize() to verify the
change.

#include <manifest.h>
#include <socket.h>
int getdtablesize()

Parameters
None

Related calls
maxdesc()

gethostbyaddr()
The gethostbyaddr() call tries to resolve the IP address to a host name. The resolution attempted
depends on how the resolver is configured and if any local host tables exist. If the symbol
RESOLVE_VIA_LOOKUP is defined before including MANIFEST.H, gethostbyaddr() only uses local host
tables and name servers are not used. See z/OS Communications Server: IP Configuration Guide for
information about configuring the resolver and using local host tables.

#include <manifest.h>
#include <netdb.h>
struct hostent *gethostbyaddr(char *addr, int addrlen, int domain)

Parameter
Description

addr
Points to an unsigned long value containing the address of the host

addrlen
Size of addr in bytes

domain
Address domain supported (AF_INET)

The gethostbyaddr() call points to hostent structure for the host address specified on the call.

The NETDB.H header file defines the hostent structure, and contains the following elements:

Chapter 10. C Socket application programming interface 105

Element
Description

h_name
The address of the official name of the host

h_aliases
A pointer to a zero-terminated list of addresses pointing to alternate names for the host

h_addrtype
The type of host address returned; currently, always set to AF_INET

h_length
The length of the host address, in bytes

h_addr
A pointer to a zero-terminated list of addresses pointing to the internet host addresses returned by
the call

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a hostent
structure indicates success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is
returned, the value of errno is indeterminate: the output from a tcperror() call cannot be validated. The
global variable h_errno identifies the specific error.
h_errno

Description
HOST_NOT_FOUND

The name specified is unknown, the address domain specified is not supported, or the address length
specified is not valid.

TRY_AGAIN
Temporary error; information not currently accessible.

NO_RECOVERY
Fatal error occurred.

Related calls
gethostent(), sethostent(), endhostent()

gethostbyname()
The gethostbyname() call tries to resolve the host address to an IP address. The resolution attempted
depends on how the resolver is configured and if any local host tables exist. If the symbol
RESOLVE_VIA_LOOKUP is defined before including MANIFEST.H, gethostbyname() only uses local host
tables and name servers are not used. See z/OS Communications Server: IP Configuration Guide for
information about configuring the resolver and using local host tables.

#include <manifest.h>
#include <netdb.h>
struct hostent *gethostbyname(char *name)

Parameter
Description

name
The name of the host being queried. Any trailing blanks will be removed from the specified name prior
to trying to resolve it to an IP address. The maximum host name length is 255 characters.

The gethostbyname() call returns a pointer to a hostent structure for the host name specified on the call.

The NETDB.H header file defines the hostent structure and contains the following elements:

106 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Element
Description

h_name
The address of the official name of the host

h_aliases
A pointer to a zero-terminated list of addresses pointing to alternate names for the host

h_addrtype
The type of host address returned; currently, set to AF_INET

h_length
The length of the host address in bytes

h_addr
A pointer to the network address of the host

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a hostent
structure indicates success. A NULL pointer indicates an error or EOF. When a NULL pointer or 0 is
returned, the value of errno is indeterminate, and, therefore, the output from a tcperror() call is also not
valid. Global variable h_errno identifies the specific error.
h_errno Value

Description
HOST_NOT_FOUND

The name specified is unknown.
TRY_AGAIN

Temporary error; information not currently accessible.
NO_RECOVERY

Fatal error occurred.

Related calls
gethostent(), sethostent(), endhostent()

gethostent()

The gethostent() call returns the next line in the local host table for a host name and points to the next
host entry in the local host table. The gethostent() call also returns any aliases. The gethostent() call is
available only when RESOLVE_VIA_LOOKUP is defined before MANIFEST.H is included. See z/OS
Communications Server: IP Configuration Guide for information about using local host tables.

#include <manifest.h>
#include <netdb.h>
struct hostent *gethostent()

The NETDB.H header file defines the hostent structure and contains the following elements:
Element

Description
h_name

The address of the official name of the host
h_aliases

A pointer to a zero-terminated list of addresses pointing to alternate names for the host
h_addrtype

The type of host address returned; currently set to AF_INET

Chapter 10. C Socket application programming interface 107

h_length
The length of the host address, in bytes

h_addr
A pointer to the network address of the host

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a hostent
structure indicates success. A NULL pointer indicates an error or EOF. When a NULL pointer or 0 is
returned, the value of errno is indeterminate, and, therefore, the output from a tcperror() call is also not
valid.

Related calls
gethostbyname(), sethostent()

gethostid()

The gethostid() call returns the 32-bit identifier unique to the current host. This value is the default home
internet address.

This call can be used only in the AF_INET domain.

#include <manifest.h>
#include <socket.h>
unsigned long gethostid()

Return values
The gethostid() call returns the 32-bit identifier of the current host, which should be unique across all
hosts. When a NULL pointer or 0 is returned, the value of errno is indeterminate, and, therefore, the
output from a tcperror() call is also not valid.

Related calls
gethostname()

gethostname()

The gethostname() call returns the name of the host processor on which the program is running.
Characters to the limit of namelen are copied into the name array. The value returned for host name is
limited to 24 characters. The returned name is NULL-terminated unless truncated to the size of the name
array.

Note: The host name returned is the host name the TCPIP stack learned at startup from the TCPIP.DATA
file that was found.

This call can be used only in the AF_INET domain.

Errno EINVAL is returned when namelen is 0, or greater than 255 characters.

#include <manifest.h>
#include <socket.h>
int gethostname(char *name, int namelen)

Parameter
Description

108 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

name
Character array to be filled with the host name

namelen
Length of name; restricted to 255 characters

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EFAULT

The name parameter specified an address outside the caller address space.

Related calls
gethostbyname(), gethostid()

getibmopt()

The getibmopt() call returns the number of TCP/IP images installed on a given MVS system, and their
status, version, and name.

Note: Images from pre-V3R2 releases of TCP/IP for MVS are excluded. The getibmopt() call is not
meaningful to pre-V3R2 releases.

Using this information, the caller can dynamically choose the TCP/IP image with which to connect through
the setibmopt() call. The getibmopt() call is optional. If it is not used, determine the connecting TCP/IP
image as follows:

• Connect to the TCP/IP specified TCPIPJOBNAME in the active TCPIP.DATA file.
• Locate TCPIP.DATA using the search order described in the z/OS Communications Server: IP
Configuration Reference.

#include <manifest.h>
#include <socket.h>
int getibmopt(int cmd, struct ibm_gettcpinfo *buf)
struct ibm_tcpimage {
 unsigned short status;
 unsigned short version;
 char name[8];
}
struct ibm_gettcpinfo {
 int tcpcnt;
 struct ibm_tcpimage image[8];
}

Parameter
Description

cmd
The command to perform. For TCP/IP V3R2 for MVS, IBMTCP_IMAGE is supported.

buf
Points to the structure that the call specifies.

The buf parameter is a pointer to the (struct ibm_gettcpinfo) buffer into which the TCP/IP image status,
version, and name are placed.

On successful return, the struct ibm_tcpimage buffer contains the status, version, and name of up to eight
active TCP/IP images.

The status field can contain the following information:

Chapter 10. C Socket application programming interface 109

Status Field
Meaning

X'8xxx'
Active

X'4xxx'
Terminating

X'2xxx'
Down

X'1xxx'
Stopped or stopping

Note: In the above status fields, xxx is reserved for IBM use and can contain any value.

When this field returns with a combination of Down and Stopped, TCP/IP was abended. Value stopped,
when returned alone, indicates that TCP/IP has been stopped only.

The version field for z/OS V1R7 is X'0617'.

The TCP/IP character name field is the PROC name, left-justified, and padded with blanks.

The tcpcnt field of struct ibm_gettcpinfo is a count field into which the TCP/IP image count is placed. The
caller uses this value to determine how many entries in the ibm_tcpimage structure of buf have been
filled. If the tcpcnt returned is 0, there are no TCP/IP images present.

Return values
Zero indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EOPNOTSUPP

This is returned for command that is not valid.
EFAULT

The name parameter specified an address outside of the caller address space.

getibmsockopt()

Like getsockopt() call, the getibmsockopt() call gets the options associated with a socket in the AF_INET
domain. This call is for options specific to the IBM implementation of sockets. Currently, only the
SOL_SOCKET level is supported.

This call can be used only in the AF_INET domain.

#include <manifest.h>
#include <socket.h>
int getibmsockopt(int s, int level, int optname, char *optval, int *optlen)

Parameter
Description

s
The socket descriptor

level
The level for which the option is set

optname
The name of a specified socket option

optval
Points to option data

110 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

optlen
Points to the length of the option data

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.
EFAULT

Using optval and optlen parameters would result in an attempt to access storage outside the caller
address space.

EINVAL
This is returned when optlen points to a length of 0.

Example

#include <manifest.h>
#include <socket.h>
#include <tcperror.h>
 { struct ibm_bulkmode_struct bulkstr;
 int optlen, rc;
 optlen = sizeof(bulkstr);
 rc = getibmsockopt(s, SOL_SOCKET, (char *), &bulkstr, &optlen);
 if (rc < 0)
 { tcperror("on getibmsockopt()");
 exit(1);
 }
 fprintf(stream,"%d byte buffer available for outbound queue.\n",
 bulkstr.b_max_send_queue_size_avail);
 }

Related calls
ibmsflush(), setibmsockopt(), getsockopt()

getnetbyaddr()

The getnetbyaddr() call searches the local host tables for the specified network address. This call can be
used only in the AF_INET domain. See z/OS Communications Server: IP Configuration Guide for
information about using local host tables.

#include <manifest.h>
#include <bsdtypes.h>
#include <netdb.h>
struct netent *getnetbyaddr(unsigned long net, int type)

Parameter
Description

net
The network address

type
The address domain supported (AF_INET)

The netent structure is defined in the NETDB.H header file and contains the following elements:

Chapter 10. C Socket application programming interface 111

Element
Description

n_name
The official name of the network.

n_aliases
An array, terminated with a NULL pointer, of alternative names for the network.

n_addrtype
The type of network address returned. The call always sets this value to AF_INET.

n_net
The network number, returned in host byte order.

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a netent
structure indicates success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is
returned, the value of errno is indeterminate, and therefore, the output from a tcperror() call cannot be
validated.

Related calls
endnetent(), getnetbyname(), getnetent(), setnetent(), endhostent()

getnetbyname()

The getnetbyname() call searches the local host tables for the specified network name. This call can be
used only in the AF_INET domain. See z/OS Communications Server: IP Configuration Guide for
information about using local host tables.

#include <manifest.h>
#include <netdb.h>
struct netent *getnetbyname(char *name)

Parameter
Description

name
Points to a network name.

The getnetbyname() call returns a pointer to a netent structure for the network name specified on the call.

The netent structure is defined in the NETDB.H header file and contains the following elements:
Element

Description
n_name

The official name of the network.
n_aliases

An array, terminated with a NULL pointer, of alternative names for the network.
n_addrtype

The type of network address returned. The call always sets this value to AF_INET.
n_net

The network number, returned in host byte order.

112 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a netent
structure indicates success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is
returned, the value of errno is indeterminate, and therefore, the output from a tcperror() call cannot be
validated.

Related calls
endnetent(), getnetbyaddr(), getnetent(), setnetent(), endhostent()

getnetent()

The getnetent() call returns the next line in the local host table for a network name and points to the next
network entry in the local host table. The getnetent() call also returns any aliases. The getnetent() call is
available only when RESOLVE_VIA_LOOKUP is defined before MANIFEST.H is included. See z/OS
Communications Server: IP Configuration Guide for information about using local host tables.

#include <manifest.h>
#include <netdb.h>
struct netent *getnetent()

The netent structure is defined in the NETDB.H header file and contains the following elements:
Element

Description
n_name

The official name of the network.
n_aliases

An array, terminated with a NULL pointer, of alternative names for the network.
n_addrtype

The type of network address returned. The call always sets this value to AF_INET.
n_net

The network number, returned in host byte order.

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a netent
structure indicates success. A NULL pointer indicates an error or end-of-file.

Related calls
endnetent(), getnetbyaddr(), getnetbyname(), setnetent(), endhostent()

getpeername()

The getpeername() call returns the name of the peer connected to socket descriptor s. For AF_IUCV,
namelen must be initialized to reflect the size of the space pointed to by name; it is set to the number of
bytes copied into the space before the call returns. For AF_INET, the input value in the contents of
namelen is ignored, but is set before the call returns. The size of the peer name is returned in bytes. If the
buffer of the local host is too small to receive the entire peer name, the name is truncated.

#include <manifest.h>
#include <bsdtypes.h>

Chapter 10. C Socket application programming interface 113

#include <socket.h>
int getpeername(int s, struct sockaddr *name, int *namelen)

Parameter
Description

s
The socket descriptor.

name
Points to a structure containing the internet address of the connected socket that is specified by
getpeername() before it returns. The exact format of name is determined by the domain in which
communication occurs.

namelen
Points to a fullword containing the size of the address structure pointed to by name in bytes.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.
EFAULT

Using the name and namelen parameters as specified would result in an attempt to access storage
outside of the caller address space.

ENOTCONN
The socket is not in the connected state.

Related calls
accept(), connect(), getsockname(), socket()

getprotobyname()

The getprotobyname() call searches the hlq.ETC.PROTO data set for the specified protocol name.

The getprotobyname() call returns a pointer to a protoent structure for the network protocol specified on
the call.

#include <manifest.h>
#include <netdb.h>
struct protoent *getprotobyname(char *name)

Parameter
Description

name
Points to the specified protocol.

The protoent structure is defined in the NETDB.H header file and contains the following elements:
Element

Description
p_name

The official name of the protocol
p_aliases

An array, terminated with a NULL pointer, of alternative names for the protocol

114 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

p_proto
The protocol number

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a protoent
structure indicates success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is
returned, the value of errno is indeterminate, and therefore, the output from a tcperror() call cannot be
validated.

Related calls
endprotoent(), getprotobynumber(), getprotoent(), setprotoent()

getprotobynumber()

The getprotobynumber() call searches the hlq.ETC.PROTO data set for the specified protocol number.

The getprotobynumber() call returns a pointer to a protoent structure for the network protocol specified
on the call.

#include <manifest.h>
#include <netdb.h>
struct protoent *getprotobynumber(int proto)

Parameter
Description

proto
Protocol number

The protoent structure is defined in the NETDB.H header file and contains the following elements:
Element

Description
p_name

The official name of the protocol
p_aliases

An array, terminated with a NULL pointer, of alternative names for the protocol
p_proto

The protocol number

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a protoent
structure indicates success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is
returned, the value of errno is indeterminate, and therefore, the output from a tcperror() call cannot be
validated.

Related calls
endprotoent(), getprotobyname(), getprotoent(), setprotoent()

getprotoent()

Chapter 10. C Socket application programming interface 115

The getprotoent() call reads the hlq.ETC.PROTO data set, and the getprotoent() call returns a pointer to
the next entry in the hlq.ETC.PROTO data set.

#include <manifest.h>
#include <netdb.h>
struct protoent *getprotoent()

The protoent structure is defined in the NETDB.H header file and contains the following elements:
Element

Description
p_name

The official name of the protocol
p_aliases

An array, terminated with a NULL pointer, of alternative names for the protocol
p_proto

The protocol number

Return values
The return value points to static data that is overwritten by subsequent calls. A pointer to a protoent
structure indicates success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is
returned, the value of errno is indeterminate, and therefore, the output from a tcperror() call cannot be
validated.

Related calls
endprotoent(), getprotobyname(), getprotobynumber(), setprotoent()

getservbyname()

The getservbyname() call searches the hlq.ETC.SERVICES data set for the specified service name. Service
name searches must match the protocol, if a protocol is stated.

The getservbyname() call returns a pointer to a servent structure for the network service specified on the
call.

#include <manifest.h>
#include <netdb.h>
struct servent *getservbyname(char *name, char *proto)

Parameter
Description

name
Points to the specified service name

proto
Points to the specified protocol

The servent structure is defined in the NETDB.H header file and contains the following elements:
Element

Description
s_name

The official name of the service
s_aliases

An array, terminated with a NULL pointer, of alternative names for the service
s_port

The port number of the service

116 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

s_proto
The protocol required to contact the service

Return values
The return value points to static data that is overwritten by subsequent calls. Points to a servent structure
indicates success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is returned,
the value of errno is indeterminate, and therefore, the output from a tcperror() call cannot be validated.

Related calls
endservant(), getservbyport(), getservent(), setservent()

getservbyport()

The getservbyport() call searches the hlq.ETC.SERVICES data set for the specified port number. Searches
for a port number must match the protocol, if a protocol is stated.

The getservbyport() call returns a pointer to a servent structure for the port number specified on the call.

#include <manifest.h>
#include <netdb.h>
struct servent *getservbyport(int port, char *proto)

Parameter
Description

port
Port number

proto
Points to the specified protocol

The servent structure is defined in the NETDB.H header file and contains the following elements:
Element

Description
s_name

The official name of the service
s_aliases

An array, terminated with a NULL pointer, of alternative names for the service
s_port

The port number of the service
s_proto

The protocol required to contact the service

Return values
The return value points to static data that is overwritten by subsequent calls. Points to a servent structure
indicates success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is returned,
the value of errno is indeterminate, and therefore, the output from a tcperror() call cannot be validated.

Related calls
endservant(), getservbyname(), getservent(), setservent()

getservent()

Chapter 10. C Socket application programming interface 117

The getservent() call reads the next line of the hlq.ETC.SERVICES data set and returns a pointer to the
next entry in the hlq.ETC.SERVICES data set.

#include <manifest.h>
#include <netdb.h>
struct servent *getservent()

The servent structure is defined in the NETDB.H header file and contains the following elements:
Element

Description
s_name

The official name of the service
s_aliases

An array, terminated with a NULL pointer, of alternative names for the service
s_port

The port number of the service
s_proto

The required protocol to contact the service

Return values
The return value points to static data that is overwritten by subsequent calls. Points to a servent structure
indicate success. A NULL pointer indicates an error or end-of-file. When a NULL pointer or 0 is returned,
the value of errno is indeterminate, and therefore, the output from a tcperror() call cannot be validated.

Related calls
endservant(), getservbyname(), getservbyport(), setservent()

getsockname()

The getsockname() call stores the current name for the socket specified by the s parameter into the
structure pointed to by the name parameter. It returns the address to the socket that has been bound. If
the socket is not bound to an address, the call returns with the family set and sets the rest of the structure
to 0. For example, an inbound socket in the internet domain would cause the name to point to a
sockaddr_in structure with the sin_family field set to AF_INET, and all other fields cleared.

Stream sockets are not assigned a name until a call is successful: bind(), connect(), or accept().

The getsockname() call is often used to discover the port assigned to a socket after the socket has been
implicitly bound to a port. For example, an application can call connect() without previously calling bind().
In this case, the connect() call completes the binding necessary by assigning a port to the socket. This
assignment can be detected using a call to getsockname().

For AF_IUCV, namelen must be initialized to indicate the size of the space pointed to by name, and is set
to the number of bytes copied into the space before the call returns. For AF_INET, the input value in the
contents of namelen is ignored, but set before the call returns.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
int getsockname(int s, struct sockaddr *name, int *namelen)

Parameter
Description

s
The socket descriptor.

118 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

name
The address of the buffer into which getsockname() copies the name of s.

namelen
Points to a fullword containing the size of the address structure pointed to by name in bytes.

Return values
A value of 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno Value

Description
EBADF

The s parameter is not a valid socket descriptor.
EFAULT

Using the name and namelen parameters as specified would result in an attempt to access storage
outside of the caller address space.

Related calls
accept(), bind(), connect(), getpeername(), socket()

getsockopt()

The getsockopt() call gets options associated with a socket. It can be called only for sockets in the
AF_INET domain. This call is not supported in the AF_IUCV domain. While options can exist at multiple
protocol levels, they are always present at the highest socket level.

When manipulating socket options, you must specify the level at which the option resides and the name
of that option. To manipulate options at the socket level, the level parameter must be set to SOL_SOCKET
as defined in SOCKET.H. To manipulate options at the TCP level, the level parameter must be set to
IPPROTO_TCP as defined in SOCKET.H. To manipulate options at any other level, such as the IP level,
supply the appropriate protocol number for the protocol controlling the option. Currently, the
SOL_SOCKET, IPPROTO_TCP, and IPPROTO_IP levels are supported. The getprotobyname() call can be
used to return the protocol number for a named protocol.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int getsockopt(int s, int level, int optname, char *optval, int *optlen

Parameter
Description

s
The socket descriptor.

level
The level to which the option is set.

optname
The name of a specified socket option. See Appendix D, “GETSOCKOPT/SETSOCKOPT command
values,” on page 769 for the numeric values of optname.

optval
Points to option data.

optlen
Points to the length of the option data.

The optval and optlen parameters are used to return data used by the particular get command. The optval
parameter points to a buffer that is to receive the data requested by the get command. The optlen

Chapter 10. C Socket application programming interface 119

parameter points to the size of the buffer pointed to by the optval parameter. Initially, this size must be
set to the size of that buffer before calling getsockopt(). On return it is set to the size of the data actually
returned.

All of the socket level options except SO_LINGER expect optval to point to an integer and optlen to be set
to the size of an integer. When the integer is nonzero, the option is enabled. When it is 0, the option is
disabled. The SO_LINGER option expects optval to point to a linger structure as defined in SOCKET.H. This
structure is defined in the following example:

#include <manifest.h>
struct linger
{
 int l_onoff; /* option on/off */
 int l_linger; /* linger time */
};

The l_onoff field is set to 0 if the SO_LINGER option is being disabled. A nonzero value enables the option.
The l_linger field specifies the amount of time to linger on close.

The following option is recognized at the TCP level (IPPROTO_TCP):
Option

Description
TCP_NODELAY

Returns the status of Nagle algorithm (RFC 896). This option is not supported for AF_IUCV sockets.

When optval is 0, Nagle algorithm is enabled and TCP will wait to send small packets of data until the
acknowledgment for the previous data is received.

When optval is nonzero, Nagle algorithm is disabled and TCP will send small packets of data even
before the acknowledgment for previous data sent is received.

The following options are recognized at the socket level (SOL_SOCKET):
Option

Description
SO_ACCEPTCONN

Indicates whether listen() was called for a stream socket.
SO_BROADCAST

Toggles the ability to broadcast messages. The default is disabled. When this option is enabled, it
allows the application to send broadcast messages over s when the interface specified in the
destination supports the broadcasting of packets. This option has no meaning for stream sockets.

SO_CLUSTERCONNTYPE
Returns a bit mapped 32–bit value. One or more than one of the following values will be returned:

• No Conn means that the socket is not connected.
• None means that the socket is active, but the partner is not in the same cluster. If this indicator is

set, the other 3 indicators are 0.
• Same cluster means that the connection partners are in the same cluster.
• Same image means that the connection partners are in the same MVS image.

SO_CLUSTERCONNTYPE_SAME_CLUSTER will also be set. If the connection partner is a distributed
DVIPA, the same image bit will not be on since the exact hosting stack is not known.

• Internal means that communication from this node to the stack hosting the partner application is
not sent on links/interfaces exposed outside the cluster (sysplex). To determine if both ends of the
connection flow over internal links/interfaces, the partner application must also issue this
getsockopt() and both ends exchange their results from this socket call (through an application-
dependent method).

Note: If the destination IP address for a connection (partner's IP address) is a dynamic VIPA or
distributed dynamic VIPA residing in the cluster, the internal indicator will not be on because traffic

120 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

for these connections can be forwarded to the target TCP/IP stacks over links or interfaces that are
external to the cluster.

An internal indicator means that for this side of the connection, the link/interface type is one of the
following types:

– CTC
– HiperSockets (iQDIO)
– MPCPTP (including XCF and IUTSAMEH connections)
– OSA-Express QDIO with CHPID type OSX or OSM
– Loopback
– Or both partners are owned by the same multi-homed stack

On return, one or more of the following bits are set:

00000000 00000000 00000000 00000001'-SO_CLUSTERCONNTYPE_NONE
00000000 00000000 00000000 00000010'-SO_CLUSTERCONNTYPE_SAME_CLUSTER
00000000 00000000 00000000 00000100'-SO_CLUSTERCONNTYPE_SAME_IMAGE
00000000 00000000 00000000 00001000'-SO_CLUSTERCONNTYPE_INTERNAL
00000000 00000000 00000000 00000000'-SO_CLUSTERCONNTYPE_NOCONN

Note: A value of all zeros means that there is no active connection on the socket. This is usually the
case for a listening socket. This is also true for a client socket before the client issues connect(). The
caller should first check for a returned value of SO_CLUSTERCONNTYPE_NOCONN before checking for
any of the other returned indicators.

If getsockopt() (SO_CLUSTERCONNTYPE) is issued before the connection has been established, it
results in a return value of 0.

If the application issues getsockopt() (SO_CLUSTERCONNTYPE) on a connected socket, and has
received an indication of SO_CLUSTERCONNTYPE_INTERNAL, any subsequent rerouting decisions
because of current route failure will either select an alternate route, which is also
SO_CLUSTERCONNTYPE_INTERNAL, or fail the connection with no route available indications. This
means that when an application has received an indication of SO_CLUSTERCONNTYPE_INTERNAL on
a connection, any subsequent rerouting preserves that indication on the new route, or will fail the
connection. This ensures that a connection that an application relies on as being internal does not
transparently become non-internal because of a routing change.

If the application never issues the new getsockopt() or if the connection was previously reported as
not SO_CLUSTERCONNTYPE_INTERNAL, rerouting decisions are made as at present, and the
rerouting is transparent to the application as long as any alternate route exists.

SO_DEBUG
The sock_debug() call provides the socket library tracing facility. The onoff parameter can have a value
of 0 or nonzero. When onoff=0 (the default), no socket library tracing is done; when onoff=nonzero, the
system traces for socket library calls and interrupts.

SO_ERROR
Returns any error pending on the socket and clears the error status. It can be used to check for
asynchronous errors on connected datagram sockets and for other asynchronous errors (errors
returned explicitly by one of the socket calls).

SO_KEEPALIVE
Toggles the TCP keep alive mechanism for a stream socket. The default is disabled. When activated,
the keep alive mechanism periodically sends a packet along an otherwise idle connection. If the
remote TCP does not respond to the packet or to retransmissions of the packet, the connection is
terminated with the error ETIMEDOUT.

SO_LINGER
Lingers on close if data is present. The default is disabled. When this option is enabled and there is
unsent data present when close() is called, the calling application is blocked during the close() call
until the data is transmitted, or the connection has timed out. If this option is disabled, the close() call
returns without blocking the caller and the TCP/IP address space still waits before trying to send the

Chapter 10. C Socket application programming interface 121

data. Although the data transfer is usually successful, it cannot be guaranteed, because the TCP/IP
address space waits only a finite amount of time while trying to send the data. This option has
meaning only for stream sockets.

SO_OOBINLINE
Toggles reception of out-of-band data. The default is disabled. When this option is enabled, it causes
out-of-band data to be placed in the normal data input queue as it is received, making it available to
recv(), recvfrom(), and recvmsg() without specifying the MSG_OOB flag in those calls. When this
option is disabled, it causes out-of-band data to be placed in the priority data input queue as it is
received, making it available to recv(), recvfrom(), and recvmsg() only by specifying the MSG_OOB flag
in those calls. This option has meaning only for stream sockets.

SO_RCVBUF
Returns the size of the data portion of the TCP/IP send buffer in optval. The size of the data portion of
the receive buffer is protocol-specific.

SO_REUSEADDR
Toggles local address reuse. The default is disabled. This alters the normal algorithm used in the
bind() call.

The normal bind() call algorithm allows each internet address and port combination to be bound only
once. If the address and port have been bound already, a subsequent bind() will fail and return error
EADDRINUSE.

After the SO_REUSEADDR option is active, the following situations are supported:

• A server can bind() the same port multiple times as long as every invocation uses a different local IP
address, and the wildcard address INADDR_ANY is used only one time per port.

• A server with active client connections can be restarted and can bind to its port without having to
close all of the client connections.

• For datagram sockets, multicasting is supported so multiple bind() calls can be made to the same
class D address and port number.

SO_SNDBUF
Returns the size of the data portion of the TCP/IP send buffer in optval. The size of the data portion of
the send buffer is protocol-specific.

SO_TYPE
Returns the type of the socket. On return, the integer pointed to by optval is set to SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW.

The following options are recognized at the IP level (IPPROTO_IP):
Option

Description
IP_MULTICAST_TTL

Gets the IP time to live of outgoing multicast datagrams. The default value is 1 (multicast is available
only to the local subnet).

IP_MULTICAST_LOOP
Used to determine whether outgoing multicast datagrams are looped back.

IP_MULTICAST_IF
Gets the interface for sending outbound multicast datagrams from the socket application.

Note: Multicast datagrams can be transmitted only on one interface at a time.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description

122 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using optval and optlen parameters would result in an attempt to access storage outside the caller
address space.

EINVAL
The optname parameter is unrecognized, or the level parameter is not SOL_SOCKET.

Example

The following examples show the getsockopt() call. See “setsockopt() ” on page 152 to see how the
setsockopt() call options are set.

Example 1

#include <manifest.h>

int rc;
int s;
int optval;
int optlen;
struct linger l;
int getsockopt(int s, int level, int optname, char *optval, int *optlen);

⋮
/* Is out of band data in the normal input queue? */
optlen = sizeof(int);
rc = getsockopt(
 s, SOL_SOCKET, SO_OOBINLINE, (char *) &optval, &optlen);
if (rc == 0)
{
 if (optlen == sizeof(int))
 {
 if (optval)
 /* yes it is in the normalqueue */
 else
 /* no it is not */
 }
}

⋮

Example 2

/* Do I linger on close? */
optlen = sizeof(l);
rc = getsockopt(
 s, SOL_SOCKET, SO_LINGER, (char *) &l, &optlen);
if (rc == 0)
{
 if (optlen == sizeof(l))
 {
 if (l.l_onoff)
 /* yes I linger */
 else
 /* no I do not */
 }
}

Related calls
bind(), close(), getprotobyname(), setsockopt(), socket()

givesocket()

Chapter 10. C Socket application programming interface 123

The givesocket() call tells TCP/IP to make the specified socket available to a takesocket() call issued by
another program. Any connected stream socket can be given. Typically, givesocket() is used by a master
program that obtains sockets by means of accept() and gives them to secondary programs that handle
one socket at a time.

This call can be used only in the AF_INET domain.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int givesocket(int d, struct clientid *clientid)

Parameter
Description

d
The descriptor of a socket to be given to another application.

clientid
Points to a client ID structure specifying the target program to which the socket is to be given.

To pass a socket, the master program first calls givesocket() with the client ID structure that is specified
as follows:
Field

Description
domain

This call is supported only in the AF_INET domain.
name

The slave program address space name, left-justified and padded with blanks. The slave program can
run in the same address space as the master program, in which case this field is set to the master
program address space. If this field is set to blanks, any MVS address space can take the socket.

subtaskname
Specifies blanks.

reserved
Specifies binary zeros.

The master program then calls getclientid() to obtain its client ID, and passes its client ID, along with the
descriptor of the socket to be given, to the slave program. One way to pass a socket is by passing the
slave program startup parameter list.

The slave program calls takesocket(), specifying the master program client ID and socket descriptor.

Waiting for the slave program to take the socket, the master program uses select() to test the given socket
for an exception condition. When select() reports that an exception condition is pending, the master
program calls close() to free the given socket. If select() reports a timeout has occurred, that is, the
socket has not been taken by slave program, the master program should take the socket that was given by
calling takesocket(). The master program then owns the socket again and should call close() to close the
socket.

If your program closes the socket before a pending exception condition is indicated, the TCP connection is
immediately reset, and the target program call to takesocket() call is unsuccessful. Calls other than the
close() call issued on a given socket return a value of -1, with errno set to EBADF.

Sockets that have been given and not taken for a period of four days will be closed and become
unavailable. If a select for the socket is outstanding, it is posted.

Return values
The value 0 indicates success. The value -1 indicates an error. Errno identifies a specific error.
Errno

Description

124 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EBADF
The d parameter is not a valid socket descriptor. The socket has already been given. The socket
domain is not AF_INET.

EBUSY
Listen() has been called for the socket.

EFAULT
Using the clientid parameter as specified would result in an attempt to access storage outside the
caller address space.

EINVAL
The clientid parameter does not specify a valid client identifier.

ENOTCONN
The socket is not connected.

EOPNOTSUPP
The socket type is not SOCK_STREAM.

Related calls
accept(), close(), getclientid(), listen(), select(), takesocket()

htonl()

The htonl() call translates a long integer from host byte order to network byte order.

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>

unsigned long htonl(unsigned long a)

Parameter
Description

a
The unsigned long integer to be put into network byte order.

Return values
Returns the translated long integer.

Related calls
htons(), ntohs(), ntohl()

htons()

The htons() call translates a short integer from host byte order to network byte order.

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>

unsigned short htons(unsigned short a)

Parameter
Description

a
The unsigned short integer to be put into network byte order.

Chapter 10. C Socket application programming interface 125

Return values
Returns the translated short integer.

Related calls
ntohs(), htonl(), ntohl()

inet_addr()

The inet_addr() call interprets character strings representing host addresses expressed in standard
dotted decimal notation and returns host addresses suitable for use as internet addresses.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <inet.h>

unsigned long inet_addr(char *cp)

Parameter
Description

cp
A character string in standard dotted decimal (.) notation

Values specified in standard dotted decimal notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When a four-part address is specified, each part is interpreted as a byte of data and assigned, from left to
right, to one of the four bytes of an internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity and placed in the
two rightmost bytes of the network address. This makes the three-part address a good format for
specifying Class B network addresses as 128.net.host.

When a two-part address is specified, the last part is interpreted as a 24-bit quantity and placed in the
three rightmost bytes of the network address. This makes the two-part address a good format for
specifying Class A network addresses as net.host.

When a one-part address is specified, the value is stored directly in the network address space without
any rearrangement of its bytes.

Numbers supplied as address parts in standard dotted decimal notation can be decimal, hexadecimal, or
octal. Numbers are interpreted using C language syntax. A leading 0x implies hexadecimal; a leading 0
implies octal. A number without a leading 0 implies decimal.

Return values
The internet address is returned in network byte order.

A value of -1 is returned as an error.

Related calls
inet_lnaof(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa()

126 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

inet_lnaof()

The inet_lnaof() call breaks apart the existing internet host address, and returns the local network
address portion.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <inet.h>

unsigned long inet_lnaof(struct in_addr in)

Parameter
Description

in
The host internet address

Return values
The local network address is returned in host byte order.

Related calls
inet_addr(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa()

inet_makeaddr()

The inet_makeaddr() call combines an existing network number and a local network address to construct
an internet address.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <inet.h>

struct in_addr
inet_makeaddr(unsigned long net, unsigned long lna)

Parameter
Description

net
The network number

lna
The local network address

Return values
The internet address is returned in network byte order.

Related calls
inet_addr(), inet_lnaof(), inet_netof(), inet_network(), inet_ntoa()

inet_netof()

Chapter 10. C Socket application programming interface 127

The inet_netof() call breaks apart the existing internet host address and returns the network number
portion.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <inet.h>

unsigned long inet_netof(struct in_addr in)

Parameter
Description

in
The internet address in network byte order

Return values
The network number is returned in host byte order.

Related calls
inet_addr(), inet_lnaof(), inet_makeaddr(), inet_ntoa()

inet_network()

The inet_network() call interprets character strings representing addresses expressed in standard dotted
decimal notation and returns numbers suitable for use as a network number.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <inet.h>

unsigned long inet_network(char *cp)

Parameter
Description

cp
A character string in standard, dotted decimal (.) notation

Return values
The network number is returned in host byte order.

Related calls
inet_addr(), inet_lnaof(), inet_makeaddr(), inet_ntoa()

inet_ntoa()

The inet_ntoa() call returns a pointer to a string expressed in dotted decimal notation. The inet_ntoa() call
accepts an internet address expressed as a 32-bit quantity in network byte order and returns a string
expressed in dotted decimal notation.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>

128 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

#include <inet.h>

char *inet_ntoa(struct in_addr in)

Parameter
Description

in
The host internet address

Return values
Returns a pointer to the internet address expressed in dotted decimal notation

Related calls
inet_addr(), inet_lnaof(), inet_makeaddr(), inet_network(), inet_ntoa()

ioctl()

The operating characteristics of sockets can be controlled using the ioctl() call.

Rules:

• This call can be used only in the AF_INET domain.
• Only the ioctl() commands that are documented in this topic are supported by this API.

#include <manifest.h>
#include <socket.h>
#include <bsdtypes.h>
#include <ioctl.h>
#include <rtrouteh.h>
#include <if.h>
#include <ezbcmonc.h>
int ioctl(int s, unsigned long cmd, char *arg)

Parameter
Description

s
The socket descriptor.

cmd
The command to perform.

arg
Points to the data associated with cmd.

The operations to be controlled are determined by cmd. The arg parameter points to data associated with
the particular command, and its format depends on the command being requested. The following
keywords are valid ioctl() keywords:
Keyword

Description
FIONBIO

Sets or clears nonblocking I/O for a socket. The variable arg points to an integer. If the integer is 0,
nonblocking I/O on the socket is cleared; otherwise, the socket is set for nonblocking I/O.

FIONREAD
Gets for the socket the number of immediately readable bytes. The variable arg points to an integer.

SIOCADDRT
Adds a routing table entry. The variable arg points to a rtentry structure, as defined in RTROUTE.H. The
routing table entry, passed as an argument, is added to the routing tables.

Chapter 10. C Socket application programming interface 129

SIOCATMARK
Queries whether the current location in the data input is pointing to out-of-band data. The variable arg
points to an integer of 1 when the socket points to a mark in the data stream for out-of-band data;
otherwise, it points to 0.

SIOCDELRT
Deletes a routing table entry. The variable arg points to a rtentry structure, as defined in RTROUTE.H.
If the structure exists, the routing table entry passed as an argument is deleted from the routing
tables.

SIOCGIFADDR
Gets the network interface address. The variable arg points to an ifreq structure, as defined in IF.H.
The interface address is returned in the argument.

SIOCGIFBRDADDR
Gets the network interface broadcast address. The variable arg points to an ifreq structure, as defined
in IF.H. The interface broadcast address is returned in the argument.

SIOCGIFCONF
Gets the network interface configuration. The variable arg points to an ifconf structure, as defined in
IF.H. The interface configuration is returned in the argument.

SIOCGIFDSTADDR
Gets the network interface destination address. The variable arg points to an ifreq structure, as
defined in IF.H. The interface destination (point-to-point) address is returned in the argument.

SIOCGIFFLAGS
Gets the network interface flags. The variable arg points to an ifreq structure, as defined in IF.H. The
interface flags are returned in the argument.

SIOCGIFMETRIC
Gets the network interface routing metric. The variable arg points to an ifreq structure, as defined in
IF.H. The interface routing metric is returned in the argument.

SIOCGIFNETMASK
Gets the network interface network mask. The variable arg points to an ifreq structure, as defined in
IF.H. The interface network mask is returned in the argument.

SIOCSIFMETRIC
Sets the network interface routing metric. The variable arg points to an ifreq structure, as defined in
IF.H. The interface routing metric is set to the value passed in the argument.

SIOCGMONDATA
Returns TCP/IP stack statistical counters. The variable arg points to a MonDataIn structure. The
counters are returned in a MonDataOut structure. Both of these structures are defined in EZBZMONC
in SEZANMAC.

Note: The ARP counter data provided differs depending on the type of device. See z/OS
Communications Server: IP Configuration Guide for information about devices that support ARP
Offload and what is supported for each device.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.
EINVAL

The request is not valid, or not supported.
EFAULT

The arg is a bad pointer.

130 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Example

int s;
int dontblock;
int rc;
⋮
/* Place the socket into nonblocking mode */
dontblock = 1;
rc = ioctl(s, FIONBIO, (char *) &dontblock);
⋮

listen()

The listen() call applies only to stream sockets. It performs two tasks: it completes the binding necessary
for a socket s, if bind() has not been called for s, and it creates a connection request queue of length
backlog to queue incoming connection requests. When the queue is full, additional connection requests
are ignored.

The listen() call indicates a readiness to accept client connection requests. It transforms an active socket
into a passive socket. After called, s can never again be used as an active socket to initiate connection
requests. Calling listen() is the third of four steps that a server performs when it accepts a connection. It is
called after allocating a stream socket using socket(), and after binding a name to s using bind(). It must
be called before calling accept().

#include <manifest.h>
#include <socket.h>
int listen(int s, int backlog)

Parameter
Description

s
Socket descriptor

backlog
Maximum queue length for pending connections

If the backlog is less than 0, backlog is set to 0. If the backlog is greater than SOMAXCONN, as defined in
the TCPIP.PROFILE file, backlog is set to SOMAXCONN. There is a SOMAXCONN variable in the SOCKET.H
file that is hardcoded at 10. If your C socket programs use this variable to determine the maximum listen()
backlog queue length, remember to change the header file to reflect the value you specified for TCP/IP in
TCPIP.PROFILE.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.
EOPNOTSUPP

The s parameter is not a socket descriptor that supports the listen() call.

Related calls
accept(), bind(), connect(), socket()

Chapter 10. C Socket application programming interface 131

maxdesc()

The maxdesc() call reserves additional space in the TCP/IP address space to allow socket numbers to
extend beyond the default range of 0 through 49. Socket numbers 0, 1, and 2 are never assigned, so the
default maximum number of sockets is 47.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>

int maxdesc(int *totdesc, int *inetdesc)

Parameter
Description

totdesc
Points to an integer containing a value one greater than the largest socket number desired. The
maximum allowed value is 2000.

Note: If a totdesc value greater than 2000 is specified, the internal value is set to 2000. In all cases,
use getdtablesize() to verify the value set by maxdesc().

inetdesc
Points to an integer containing a value one greater than the largest socket number desired. The
maximum value, usable for AF_INET sockets, allowed is 2000.

Set the integer pointed to by totdesc to one more than the maximum socket number desired. If your
program does not use AF_INET sockets, set the integer pointed to by inetdesc to 0 . If your program uses
AF_INET sockets, set the integer pointed to by inetdesc to the same value as totdesc; maxdesc() must be
called before your program creates its first socket. Your program should use getdtablesize() to verify that
the number of sockets has been changed.

Note: Increasing the size of the bit sets for the select() call must be done at compile time. To increase the
size of the bit sets, before including BSDTYPES.H, define FD_SETSIZE to be the largest value of any
socket. The default size of FD_SETSIZE is 255 sockets.

Return values
The value 0 indicates success. (Your application should check the integer pointed to by inetdesc. It might
contain less than the original value, if there was insufficient storage available in the TCP/IP address space.
In this case, the desired number of AF_INET sockets are not available.) The value -1 indicates an error.
Errno identifies the specific error.
Errno

Description
EFAULT

Using the totdesc or inetdesc parameters as specified results in an attempt to access storage outside
of the caller address space, or storage not able to be modified by the caller.

EALREADY
Your program called maxdesc() after creating a socket, or after a previous call to maxdesc().

EINVAL
Indicates that *totdesc is less than *inetdesc; *totdesc is less than or equal to 0; or *inetdesc is less
than 0.

ENOMEM
Your address space lacks sufficient storage.

Example

132 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

int totdesc, inetdesc;
totdesc = 100;
inetdesc = 0;
rc = maxdesc(&totdesc, &inetdesc)

If successful, your application can create 97 sockets, all of type AF_IUCV. Socket numbers run from 3–99.

int totdesc, inetdesc;
totdesc = 100;
inetdesc = 100;
rc = maxdesc(&totdesc, &inetdesc)

If successful, your application can create 97 sockets, each of which can be of type AF_INET or AF_IUCV.
The socket numbers run from 3–99.

Related calls
select(), socket(), getdtablesize()

ntohl()

The ntohl() call translates a long integer from network byte order to host byte order.

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>

unsigned long ntohl(unsigned long a)

Parameter
Description

a
The unsigned long integer to be put into host byte order

Return values
Returns the translated long integer

Related calls
htonl(), htons(), ntohs()

ntohs()

The ntohs() call translates a short integer from network byte order to host byte order.

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>

unsigned short ntohs(unsigned short a)

Parameter
Description

a
The unsigned short integer to be put into host byte order

Chapter 10. C Socket application programming interface 133

Return values
Returns the translated short integer

Related calls
ntohl(), htons(), htonl()

read()

The read() call reads data on a socket with descriptor s and stores it in a buffer. The read() call applies
only to connected sockets. This call returns as many as len bytes of data. If fewer than the number of
bytes requested is available, the call returns the number currently available. If data is not available for the
socket s, and s is in blocking mode, the read() call blocks the caller until data arrives. If data is not
available, and s is in nonblocking mode, read() returns a -1 and sets errno to EWOULDBLOCK. See
“ioctl() ” on page 129, or “fcntl() ” on page 103 for a description of how to set nonblocking mode.

If a datagram packet is too long to fit in the supplied buffer, datagram sockets discard extra bytes. Stream
sockets act like streams of information with no boundaries separating data. For example, if applications A
and B are connected with a stream socket and Application A sends 1000 bytes, each call to this function
can return 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications using stream sockets
should place this call in a loop, calling this function until all data has been received.

#include <manifest.h>
#include <socket.h>
int read(int s, char *buf, int len)

Parameter
Description

s
Socket descriptor.

buf
Points to the buffer that receives the data.

len
Length in bytes of the buffer pointed to by buf.

Return values
If successful, the number of bytes copied into the buffer is returned. The value 0 indicates that the
connection is closed. The value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.
EFAULT

Using the buf and len parameters would result in an attempt to access storage outside the caller
address space.

EWOULDBLOCK
Indicates an unconnected socket (RAW).

Note: ENOTCONN is returned for TCP, and EINVAL is returned for UDP.

EMSGSIZE
For non-TCP sockets, this indicates that the length exceeds the maximum data size. This is
determined by getsockopt() using SO_SNDBUF for the socket type (TCP, UDP, or RAW).

134 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Related calls
connect(), fcntl(), getsockopt(), ioctl(), readv(), recv(), recvmsg(), recvfrom(), select(), selectex(), send(),
sendmsg(), sendto(), setsockopt(), socket(), write(), writev()

readv()

The readv() call reads data on a socket with descriptor s and stores it in a set of buffers. The readv() call
applies to connected sockets only.

#include <manifest.h>
#include <socket.h>
#include <bsdtypes.h>
#include <uio.h>

int readv(int s, struc iovec *iov, int iovcnt)

Parameter
Description

s
The socket descriptor.

iov
Points to an iovec structure.

iovcnt
The number of buffers pointed to by the iov parameter.

The data is scattered into the buffers specified by iov[0]…iov[iovcnt-1]. The iovec structure is defined in
UIO.H and contains the following variables:
Variable

Description
iov_base

Points to the buffer.
iov_len

The length of the buffer.
The readv() call applies only to connected sockets.

This call returns up to len bytes of data. If less than the number of bytes requested is available, the call
returns the number currently available. If data is not available for the socket s, and s is in blocking mode,
the readv() call blocks the caller until data arrives. If data is not available and s is in nonblocking mode,
readv() returns a -1 and sets errno to EWOULDBLOCK. See “fcntl() ” on page 103 or “ioctl() ” on page 129
for a description of how to set nonblocking mode. When a datagram packet is too long to fit in the
supplied buffer, datagram sockets discard extra bytes. Stream sockets act like streams of information
with no boundaries separating data. For example, if applications A and B are connected with a stream
socket and Application A sends 1000 bytes, each call to this function can return 1 byte, or 10 bytes, or the
entire 1000 bytes. Therefore, applications using stream sockets should place this call in a loop and call
this function until all data has been received.

Return values
If successful, the number of bytes read into the buffers is returned. The value 0 indicates that the
connection is closed. The value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.

Chapter 10. C Socket application programming interface 135

EFAULT
Using iov and iovcnt would result in an attempt to access storage outside the caller address space.

EINVAL
Iovcnt was not valid, or one of the fields in the iov array was not valid. Also returned for a NULL iov
pointer.

EWOULDBLOCK
Indicates that s is in nonblocking mode and data is not available to read.

Related calls
connect(), fcntl(), getsockopt(), ioctl(), read(), recv(), recvmsg(), recvfrom(), select(), selectex(), send(),
sendmsg(), sendto(), setsockopt(), socket(), write(), writev()

recv()

The recv() call receives data on a socket with descriptor s and stores it in a buffer. The recv() call applies
only to connected sockets.

This call returns the length of the incoming message or data. If data is not available for socket s, and s is
in blocking mode, the recv() call blocks the caller until data arrives. If data is not available and s is in
nonblocking mode, recv() returns a -1 and sets errno to EWOULDBLOCK. See “fcntl() ” on page 103 or
“ioctl() ” on page 129 for a description of how to set nonblocking mode.

If a datagram packet is too long to fit in the supplied buffer, datagram sockets discard extra bytes. Stream
sockets act like streams of information with no boundaries separating data. For example, if applications A
and B are connected with a stream socket and Application A sends 1000 bytes, each call to this function
can return 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications using stream sockets
should place this call in a loop and call this function until all data has been received.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int recv(int s, char *buf, int len, int flags)

Parameter
Description

s
Socket descriptor.

buf
Points to the buffer that receives the data.

len
Length in bytes of the buffer pointed to by buf.

flags
Set the flags parameter by specifying one or more of the following flags. If more than one flag is
specified, the logical OR operator (|) must be used to separate them. Setting this parameter is
supported only for sockets in the AF_INET domain. Setting these flags is not supported for sockets in
the AF_IUCV domain.
MSG_OOB

Reads any out-of-band data on the socket. This is valid for stream (TCP) sockets only.
MSG_PEEK

Peeks at the data present on the socket; the data is returned but not consumed, so that a
subsequent receive operation sees the same data.

136 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Return values
If successful, the byte length of the message or datagram is returned. The value -1 indicates an error. The
value 0 indicates connection closed. Errno identifies the specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.
EFAULT

Using the buf and len parameters would result in an attempt to access storage outside the caller
address space.

EWOULDBLOCK
Indicates that s is in nonblocking mode and data is not available to read.

ENOTCONN
Indicates an unconnected TCP socket.

EMSGSIZE
For non-TCP sockets, this indicates that length exceeds the maximum data size as determined by
getsockopt() using SO_SNDBUF for the socket type, either TCP, UDP, or RAW.

Related calls
connect(), fcntl(), getsockopt(), ioctl(), read(), readv(), recvfrom(), recvmsg(), select(), selectex(), send(),
sendmsg(), sendto(), setsockopt(), socket(), write(), writev()

recvfrom()

The recvfrom() call receives data on a socket by name with descriptor s and stores it in a buffer. The
recvfrom() call applies to any datagram socket, whether connected or unconnected. For a datagram
socket, when name is nonzero, the source address of the message is filled. Parameter namelen must first
be initialized to the size of the buffer associated with name; then it is modified on return to indicate the
actual size of the address stored there.

This call returns the length of the incoming message or data. If a datagram packet is too long to fit in the
supplied buffer, datagram sockets discard extra bytes. If data is not available for the socket s, and s is in
blocking mode, the recvfrom() call blocks the caller until data arrives. If data is not available, and s is in
nonblocking mode, recvfrom() returns a -1 and sets errno to EWOULDBLOCK. See “fcntl() ” on page 103
or “ioctl() ” on page 129 to set nonblocking mode.

For datagram sockets, this call returns the entire datagram sent, providing the datagram can fit into the
specified buffer. Stream sockets act like streams of information with no boundaries separating data. For
example, if applications A and B are connected with a stream socket, and Application A sends 1000 bytes,
each call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications
using stream sockets should place this call in a loop, calling this function until all data has been received.

For datagram protocols, recvfrom() returns the source address associated with each incoming datagram.
For connection-oriented protocols like TCP, getpeername() returns the address associated with the
remote end of the connection.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *name, int *namelen)

Parameter
Description

Chapter 10. C Socket application programming interface 137

s
Socket descriptor.

buf
Pointer to the buffer to receive the data.

len
Length in bytes of the buffer pointed to by buf.

flags
A parameter that can be set to 0 or MSG_PEEK, or MSG_OOB. Setting this parameter is supported only
for sockets in the AF_INET domain. Setting these flags is not supported for sockets in the AF_IUCV
domain.
MSG_OOB

Reads any out-of-band data on the socket. This is valid for stream (TCP) sockets only.
MSG_PEEK

Peeks at the data present on the socket; the data is returned but not consumed, so that a
subsequent receive operation sees the same data.

name
Points to a socket address structure from which data is received. If name is a nonzero value, the
source address is returned (datagram sockets).

namelen
Points to the size of name in bytes.

Return values
If successful, the length of the message or datagram is returned in bytes. The value 0 indicates that the
connection is closed. The value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.
EFAULT

Using the buf and len parameters would result in an attempt to access storage outside the caller
address space.

EWOULDBLOCK
Indicates that s is in nonblocking mode and data is not available to read.

ENOTCONN
Indicates an unconnected TCP socket.

EMSGSIZE
For non-TCP sockets, this indicates that length exceeds the maximum data size as determined by
getsockopt() using SO_SNDBUF for the socket type, either TCP, UDP, or RAW.

EINVAL
Parameter namelen is not valid.

Related calls
fcntl(), getsockopt(), ioctl(), read(), readv(), recv(), recvmsg(), select(), selectex(), send(), sendmsg(),
sendto(), setsockopt(), socket(), write(), writev()

recvmsg()

The recvmsg() call receives messages on the socket with descriptor s and stores the messages in an array
of message headers.

138 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

For datagram protocols, recvmsg() returns the source address associated with each incoming datagram.
For connection-oriented protocols like TCP, getpeername() returns the address associated with the
remote end of the connection.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int recvmsg(int s, struct msghdr *msg, int flags)

Parameter
Description

s
Socket descriptor.

msg
Points to an msghdr structure.

flags
Set the flags parameter by specifying one or more of the following flags. If more than one flag is
specified, the logical OR operator (|) must be used to separate them. Setting this parameter is
supported only for sockets in the AF_INET domain. Setting these flags is not supported for sockets in
the AF_IUCV domain.
MSG_OOB

Reads any out-of-band data on the socket. This is valid for stream (TCP) sockets only.
MSG_PEEK

Peeks at the data present on the socket; the data is returned but not consumed, so that a
subsequent receive operation will see the same data.

A message header is defined by structure msghdr. The definition of this structure can be found in the
SOCKET.H header file and contains the following elements:
Variable

Description
msg_name

An optional pointer to a buffer where the sender address is stored for datagram sockets.
msg_namelen

The size of the address buffer.
msg_iov

An array of iovec buffers into which the message is placed. An iovec buffer contains the following
variables:
iov_base

Points to the buffer.
iov_len

The length of the buffer.
msg_iovlen

The number of elements in the msg_iov array.
msg_accrights

The access rights received. This field is ignored.
msg_accrightslen

The length of access rights received. This field is ignored.
The recvmsg() call applies to sockets, regardless of whether they are in the connected state, except for
TCP sockets, which must be connected.

This call returns the length of the data received. If data is not available for socket s, and s is in blocking
mode, the recvmsg() call blocks the caller until data arrives. If data is not available, and s is in nonblocking
mode, recvmsg() returns a -1 and sets errno to EWOULDBLOCK. See “fcntl() ” on page 103 or “ioctl() ” on
page 129 to see how to set nonblocking mode.

Chapter 10. C Socket application programming interface 139

If a datagram packet is too long to fit in the supplied buffer, datagram sockets discard extra bytes. Stream
sockets act like streams of information with no boundaries separating data. For example, if applications A
and B are connected with a stream socket, and Application A sends 1000 bytes, each call to this function
can return 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications using stream sockets
should place this call in a loop, and call this function until all data has been received.

Return values
If successful, the length of the message in bytes is returned. The value 0 indicates that the connection is
closed. The value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.
EFAULT

Using msg would result in an attempt to access storage outside the caller address space. Also
returned when msg_namelen is not valid.

EWOULDBLOCK
Indicates that s is in nonblocking mode and data is not available to read.

ENOTCONN
Returned for an unconnected TCP socket.

EMSGSIZE
For non-TCP sockets, this indicates that length exceeds the maximum data size determined by
getsockopt() using SO_SNDBUF for the socket type (TCP, UDP, or RAW).

Related calls
connect(), fcntl(), getsockopt(), ioctl(), read(), readv(), recv(), recvfrom(), select(), selectex(), send(),
sendmsg(), sendto(), setsockopt(), socket(), write(), writev()

select()
The select() call monitors activity on a set of sockets looking for sockets ready for reading, writing, or with
an exception condition pending.

#include <manifest.h>
#include <socket.h>
#include <bsdtypes.h>
#include <bsdtime.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout)

Parameter
Description

nfds
The number of socket descriptors to be checked. This value should be one greater than the greatest
number of sockets to be checked.

You can use the select() call to pass a bit set containing the socket descriptors for the sockets you
want checked. The bit set is fixed in size using one bit for every possible socket. Use the nfds
parameter to force select() to check only a subset of the allocated socket bit set.

If your application allocates sockets 3, 4, 5, 6, and 7, and you want to check all of your allocations,
nfds should be set to 8, the highest socket descriptor you specified, plus 1. If your application checks
sockets 3 and 4, nfds should be set to 5.

Socket numbers are assigned starting with number 3 because numbers 0, 1, and 2 are used by the C
socket interface.

140 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

readfds
Points to a bit set of descriptors to check for reading.

writefds
Points to a bit set of descriptors to check for writing.

exceptfds
Points to a bit set of descriptors to check for exception conditions pending.

timeout
Points to the time to wait for select() to complete.

If timeout is not a NULL pointer, it specifies a maximum time to wait for the selection to complete. If
timeout is a NULL pointer, the select() call blocks until a socket becomes ready. To poll the sockets and
return immediately, timeout should be a non-NULL pointer to a timeval structure with a value of 0.

If you are using both AF_INET and AF_IUCV sockets in the socket descriptor sets, the timer value is
ignored and processed as if timeout were a non-NULL pointer to a timeval structure with a value of 0.

To use select() as a timer in your program, do either of the following:

• Set the read, write, and except arrays to 0.
• Set nfds to be a NULL pointer.

To understand the implementation of the select() call, you must understand the difference between a
socket and a port. TCP/IP defines ports to represent a certain process on a certain machine. A port
represents the location of one process; it does not represent a connection between processes. In the MVS
programming interface for TCP/IP, a socket describes an endpoint of communication. Therefore, a socket
describes both a port and a machine. Like file descriptors, a socket is a small integer representing an
index into a table of communication endpoints in a TCP/IP address space.

To test more than one socket at a time, place the sockets to be tested into a bit set of type FD_SET. A bit
set is a string of bits that when X is an element of the set, the bit representing X is set to 1. If X is not an
element of the set, the bit representing X is set to 0. For example, if Socket 33 is an element of a bit set,
then bit 33 is set to 1. If Socket 33 is not an element of a bit set, then bit 33 is set to 0.

Because the bit sets contain a bit for every socket that a process can allocate, the size of the bit sets is
constant. The function getdtablesize() returns the number of sockets that your program can allocate. If
your program needs to allocate a large number of sockets, use getdtablesize() and maxdesc() to increase
the number of sockets that can be allocated. Increasing the size of the bit sets must be done when you
compile the program. To increase the size of the bit sets, define FD_SETSIZE before including
BSDTYPES.H. The largest value of any socket is FD_SETSIZE, defined to be 255 in BSDTYPES.H.

The following macros can manipulate bit sets.
Macro

Description
FD_ZERO(&fdset)

Sets all bits in bit set fdset to 0. After this operation, the bit set does not contain sockets as elements.
This macro should be called to initialize the bit set before calling FD_SET() to set a socket as a
member.

FD_SET(sock, &fdset)
Sets the bit for the socket sock to 1, making sock a member of bit set fdset.

FD_CLR(sock, &fdset)
Clears the bit for the socket sock in bit set fdset. This operation sets the appropriate bit to 0.

FD_ISSET(sock, &fdset)
Returns nonzero if sock is a member of the bit set fdset. Returns 0 if sock is not a member of fdset.
(This operation returns the bit representing sock.)

A socket is ready to be read when incoming data is buffered for it, or when a connection request is
pending. A call to accept(), read(), recv(), or recvfrom() does not block. To test whether any sockets are
ready to be read, use FD_ZERO() to initialize the readfds bit set and invoke FD_SET() for each socket to be
tested.

Chapter 10. C Socket application programming interface 141

A socket is ready to be written if there is buffer space for outgoing data. A socket is ready for reading if
there is data on the socket to be received. For a nonblocking stream socket in the process of connecting
the connect() will return with a -1. The program needs to check the errno. If the errno is EINPROGRESS]
the socket is selected for write when the connect() completes. In the situation where the errno is not
EINPROGRESS, the socket will still be selected for write which indicates that there is a pending error on
the socket. A call to write(), send(), or sendto() does not block providing that the amount of data is less
than the amount of buffer space. If a socket is selected for write, the amount of available buffer space is
guaranteed to be at least as large as the size returned from using SO_SNDBUF with getsockopt(). To test
whether any sockets are ready for writing, initialize writefds using FD_ZERO(), and use FD_SET() for each
socket to be tested.

The select() call checks for a pending exception condition on the given socket to indicate that the target
program has successfully called takesocket(). When select() indicates a pending exception condition, your
program calls close() to close the given socket. A socket has exception conditions pending if it has
received out-of-band data. A stream socket that was given using givesocket() is selected for exception
when another application successfully takes the socket using takesocket().

The programmer can pass NULL for any bit sets without sockets to test. For example, if a program need
only check a socket for reading, it can pass NULL for both writefds and exceptfds.

Because the sets of sockets passed to select() are bit sets, the select() call must test each bit in each bit
set before polling the socket for status. For efficiency, the nfsd parameter specifies the largest socket
passed in any of the bit sets. The select() call then tests only sockets in the range 0 to nfsd-1. Variable
nfsd can be the result of getdtablesize(), but if the application has only two sockets and nfsd is the result
of getdtablesize(), select() tests every bit in each bit set.

Return values
The total number of ready sockets in all bit sets is returned. The value -1 indicates an error; check errno.
The value 0 indicates an expired time limit. If the return value is greater than 0, the sockets that are ready
in each bit set are set to 1. Sockets in each bit set that are not ready are set to 0. Use macro FD_ISSET()
with each socket to test its status.
Errno

Description
EBADF

One of the bit sets specified an incorrect socket. [FD_ZERO() was probably not called before the
sockets were set.]

EFAULT
One of the bit sets pointed to a value outside the caller address space.

EINVAL
One of the fields in the timeval structure is not valid.

Note: If the number of ready sockets is greater than 65535, only 65535 is reported.

Example

In the following example, select() is used to poll sockets for reading (socket r), writing (socket w), and
exception (socket e) conditions.

/* sock_stats(r, w, e) - Print the status of sockets r, w, and e. */
int sock_stats(r, w, e)
int r, w, e;
{
 fd_set reading, writing, except;
 struct timeval timeout;
 int rc, max_sock;

 /* initialize the bit sets */
 FD_ZERO(&reading);
 FD_ZERO(&writing);
 FD_ZERO(&except);

 /* add r, w, and e to the appropriate bit set */

142 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 FD_SET(r, &reading);
 FD_SET(w, &writing);
 FD_SET(e, &except);

 /* for efficiency, what's the maximum socket number? */
 max_sock = MAX(r, w);
 max_sock = MAX(max_sock, e);
 max_sock ++;

 /* make select poll by sending a 0 timeval */
 memset(&timeout, 0, sizeof(timeout));

 /* poll */
 rc = select(max_sock, &reading, &writing, &except, &timeout);

 if (rc < 0) {
 /* an error occurred during the select() */
 tcperror("select");
 }
 else if (rc == 0) {
 /* none of the sockets were ready in our little poll */
 printf("nobody is home.\n");
 } else {
 /* at least one of the sockets is ready */
 printf("r is %s\n", FD_ISSET(r,&reading) ? "READY" : "NOT READY");
 printf("w is %s\n", FD_ISSET(w,&writing) ? "READY" : "NOT READY");
 printf("e is %s\n", FD_ISSET(e,&except) ? "READY" : "NOT READY");
 }
}

Related calls
getdtablesize(), maxdesc(), selectex()

selectex()

The selectex() call provides an extension to the select() call by allowing you to use an ECB or ECB list that
defines an event not described by readfs, writefds, or exceptfds.

The selectex() call monitors activity on a set of different sockets until a timeout expires to see whether
any sockets are ready for reading or writing, or if any exception conditions are pending. See “select() ” on
page 140 for more information about selectex().

#include <manifest.h>
#include <socket.h>
#include <bsdtypes.h>
#include <bsdtime.h>

int selectex(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout, int *ecbptr)

Parameter
Description

nfds
The number of socket descriptors to be checked.

readfds
Points to a bit set of descriptors to be checked for reading.

writefds
Points to a bit set of descriptors to be checked for writing.

exceptfds
Points to a bit set of descriptors to be checked for exception pending conditions.

timeout
Points to the time to wait for selectex() to complete.

Chapter 10. C Socket application programming interface 143

ecbptr
Points to the event control block (ECB) or ECB list. For an ECB list, the high-order bit must be turned
on in ecbptr. The last entry in the ECB list must also have its high-order bit set to 1, signifying list end.
The maximum ECBs allowed is 63.

Note: ECB list is supported only for AF_INET sockets.

Return values
The total number of ready sockets (in all bit sets) is returned. The returned value -1 indicates an error. The
returned value of 0 indicates either an expired time limit or that the caller ECB has been posted. To
determine which of these two conditions occurred, check the ECB value. If the value of the ECB is
nonzero, then the ECB has been POSTed; otherwise, the time limit has expired. The caller must initialize
the ECB value to 0 before issuing selectex(). If the caller's ECB has been POSTed, the caller descriptor
sets are also set to 0. If the return value is greater than 0, the socket descriptors in each bit set that are
ready are set to 1. All others are set to 0.
Errno

Description
EBADF

One of the descriptor sets specified an incorrect descriptor.
EFAULT

One of the parameters pointed to a value outside the caller address space.
EINVAL

One of the fields in the timeval structure is not valid.

Note: If the number of ready sockets is greater than 65535, only 65535 is reported.

Related calls
accept(), connect(), getdtablesize(), recv(), send(), select()

send()
The send() call sends datagrams on the socket with descriptor s. The send() call applies to all connected
sockets.

If buffer space is not available to hold the socket data to be transmitted, and the socket is in blocking
mode, send() blocks the caller until more buffer space becomes available. If the socket is in nonblocking
mode, send() returns a -1 and sets errno to EWOULDBLOCK. See “fcntl() ” on page 103 or “ioctl() ” on
page 129 to set nonblocking mode. See “select() ” on page 140 for additional information.

For datagram sockets, this call sends the entire datagram, providing the datagram can fit into the TCP/IP
buffers. Stream sockets act like streams of information with no boundaries separating data. For example,
if an application wants to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the
entire 1000 bytes. Therefore, applications using stream sockets should place this call in a loop and call
this function until all data has been sent.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int send(int s, char *msg, int len, int flags)

Parameter
Description

s
Socket descriptor.

144 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

msg
Points to the buffer containing the message to transmit.

len
Length of the message pointed to by msg.

flags
Set the flags parameter by specifying one or more of the following flags. If more than one flag is
specified, the logical OR operator (|) must be used to separate them. Setting this parameter is
supported only for sockets in the AF_INET domain. Setting these flags is not supported in the
AF_IUCV domain.
MSG_OOB

Sends out-of-band data on sockets that support this function. Only SOCK_STREAM sockets
created in the AF_INET address family support out-of-band data.

MSG_DONTROUTE
The MSG_DONTROUTE option is turned on for the duration of the operation. This is usually used
only by diagnostic or routing programs.

Return values
No indication of failure to deliver is implicit in a send() routine. The value -1 indicates locally detected
errors. Errno identifies the specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.
EFAULT

Using the msg and len parameters would result in an attempt to access storage outside the caller
address space.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
Indicates that s is in nonblocking mode and there is not enough space in TCP/IP to accept the data.

Related calls
connect(), fcntl(), getsockopt(), ioctl(), read(), readv(), recv(), recvfrom(), recvmsg(), select(), selectex(),
sendmsg(), sendto(), socket(), write(), writev()

sendmsg()

The sendmsg() call sends messages on a socket with descriptor s passed in an array of message headers.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int sendmsg(int s, struct msghdr *msg, int flags)

Parameter
Description

s
Socket descriptor.

msg
Points to an msghdr structure.

Chapter 10. C Socket application programming interface 145

flags
Set the flags parameter by specifying one or more of the following flags. If more than one flag is
specified, the logical OR operator (|) must be used to separate them. Setting this parameter is
supported only for sockets in the AF_INET domain. Setting these flags is not supported in the
AF_IUCV domain.
MSG_OOB

Sends out-of-band data on the socket.
MSG_DONTROUTE

The SO_DONTROUTE option is turned on for the duration of the operation; it is usually used by
diagnostic or routing programs only.

A message header is defined by a msghdr. The definition of this structure can be found in the SOCKET.H
header file and contains the following parameters.
Parameter

Description
msg_name

The pointer to the buffer containing the recipient address. This is required for datagram sockets where
an explicit connect() has not been done.

msg_namelen
The size of the address buffer. This is required for datagram sockets where an explicit connect() has
not been done.

msg_iov
An array of iovec buffers containing the message. The iovec buffer contains the following information:
iov_base

Points to the buffer.
iov_len

The length of the buffer.
msg_iovlen

The number of elements in the msg_iov array.
msg_accrights

The access rights sent. This field is ignored.
msg_accrightslen

The length of the access rights sent. This field is ignored.
The sendmsg() call applies to sockets regardless of whether they are in the connected state and returns
the length of the data sent.

If there is not enough buffer space available to hold the socket data to be transmitted, and the socket is in
blocking mode, sendmsg() blocks the caller until more buffer space becomes available. If the socket is in
nonblocking mode, sendmsg() returns a -1 and sets errno to EWOULDBLOCK. See “fcntl() ” on page 103
or “ioctl() ” on page 129 to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, providing the datagram can fit into the TCP/IP
buffers. Stream sockets act like streams of information with no boundaries separating data. For example,
if an application wants to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the
entire 1000 bytes. Therefore, applications using stream sockets should place this call in a loop, and call
this function until all data has been sent.

Return values
If successful, the length of the message in bytes is returned. The value -1 indicates an error. Errno
identifies the specific error.
Errno

Description

146 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EBADF
Indicates that s is not a valid socket descriptor.

EFAULT
Using msg would result in an attempt to access storage outside the caller address space.

EINVAL
Indicates that msg_namelen is not the size of a valid address for the specified address family.

EMSGSIZE
The message was too big to be sent as a single datagram.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
Indicates that s is in nonblocking mode and there is not enough space in TCP/IP to accept the data.

Related calls
connect(), fcntl(), getsockopt(), ioctl(), read(), readv(), recv(), recvfrom(), recvmsg(), select(), selectex(),
send(), sendto(), setsockopt(), socket(), write(), writev()

sendto()
The sendto() call sends datagrams on the socket with descriptor s. The sendto() call applies to any
datagram socket, whether connected or unconnected.

If there is not enough available buffer space to hold the socket data to be transmitted, and the socket is in
blocking mode, sendto() blocks the caller until more buffer space becomes available. If the socket is in
nonblocking mode, sendto() returns a -1 and sets errno to EWOULDBLOCK. See “fcntl() ” on page 103 or
“ioctl() ” on page 129 to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, providing the datagram can fit into the TCP/IP
buffers. Stream sockets act like streams of information with no boundaries separating data. For example,
if an application wants to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the
entire 1000 bytes. Therefore, applications using stream sockets should place this call in a loop, and call
this function until all data has been sent.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int sendto(int s, char *msg, int len, int flags, struct sockaddr *to,
 int tolen)

Parameter
Description

s
Socket descriptor.

msg
Points to the buffer containing the message to be transmitted.

len
Length of the message in the buffer pointed to by msg.

flags
A parameter that can be set to 0 or MSG_DONTROUTE. Setting this parameter is supported only for
sockets in the AF_INET domain. Setting these flags is not supported in the AF_IUCV domain.
MSG_DONTROUTE

The SO_DONTROUTE option is turned on for the duration of the operation. This is usually used by
diagnostic or routing programs only.

to
Address of the target.

Chapter 10. C Socket application programming interface 147

tolen
Size of the structure pointed to by to.

Return values
If successful, the number of characters sent is returned. The value -1 indicates an error. Errno identifies
the specific error.

No indication of failure to deliver is implied in the return value of this call when used with datagram
sockets.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.
EFAULT

Using the msg and len parameters would result in an attempt to access storage outside the caller
address space.

EINVAL
Tolen is not the size of a valid address for the specified address family.

EMSGSIZE
The message was too big to be sent as a single datagram. The default is large-envelope-size.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
Indicates that s is in nonblocking mode and there is not enough space in TCP/IP to accept the data.

Related calls
read(), readv(), recv(), recvfrom(), recvmsg(), send(), select(), selectex(), sendmsg(), socket() write(),
writev()

sethostent()

The sethostent() call opens and caches the local host table contents for gethostent() calls. The
sethostent() call is available only when RESOLVE_VIA_LOOKUP is defined before MANIFEST.H is included.
See z/OS Communications Server: IP Configuration Guide for information about using local host tables.

#include <manifest.h>
#include <socket.h>

int sethostent(int stayopen)

Parameter
Description

stayopen
A nonzero flag value prevents the cached local host table contents from being freed after an
endhostent().

Return values
The value 0 indicates success. The value -1 indicates an error. Errno identifies the specific error, returning
the errno value of the fopen() call.

148 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Related calls
endhostent(), endnetent(), gethostbyaddr(), gethostbyname(), gethostent()

setibmopt()

The setibmopt() call chooses the TCP/IP image with which to connect. It is used in conjunction with
getibmopt(), which returns the number of TCP/IP images installed on a given MVS system and their
names, versions, and states. With this information, the caller can dynamically choose the TCP/IP image
with which to connect through the setibmopt() call.

Note: Images from pre-V3R2 releases of TCP/IP for MVS are excluded. The setibmopt() call is not
meaningful for pre-V3R2 releases.

The setibmopt() call is optional. If setibmopt is not used, the standard method for determining the
connecting TCP/IP image is followed. If setibmopt is used, it must be issued before any other socket calls
that establish the connection to TCP/IP.

#include <manifest.h>
#include <socket.h>

int setibmopt(int cmd, struct ibm_tcpimage *buf)

struct ibm_tcpimage {
 unsigned short status;
 unsigned short version;
 char name[8];
}

Parameter
Description

cmd
The command to perform. For TCP/IP V3R2 for MVS, IBMTCP_IMAGE is supported.

buf
The address of the buffer to be used.

Parameter buf is the address of the struct ibm_tcpimage buffer containing the name and version of the
TCP/IP image to which the caller wants to connect. The name must be left-justified and padded with
blanks. The TCP/IP name is always the PROC name, left-justified and padded with blanks. The TCP/IP
version and status are ignored. The caller is responsible to specify name before issuing the call. If
setibmopt is not one of the active TCP/IP supported images on the system, subsequent socket calls will
fail. This call checks the validity of the contents of the name field in the structure pointed to by buf. It
checks the validity by verifying that the TCP/IP name is in the list generated by a getibmopt () call. It does
not check the status or version fields. This call sets the image of the connection to be created on another
call.

Typically, the caller issues getibmopt() to verify the choice for the TCP/IP image. On successful return, the
caller's choice will be honored when attempting the connection to TCP/IP.

Return values
A 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EOPNOTSUPP

This is not supported in this release of TCP/IP.
EALREADY

Your program is already connected to a TCP/IP image.

Chapter 10. C Socket application programming interface 149

EFAULT
Using buf would result in an attempt to copy the address into a portion of the caller address space into
which information cannot be written.

setibmsockopt()

Like setsockopt() call, the setibmsockopt() call sets the options associated with a socket in the AF_INET
domain. This call is for options specific to the IBM implementation of sockets.

#include <manifest.h>
#include <socket.h>

int setibmsockopt(int s, int level, int optname, char *optval, int optlen)

Parameter
Description

s
Socket descriptor.

level
Level for which the option is being set. Only SOL_SOCKET is supported.

optname
The name of a specified socket option.

optval
Points to option data.

optlen
The length of the option data.

SO_IGNOREINCOMINGPUSH is another option to consider. This option is meaningful only for stream
sockets. This option is effective only for connections established through an offload box. If optval points
to 1, the option is set. If optval points to 0, the option is off.

The SO_IGNOREINCOMINGPUSH option causes a receive call to return when one of the following
situations occurs:

• The requested length is reached.
• The internal TCP/IP length is reached.
• The peer application closes the connection.

The amount of data returned for each call is maximized and the amount of CPU time consumed by your
program and TCP/IP is reduced.

This option is not appropriate to your operation if your program depends on receiving data before the
connection is closed. For example, this option is appropriate for an FTP data connection, but not for a
Telnet connection.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.
EFAULT

Using optval and optlen parameters would result in an attempt to access storage outside the caller
address space.

150 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ENOPROTOOPT
The optname parameter is unrecognized, or the level parameter is not SOL_SOCKET.

Example

#include <manifest.h>
#include <socket.h>
#include <tcperror.h>

{ struct ibm_bulkmode_struct bulkstr;
 int optlen, rc;

 optlen = sizeof(bulkstr);
 rc = getibmsockopt(s, SOL_SOCKET, , (char *), &bulkstr, &optlen);
 if (rc < 0) {
 tcperror("on getibmsockopt()");
 exit(1);
 }
 fprintf(stream,"%d byte buffer available for outbound queue.\n",
 bulkstr.b_max_send_queue_size_avail);

 bulkstr.b_max_send_queue_size=bulkstr.b_max_send_queue_size_avail;
 bulkstr.b_onoff = 1;
 bulkstr.b_teststor = 0;
 bulkstr.b_move_data = 1;
 bulkstr.b_max_receive_queue_size = 65536;
 rc = setibmsockopt(s, SOL_SOCKET, , (char *), &bulkstr, optlen);
 if (rc < 0) {
 tcperror("on setibmsockopt()");
 exit(1);
 }
}

Related calls
getibmsockopt(), getsockopt(), ibmsflush(), setsockopt()

setnetent()

The setnetent() call opens and caches the local host table contents for getnetent() call. The setnetent()
call is available only when RESOLVE_VIA_LOOKUP is defined before MANIFEST.H is included. See z/OS
Communications Server: IP Configuration Guide for information about using local host tables.

#include <manifest.h>
#include <socket.h>

int setnetent(int stayopen)

Parameter
Description

stayopen
A nonzero flag value prevents the cached local host table contents from being freed after an
endnetent().

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error, returning
the errno value of the fopen() call.

Related calls
endnetent(), endhostent(), getnetbyaddr(), getnetbyname(), getnetent()

Chapter 10. C Socket application programming interface 151

setprotoent()

The setprotoent() call opens the hlq.ETC.PROTO data set and sets it to the data set starting point. If the
stayopen flag is nonzero, the hlq.ETC.PROTO data set remains open after every call.

Note: The hlq.ETC.PROTO data set is described in the z/OS Communications Server: IP Configuration
Reference.

#include <manifest.h>
#include <socket.h>

int setprotoent(int stayopen)

Parameter
Description

stayopen
A flag that can be set to prevent data set hlq.ETC.PROTO closing after every call to setprotoent().

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error, returning
the errno value of the fopen() call.

Related calls
endprotoent(), getprotobyname(), getprotobynumber(), getprotoent()

setservent()

The setservent() call opens the hlq.ETC.SERVICES data set and resets it to its starting point. If the
stayopen flag is nonzero, the hlq.ETC.SERVICES data set remains open after every call.

Note: The hlq.ETC.SERVICES data set is described in the z/OS Communications Server: IP Configuration
Reference.

#include <manifest.h>
#include <socket.h>

int setservent(int stayopen)

Parameter
Description

stayopen
A flag that can be set to prevent data set hlq.ETC.SERVICES closing after each call to setservent().

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error, returning
the errno value of the fopen() call.

Related calls
endservent(), getservbyname(), getservent()

setsockopt()

152 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The setsockopt() call sets options associated with a socket. It can be called only for sockets in the
AF_INET domain. Options can exist at multiple protocol levels; they are always present at the highest
socket level.

When manipulating socket options, you must specify the level at which the option resides and the name
of the option. To manipulate options at the socket level, the level parameter must be set to SOL_SOCKET,
as defined in SOCKET.H. To manipulate options at the TCP level, the level parameter must be set to
IPPROTO_TCP, as defined in SOCKET.H. To manipulate options at any other level, such as the IP level,
supply the appropriate protocol number for the protocol controlling the option. Currently, the
SOL_SOCKET, IPPROTO_TCP, and IPPROTO_IP levels are supported. The getprotobyname() call can be
used to return the protocol number for a named protocol.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int setsockopt(int s, int level, int optname, char *optval, int optlen)

Parameter
Description

s
The socket descriptor

level
The level for which the option is being set

optname
The name of a specified socket option. See Appendix D, “GETSOCKOPT/SETSOCKOPT command
values,” on page 769 for the numeric values of optname.

optval
The pointer to option data

optlen
The length of the option data

The optval and optlen parameters are used to pass data used by the particular set command. The optval
parameter points to a buffer containing the data needed by the set command. The optlen parameter must
be set to the size of the data pointed to by optval.

All of the socket level options except SO_LINGER expect optval to point to an integer and optlen to be set
to the size of an integer. When the integer is nonzero, the option is enabled. For toggle type options, if the
integer is nonzero, the option is enabled. If it is 0, the option is disabled. The SO_LINGER option expects
optval to point to a linger structure, as defined in SOCKET.H. This structure is defined in the following
example:

struct linger
{
 int l_onoff; /* option on/off */
 int l_linger; /* linger time */
};

The l_onoff field is set to 0 if the SO_LINGER option is disabled. A nonzero value enables the option. The
l_linger field specifies the amount of time to wait on close. The units of l_linger are seconds.

The following option is recognized at the TCP level:
Option

Description
TCP_NODELAY

Toggles the use of Nagle algorithm (RFC 896) for all data sent over the socket. This option is not
supported for AF_IUCV sockets. Under most circumstances, TCP sends data when it is presented from
the application.

However, when outstanding data has not yet been acknowledged, TCP will defer the transmission of
any new data from the application until all of the outstanding data has been acknowledged. The Nagle

Chapter 10. C Socket application programming interface 153

algorithm enforces this deferral, even in cases where the receiver's window is sufficiently open to
accept the new data. For interactive applications, such as ones that send a stream of mouse events
which receive no replies, this deferral of transmission might result in significant delays. For these
types of applications, disabling Nagle algorithm would improve response time.

Notes:

1. When Nagle algorithm is enabled, TCP will wait to send small amounts of data until the
acknowledgment for the previous data is received.

2. When Nagle algorithm is disabled, TCP will send small amounts of data even before the
acknowledgment for previous data sent is received.

The following keywords are recognized at the socket level:
Keyword

Description
SO_RCVBUF

Sets the size of the data portion of the TCP/IP receive buffer in OPTVAL. The size of the data portion of
the receive buffer is protocol-specific. If the requested size exceeds the allowed size, the following
situation occurs:

• If the protocol is TCP, a return value of -1 and errno of ENOBUFS is set. The receive buffer size is
unchanged.

For maximum values for the TCP protocol, see the TCPCONFIG TCPRCVBUFRSIZE and
TCPMAXRCVBUFSIZE parameters in the z/OS Communications Server: IP Configuration Reference.

• If the protocol is UDP or RAW, a return value of 0 is returned and the buffer size is set to 65535.

SO_SNDBUF
Sets the size of the data portion of the TCP/IP send buffer in OPTVAL. The size of the data portion of
the send buffer is protocol-specific. If the requested size exceeds the allowed size, the following
situation occurs:

• If the protocol is TCP, a return value of -1 and errno of ENOBUFS is set. The send buffer size for the
TCP connection is set to the maximum size. The value of the send buffer size can be retrieved by
issuing GETSOCKOPT for SO_SNDBUF.

For maximum values for the TCP protocol, see the TCPCONFIG TCPSENDBUFRSIZE parameters in
the z/OS Communications Server: IP Configuration Reference.

• If the protocol is UDP or RAW, a return value of 0 is returned and the buffer size is set to 65535.

SO_BROADCAST
Toggles the ability to broadcast messages. The default is disabled. If this option is enabled, it allows
the application to send broadcast messages over s when the interface specified in the destination
supports broadcasting of packets. This option has no meaning for stream sockets.

SO_KEEPALIVE
Toggles the TCP keep alive mechanism for a stream socket. The default is disabled. When activated,
the keep alive mechanism periodically sends a packet on an otherwise idle connection. If the remote
TCP does not respond to the packet, or to retransmissions of the packet, the connection is ended with
the error ETIMEDOUT.

SO_LINGER
Lingers on close if data is present. The default is disabled. When this option is enabled and there is
unsent data present when close() is called, the calling application is blocked during the close() call
until the data is transmitted, or the connection has timed out. If this option is disabled, the close() call
returns without blocking the caller, and the TCP/IP address space still waits to try to send the data.
Although the data transfer is usually successful, it cannot be guaranteed, because the TCP/IP address
space waits a finite amount of time while trying to send the data. This option has meaning for stream
sockets only.

154 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SO_OOBINLINE
Toggles the reception of out-of-band data. The default is disabled. When this option is enabled, it
causes out-of-band data to be placed in the normal data input queue as it is received, making it
available to recv(), recvfrom(), and recvmsg() without having to specify the MSG_OOB flag in those
calls. When this option is disabled, it causes out-of-band data to be placed in the priority data input
queue as it is received, making it available to recv(), recvfrom(), and recvmsg() only by specifying the
MSG_OOB flag in those calls. This option has meaning for stream sockets only.

SO_REUSEADDR
Toggles local address reuse. The default is disabled. This alters the normal algorithm used in the
bind() call.

The normal bind() call algorithm allows each internet address and port combination to be bound only
once. If the address and port have been bound already, a subsequent bind() will fail and return error
EADDRINUSE.

After the 'SO_REUSEADDR' option is active, the following situations are supported:

• A server can bind() the same port multiple times as long as every invocation uses a different local IP
address and the wildcard address INADDR_ANY is used only one time per port.

• A server with active client connections can be restarted and can bind to its port without having to
close all of the client connections.

• For datagram sockets, multicasting is supported so multiple bind() calls can be made to the same
class D address and port number.

The following options are recognized at the IP level (IPPROTO_IP):
Option

Description
IP_MULTICAST_TTL

Sets the IP time to live of outgoing multicast datagrams. The default value is 1 (multicast is available
only to the local subnet).

IP_MULTICAST_LOOP
Enables or disables the loopback of outgoing multicast datagrams. The default value is enabled.

IP_MULTICAST_IF
Sets the interface for sending outbound multicast datagrams from the socket application.

Note: Multicast datagrams can be transmitted only on one interface at a time.

IP_ADD_MEMBERSHIP
Joins a multicast group on a specific interface. An interface has to be specified with this option. Only
applications that want to receive multicast datagrams need to join multicast groups.

IP_DROP_MEMBERSHIP
Exits a multicast group.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

The s parameter is not a valid socket descriptor.
EFAULT

Using optval and optlen parameters would result in an attempt to access storage outside the caller
address space.

ENOBUFS
No buffer space is available.

Chapter 10. C Socket application programming interface 155

ENOPROTOOPT
The optname parameter is unrecognized, or the level parameter is not SOL_SOCKET.

Example

See “getsockopt() ” on page 119 to see how the getsockopt() options set is queried.

int rc;
int s;
int optval;
struct linger l;
int setsockopt(int s, int level, int optname,char *optval, int optlen);
⋮
/* I want out of band data in the normal inputqueue */
optval = 1;
rc = setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (char *) &optval, sizeof(int));

⋮
/* I want to linger on close */
l.l_onoff = 1;
l.l_linger = 100;
rc = setsockopt(s, SOL_SOCKET, SO_LINGER, (char *) &l, sizeof(l));

Related calls
fcntl(), getprotobyname(), getsockopt(), ioctl(), socket()

shutdown()

The shutdown() call shuts down all or part of a duplex connection. Parameter how sets the condition for
shutdown to the socket s connection.

If you issue a shutdown() for a socket that currently has outstanding socket calls pending, see Table 3 on
page 32 to determine the effects of this operation on the outstanding socket calls.

Note: Issue a shutdown() call before issuing a close() call for a socket.

#include <manifest.h>
#include <socket.h>

int shutdown(int s, int how)

Parameter
Description

s
The socket descriptor.

how
The how condition can have a value of 0, 1, or 2, where:

• Zero ends further receive operations.
• One ends further send operations.
• Two ends further send and receive operations.

Return values
The value 0 indicates success; the value -1 indicates an error. Errno identifies the specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.

156 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EINVAL
The how parameter was not set to a valid value: 0, 1, or 2.

sock_debug()

The sock_debug() call provides the socket library tracing facility. The onoff parameter can have a value of
0 or nonzero. If onoff=0 (the default), no socket library tracing is done. If onoff=nonzero, the system
traces for socket library calls and interrupts.

Note: You can include the statement SOCKDEBUG in data set TCPIP.DATA as an alternative to calling
sock_debug() with onoff not equal to 0.

#include <manifest.h>
#include <socket.h>

void sock_debug(init onoff)

Parameter
Description

onoff
A parameter that can be set to 0 or nonzero

Related calls
accept(), close(), connect(), socket()

sock_do_teststor()

The sock_do_teststor() call is used to check for calls that attempt to access storage outside the caller
address space.

#include <manifest.h>
#include <socket.h>

void sock_do_teststor(int onoff)

Parameter
Description

onoff
A parameter that can be set to 0 or nonzero

If onoff is not 0 for either inbound or outbound sockets, both the address of the message buffer and the
message buffer itself are checked for addressability at every socket call. The error condition, EFAULT, is
set if there is an addressing problem. If onoff is set to 0, address checking is not done by the socket
library program. If an error occurs when onoff is 0, normal runtime error handling reports the exception
condition.

The default for onoff is 0. Addresses are not checked for addressability for parameters of C socket calls.
While you are testing your program, you might find it useful to set onoff to a nonzero value.

Notes:

1. You can include the statement SOCKNOTESTSTOR in data set TCPIP.DATA, as an alternative to calling
sock_do_teststor() with onoff equal to 0.

2. You can include the statement SOCKTESTSTOR in the data set TCPIP.DATA which is in the client’s
catalog when the socket program is started, as an alternative to calling sock_do_teststor() with onoff
not equal to 0.

Chapter 10. C Socket application programming interface 157

Restrictions
None

socket()

The socket() call creates an endpoint for communication and returns a socket descriptor representing that
endpoint. Different types of sockets provide different communication services.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int socket(int domain, int type, int protocol)

Parameter
Description

domain
The address domain requested. It is either AF_INET or AF_IUCV.

type
The type of socket created, either SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW.

protocol
The protocol requested. Possible values are 0, IPPROTO_UDP, or IPPROTO_TCP.

The domain parameter specifies the communication domain within which communication is to take place.
This parameter specifies the address family (format of addresses within a domain) to be used. The
families supported are AF_INET, which is the internet domain, and AF_IUCV, which is the IUCV domain.
These constants are defined in the SOCKET.H header file.

The type parameter specifies the type of socket created. The type is analogous to the communication
requested. These socket type constants are defined in the SOCKET.H header file. The types supported
are:
Socket Type

Description
SOCK_STREAM

Provides sequenced, two-way byte streams that are reliable and connection-oriented. They support a
mechanism for out-of-band data. This type is supported in both the AF_INET and AF_IUCV domains.

SOCK_DGRAM
Provides datagrams, which are connectionless messages, of a fixed maximum length whose reliability
is not guaranteed. Datagrams can be corrupted, received out of order, lost, or delivered repeatedly.
This type is supported in the AF_INET domain only.

SOCK_RAW
Provides the interface to internal protocols (such as IP and ICMP). This type is supported in the
AF_INET domain only.

Note: To use raw sockets, the application must be APF-authorized.

The protocol parameter specifies the particular protocol to be used with the socket. In most cases, a
single protocol exists to support a particular type of socket within a particular addressing family (not true
with raw sockets). If the protocol parameter is set to 0, the system selects the default protocol number for
the domain and socket type requested. Protocol numbers are found in the hlq.ETC.PROTO data set.
Alternatively, the getprotobyname() call can be used to get the protocol number for a protocol with a
known name. The protocol field must be set to 0 if the domain parameter is set to AF_IUCV. The protocol
defaults are TCP for stream sockets and UDP for datagram sockets. There is no default for raw sockets.

SOCK_STREAM sockets model duplex byte streams. They provide reliable, flow-controlled connections
between peer applications. Stream sockets are either active or passive. Active sockets are used by clients
who initiate connection requests using connect(). By default, socket() creates active sockets. Passive

158 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

sockets are used by servers to accept connection requests from the connect() call. An active socket is
transformed into a passive socket by binding a name to the socket using the bind() call, and by indicating
a willingness to accept connections with the listen() call. If a socket is passive, it cannot be used to initiate
connection requests.

In the AF_INET domain, the bind() call applied to a stream socket lets the application specify the
networks from which it will accept connection requests. The application can fully specify the network
interface by setting the internet address field in the address structure to the internet address of a network
interface. Alternatively, the application can use a wildcard to specify that it wants to receive connection
requests from any network. This is done by setting the internet address field within the address structure
to the constant INADDR_ANY, as defined in the SOCKET.H header file.

After a connection has been established between stream sockets, any of the data transfer calls can be
used: (read(), write(), send(), recv(), readv(), writev(), sendto(), recvfrom(), sendmsg(), and recvmsg()).
Usually, the read-write or send-recv pairs are used to send data on stream sockets. If out-of-band data is
to be exchanged, the send-recv pair is normally used.

SOCK_DGRAM sockets model datagrams. They provide connectionless message-exchange without
guarantee of reliability. Messages sent are limited in size. Datagram sockets are not supported in the
AF_IUCV domain.

There is no active or passive analogy to stream sockets with datagram sockets. Servers must still call
bind() to name a socket and to specify the network interface from which it wants to receive packets.
Wildcard addressing, as described for stream sockets, applies to datagram sockets also. Because
datagram sockets are connectionless, the listen() call has no meaning for them and must not be used with
them.

After an application has received a datagram socket, it can exchange datagrams using the sendto() and
recvfrom(), or sendmsg() and recvmsg() calls. If the application goes one step further by calling connect()
and fully specifying the name of the peer with which all messages are to be exchanged, then the other
data transfer calls of read(), write(), readv(), writev(), send(), and recv() can be used also. See “connect() ”
on page 99 for more information about placing a socket into the connected state.

Datagram sockets allow messages to be broadcast to multiple recipients. Setting the destination address
to a broadcast address depends on the class of address, and whether subnets are used. The constant
INADDR_BROADCAST, defined in socket.h, can be used to broadcast to the primary network when the
primary network configured supports broadcast.

SOCK_RAW sockets give the application an interface to lower layer protocols, such as IP and ICMP. This
interface is often used to bypass the transport layer when direct access to lower layer protocols is
needed. Raw sockets are also used to test new protocols. Raw sockets are not supported in the AF_IUCV
domain.

Raw sockets are connectionless and data transfer semantics are the same as those described previously
for datagram sockets. The connect() call can be used similarly to specify the peer.

Outgoing packets have an IP header prefixed to them. IP options can be set and inspected using the
setsockopt() and getsockopt() calls respectively. Incoming packets are received with the IP header and
options intact.

Notes:

1. Sockets are deallocated using the close() call.
2. Only SOCK_STREAM sockets are supported in the AF_IUCV domain.
3. The setsockopt() and getsockopt() calls are not supported for sockets in the AF_IUCV domain.
4. The flags field in the send(), recv(), sendto(), recvfrom(), sendmsg(), and recvmsg() calls is not

supported in the AF_IUCV domain.

Return values
A nonnegative socket descriptor indicates success. The value -1 indicates an error. Errno identifies the
specific error.

Chapter 10. C Socket application programming interface 159

Errno
Description

EPROTONOSUPPORT
The protocol is not supported in this domain or this socket type.

EACCES
Access denied. The application is not an APF-authorized application.

EAFNOSUPPORT
The specified address family is not supported by this protocol family.

Example

int s;
struct protoent *p;
struct protoent *getprotobyname(char *name);
int socket(int domain, int type, int protocol);
⋮
/* Get stream socket in internetdomain with default protocol */
s = socket(AF_INET, SOCK_STREAM, 0);
⋮
/* Get stream socket in iucvdomain with default protocol */
s = socket(AF_IUCV, SOCK_STREAM, 0);
⋮
/* Get raw socket in internetdomain for ICMP protocol */
p = getprotobyname(“iucv”);
s = socket(AF_INET, SOCK_RAW, p->p_proto);

Related calls
accept(), bind(), close() connect(), fcntl(), getprotobyname(), getsockname(), getsockopt(), ioctl(),
maxdesc(), read(), readv(), recv(), recvfrom(), recvmsg(), select(), selectex(), send(), sendmsg(), sendto(),
shutdown(), write(), writev()

takesocket()
The takesocket() call acquires a socket from another program. Typically, the other program passes its
client ID and socket descriptor to your program through your program startup parameter list.

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>

int takesocket(struct clientid *clientid, int hisdesc)

Parameter
Description

clientid
Points to the clientid of the application from which you are taking a socket.

hisdesc
Describes the socket to be taken.

The takesocket() call acquires a socket from another program. Typically, the other program passes its
client ID and socket descriptor to your program through your program startup parameter list.

Return values
A nonnegative socket descriptor indicates success. The value -1 indicates an error. Errno identifies a
specific error.
Errno

Description

160 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EACCES
The other application did not give the socket to your application.

EBADF
The hisdesc parameter does not specify a valid socket descriptor owned by the other application. The
socket has already been taken.

EFAULT
Using the clientid parameter as specified would result in an attempt to access storage outside the
caller address space.

EINVAL
The clientid parameter does not specify a valid client identifier.

EMFILE
The socket descriptor table is already full.

ENOBUFS
The operation cannot be performed because of a shortage of control blocks (SCB or SKCB) in the
TCP/IP address space.

EPFNOSUPPORT
The domain field of the clientid parameter is not AF_INET.

Related calls
getclientid(), givesocket()

tcperror()
When a socket call produces an error, the call returns a negative value and the variable errno is set to an
error value found in TCPERRNO.H. The tcperror() call prints a short error message describing the last error
that occurred. If s is non-NULL, tcperror() prints the string s followed by a colon, followed by a space,
followed by the error message, and terminating with a new-line character. If s is NULL or points to a NULL
string, only the error message and the new-line character are output.

The tcperror() function is equivalent to the UNIX perror() function.

#include <manifest.h>
#include <socket.h>
#include <tcperrno.h>

void tcperror(char *s)

Parameter
Description

s
A NULL or NULL-terminated character string

Example 1

if ((s=socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
 tcperror(“socket()”);
 exit(2);
}

If the socket() call produces error ENOMEM, socket() returns a negative value and errno is set to
ENOMEM. When tcperror() is called, it prints the string:

 socket(): Not enough storage (ENOMEM)

Chapter 10. C Socket application programming interface 161

Example 2

if ((s=socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 tcperror(NULL);

If the socket() call produces error ENOMEM, socket() returns a negative value and errno is set to
ENOMEM. When tcperror() is called, it prints the string:

 Not enough storage (ENOMEM)

write()
The write() call writes data from a buffer on a socket with descriptor s. The write() call applies only to
connected sockets.

This call writes up to len bytes of data.

If there is not enough available buffer space to hold the socket data to be transmitted and the socket is in
blocking mode, write() blocks the caller until more buffer space is available. If the socket is in nonblocking
mode, write() returns a -1 and sets errno to EWOULDBLOCK. See “fcntl() ” on page 103 or “ioctl() ” on
page 129 to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, providing the datagram can fit into the TCP/IP
buffers. Stream sockets act like streams of information with no boundaries separating data. For example,
if an application wants to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the
entire 1000 bytes. Therefore, applications using stream sockets should place this call in a loop, and call
this function until all data has been sent.

#include <manifest.h>
#include <socket.h>

int write(int s, char *buf, int len)

Parameter
Description

s
Socket descriptor.

buf
Points to the buffer holding the data to be written.

len
Length in bytes of buf.

Return values
If successful, the number of bytes written is returned. The value -1 indicates an error. Errno identifies the
specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.
EFAULT

Using the buf and len parameters would result in an attempt to access storage outside the caller
address space.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
Indicates that s is in nonblocking mode and there is not enough space in TCP/IP to accept the data.

162 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Related calls
connect(), fcntl(), getsockopt(), ioctl(), read(), readv() recv(), recvfrom(), recvmsg(), select(), selectex(),
send(), sendmsg(), sendto(), setsockopt(), socket(), writev()

writev()
The writev() call writes data from a set of buffers on a socket using descriptor s.

The writev() call applies only to connected sockets.

#include <manifest.h>
#include <socket.h>
#include <bsdtypes.h>
#include <uio.h>

int writev(int s, struct iovec *iov, int iovcnt)

Parameter
Description

s
Socket descriptor.

iov
Points to an array of iovec buffers.

iovcnt
Number of buffers in the array.

The data is gathered from the buffers specified by iov[0]…iov[iovcnt-1]. The iovec structure is defined in
UIO.H and contains the following fields:
Parameter

Description
iov_base

Points to the buffer.
iov_len

The length of the buffer.

This call writes the sum of the iov_len bytes of data.

If buffer space is not available to hold the socket data to be transmitted and the socket is in blocking
mode, writev() blocks the caller until additional buffer space becomes available. If the socket is in a
nonblocking mode, writev() returns a -1 and sets errno to EWOULDBLOCK. For a description of how to set
nonblocking mode, see “fcntl() ” on page 103 or “ioctl() ” on page 129.

For datagram sockets, this call sends the entire datagram, providing the datagram can fit into the TCP/IP
buffers. Stream sockets act like streams of information with no boundaries separating data. For example,
if an application wants to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the
entire 1000 bytes. Therefore, applications using stream sockets should place this call in a loop, calling
this function until all data has been sent.

Return values
If successful, the number of bytes written from the buffers is returned. The value -1 indicates an error.
Errno identifies the specific error.
Errno

Description
EBADF

Indicates that s is not a valid socket descriptor.

Chapter 10. C Socket application programming interface 163

EFAULT
Using the iov and iovcnt parameters would result in an attempt to access storage outside the caller
address space.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
Indicates that s is in nonblocking mode and there is not enough space in TCP/IP to accept the data.

Related calls
connect(), fcntl(), getsockopt(), ioctl(), write(), read(), readv(), recv(), recvmsg(), recvfrom(), select(),
selectex(), send(), sendmsg(), sendto(), setsockopt(), socket(), write()

Sample C socket programs
This topic contains sample C socket programs. The C source code can be found in the SEZAINST data set.

Following are the sample socket programs available:

Program Description

TCPC C socket TCP client

TCPS C socket TCP server

UDPC C socket UDP client

UDPS C socket UDP server

For samples of the multitasking C programs in the following table, see Appendix A, “Multitasking C socket
sample program,” on page 735.

Program Description

MTCCLNT C socket MTC client

MTCSRVR C socket MTC server

MTCCSUB C socket subtask MTCCSUB

Executing TCPS and TCPC modules
To start the TCPS server, execute TCPS 9999 on the other MVS address space (server).

To run the TCPC client, execute TCPC MVS13 9999. (MVS13 is the host name where the TCPS server is
running, and 9999 is the port you have assigned.)

After executing the TCPC client, the following output is displayed on the server session:

Server Ended Successfully

Executing UDPS and UDPC modules
To start the UDPS server, execute UDPS on the other MVS address space (server). The following message
is displayed:

Port assigned is 1028

To run the UDPC client, execute UDPC 9.67.60.10 1028. (Address 9.67.60.10 is the IP machine address
where the UDPS server is running, and 1028 is the port assigned by the UDPS server.)

After executing the UDPC client, the following message is displayed:

Received Message Hello....

164 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

C socket TCP client
The following example shows a C socket TCP client (TCPC) program. The source code can be found in the
TCPC member of the SEZAINST data set.

/*** IBMCOPYR **/
/* */
/* Part Name: TCPC */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC01V */
/* */
/*** IBMCOPYR **/

static char ibmcopyr[] =
 "TCPC - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1996. "
 "See IBM Copyright Instructions.";

/*
 * Include Files.
 */
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

/*
 * Client Main.
 */
main(argc, argv)
int argc;
char **argv;
{
 unsigned short port; /* port client will connect to */
 char buf[12]; /* data buffer for sending & receiving */
 struct hostent *hostnm; /* server host name information */
 struct sockaddr_in server; /* server address */
 int s; /* client socket */

 /*
 * Check Arguments Passed. Should be hostname and port.
 */
 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s hostname port\n", argv[0]);
 exit(1);
 }

 /*
 * The host name is the first argument. Get the server address.
 */
 hostnm = gethostbyname(argv[1]);
 if (hostnm == (struct hostent *) 0)
 {
 fprintf(stderr, "Gethostbyname failed\n");
 exit(2);
 }

 /*
 * The port is the second argument.

Chapter 10. C Socket application programming interface 165

 */
 port = (unsigned short) atoi(argv[2]);

 /*
 * Put a message into the buffer.
 */
 strcpy(buf, "the message");

 /*
 * Put the server information into the server structure.
 * The port must be put into network byte order.
 */
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

 /*
 * Get a stream socket.
 */
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 tcperror("Socket()");
 exit(3);
 }

 /*
 * Connect to the server.
 */
 if (connect(s, (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("Connect()");
 exit(4);
 }

 if (send(s, buf, sizeof(buf), 0) < 0)
 {
 tcperror("Send()");
 exit(5);
 }

 /*
 * The server sends back the same message. Receive it into the
 * buffer.
 */
 if (recv(s, buf, sizeof(buf), 0) < 0)
 {
 tcperror("Recv()");
 exit(6);
 }

 /*
 * Close the socket.
 */
 close(s);

 printf("Client Ended Successfully\n");
 exit(0);

}

Figure 52. C socket TCP client sample

C socket TCP server
The following example shows a C socket TCP server (TCPS) program. The source code can be found in the
TCPS member of the SEZAINST data set.

/*** IBMCOPYR **/
/* */
/* Component Name: TCPS */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */

166 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC01X */
/* */
/*** IBMCOPYR **/

static char ibmcopyr[] =
 "TCPS - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1996. "
 "See IBM Copyright Instructions.";

#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <netdb.h>
#include <stdio.h>

/*
 * Server Main.
 */
main(argc, argv)
int argc;
char **argv;
{
 unsigned short port; /* port server binds to */
 char buf[12]; /* buffer for sending & receiving data */
 struct sockaddr_in client; /* client address information */
 struct sockaddr_in server; /* server address information */
 int s; /* socket for accepting connections */
 int ns; /* socket connected to client */
 int namelen; /* length of client name */

 /*
 * Check arguments. Should be only one: the port number to bind to.
 */

 if (argc != 2)
 {
 fprintf(stderr, "Usage: %s port\n", argv[0]);
 exit(1);
 }

 /*
 * First argument should be the port.
 */
 port = (unsigned short) atoi(argv[1]);

 /*
 * Get a socket for accepting connections.
 */
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 tcperror("Socket()");
 exit(2);
 }

 /*
 * Bind the socket to the server address.
 */
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = INADDR_ANY;

 if (bind(s, (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("Bind()");
 exit(3);
 }

 /*

Chapter 10. C Socket application programming interface 167

 * Listen for connections. Specify the backlog as 1.
 */
 if (listen(s, 1) != 0)
 {
 tcperror("Listen()");
 exit(4);
 }

 /*
 * Accept a connection.
 */
 namelen = sizeof(client);
 if ((ns = accept(s, (struct sockaddr *)&client, &namelen)) == -1)
 {
 tcperror("Accept()");
 exit(5);
 }

 /*
 * Receive the message on the newly connected socket.
 */
 if (recv(ns, buf, sizeof(buf), 0) == -1)
 {
 tcperror("Recv()");
 exit(6);
 }

 /*
 * Send the message back to the client.
 */
 if (send(ns, buf, sizeof(buf), 0) < 0)
 {
 tcperror("Send()");
 exit(7);
 }

 close(ns);
 close(s);

 printf("Server ended successfully\n");
 exit(0);
}

Figure 53. C socket TCP server sample

C socket UDP server
The following example shows a C socket UDP server (UDPS) program. The source code can be found in
the UDPS member of the SEZAINST data set.

/*** IBMCOPYR **/
/* */
/* Component Name: UDPS */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC021 */
/* */
/*** IBMCOPYR **/

static char ibmcopyr[] =
 "UDPS - Licensed Materials - Property of IBM. "

168 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1992, 1996. "
 "See IBM Copyright Instructions.";

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

main()
{
 int s, namelen, client_address_size;
 struct sockaddr_in client, server;
 char buf[32];

 /*
 * Create a datagram socket in the internet domain and use the
 * default protocol (UDP).
 */
 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 {
 tcperror("socket()");
 exit(1);
 }

 /*
 * Bind my name to this socket so that clients on the network can
 * send me messages. (This allows the operating system to demultiplex
 * messages and get them to the correct server)
 *
 * Set up the server name. The internet address is specified as the
 * wildcard INADDR_ANY so that the server can get messages from any
 * of the physical internet connections on this host. (Otherwise we
 * would limit the server to messages from only one network
 * interface.)
 */
 server.sin_family = AF_INET; /* Server is in Internet Domain */
 server.sin_port = 0; /* Use any available port */
 server.sin_addr.s_addr = INADDR_ANY;/* Server's Internet Address */

 if (bind(s, (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("bind()");
 exit(2);
 }

 /* Find out what port was really assigned and print it */
 namelen = sizeof(server);
 if (getsockname(s, (struct sockaddr *) &server, &namelen) < 0)
 {
 tcperror("getsockname()");
 exit(3);
 }

 printf("Port assigned is %d\n", ntohs(server.sin_port));

 /*
 * Receive a message on socket s in buf of maximum size 32
 * from a client. Because the last two paramters
 * are not null, the name of the client will be placed into the
 * client data structure and the size of the client address will
 * be placed into client_address_size.
 */
 client_address_size = sizeof(client);

 if(recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *) &client,
 &client_address_size) <0)
 {
 tcperror("recvfrom()");
 exit(4);
 }
 /*
 * Print the message and the name of the client.
 * The domain should be the internet domain (AF_INET).
 * The port is received in network byte order, so we translate it to
 * host byte order before printing it.
 * The internet address is received as 32 bits in network byte order
 * so we use a utility that converts it to a string printed in
 * dotted decimal format for readability.
 */

Chapter 10. C Socket application programming interface 169

 printf("Received message %s from domain %s port %d internet\
 address %s\n",
 buf,
 (client.sin_family == AF_INET?"AF_INET":"UNKNOWN"),
 ntohs(client.sin_port),
 inet_ntoa(client.sin_addr));

 /*
 * Deallocate the socket.
 */
 close(s);
}

Figure 54. C socket UDP server sample

C socket UDP client
The following example shows a C socket UDP (UDPC) client program. The source code can be found in the
UDPC member of the SEZAINST data set.

/*** IBMCOPYR **/
/* */
/* Component Name: UDPC */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC020 */
/* */
/*** IBMCOPYR **/

static char ibmcopyr[] =
 "UPDC - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1992, 1996. "
 "See IBM Copyright Instructions.";

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

main(argc, argv)
int argc;
char **argv;
{

 int s;
 unsigned short port;
 struct sockaddr_in server;
 char buf[32];

 /* argv[1] is internet address of server argv[2] is port of server.
 * Convert the port from ascii to integer and then from host byte
 * order to network byte order.
 */
 if(argc != 3)
 {
 printf("Usage: %s <host address> <port> \n",argv[0]);
 exit(1);
 }
 port = htons(atoi(argv[2]));

170 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 /* Create a datagram socket in the internet domain and use the
 * default protocol (UDP).
 */
 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 {
 tcperror("socket()");
 exit(1);
 }

 /* Set up the server name */
 server.sin_family = AF_INET; /* Internet Domain */
 server.sin_port = port; /* Server Port */
 server.sin_addr.s_addr = inet_addr(argv[1]); /* Server's Address */

 strcpy(buf, "Hello");

 /* Send the message in buf to the server */
 if (sendto(s, buf, (strlen(buf)+1), 0,
 (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("sendto()");
 exit(2);
 }

 /* Deallocate the socket */
 close(s);
}

Figure 55. C socket UDP client sample

Chapter 10. C Socket application programming interface 171

172 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 11. X/Open Transport Interface

This topic describes the X/Open Transport Interface (XTI) IPv4 socket application program interface (API)
and contains the following topics:

• Software requirements
• What is provided
• How XTI works in the z/OS environment
• Creating an application
• Coding XTI calls
• Compiling and linking XTI applications using cataloged procedures
• Understanding XTI sample programs

The XTI allows you to write applications in the z/OS environment to access the open transport interface.

Note: The XTI calls in this topic apply only to unconnected sessions.

For more information about the XTI protocol, see CAE Specification: X/Open Transport Interface (XTI).

XTI software requirements
Application programs using the X/Open Transport Interface (XTI) require:

• SEZACMAC (macro library routines)
• SEZACMTX (executable modules)
• SEZALOAD (executable modules)
• SEZAINST (sample programs)
• Current z/OS Language Environment run-time library

What is provided with XTI
The XTI support provided with TCP/IP includes:

• The XTI library containing the XTI calls for C language programmers
• The XTI management services that allow you to include additional protocol mappers
• The RFC 1006 protocol mapping component that creates the protocol expected by the XTI interface

For more information about RFC1006, see Appendix G, “Related protocol specifications,” on page 781.

How XTI works in the z/OS environment
The XTI is a network-transparent protocol. In the z/OS environment, XTI system support is a set of
application calls to create the XTI protocol, as requested by your application. The services request is
communicated to the XTI transport system using the RFC 1006 protocol mapper. RFC 1006 translates
messages to transport class 0 service requests before passing them to the XTI.

Figure 56 on page 174 is a high-level diagram to show how the XTI interface works in an z/OS
environment.

© Copyright IBM Corp. 2000, 2020 173

XTI
Environment

To Peer

IP/TCP/RFC/OSI

User

IP

XTI Product

TCP/IP
Environment

TCP

XTI
Library

RFC1006
Mapper

Sockets

Figure 56. Using XTI with TCP/IP

In the z/OS environment, external names must be eight characters or fewer. If the XTI application
program interface names exceed this limit, those names longer than eight characters are remapped to
new names using the C compiler preprocessor. This name remapping is found in a file called X11GLUE.H,
which is automatically included in your program when you include the header file called XLIB.H. When
debugging your application, you can refer to the X11GLUE.H file to find the remapped names of the XTI
programs.

Creating an application using the XTI protocol
To create an application that uses the XTI protocol, you should study the XTI application program
interface in CAE Specification: X/Open Transport Interface (XTI). In addition, both “XTI socket client
sample program” on page 181, and “XTI socket server sample program” on page 186 illustrate programs
that use the XTI interface. These programs are distributed with TCP/IP.

Coding XTI calls
The following tables list the call instructions supported by the XTI for TCP/IP. These call instructions are
for unconnected sessions only, and are listed by type of service.

Coding XTI calls: Initializing a transport endpoint
Table 7 on page 174 lists the routines needed to initialize a transport endpoint. For more information, see
CAE Specification: X/Open Transport Interface (XTI).

Table 7. Initializing a call

Call Description

t_bind() Finds the endpoint for an address, and activates the endpoint.

t_open() Creates a transport endpoint, and identifies the transport provided.

174 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Coding XTI calls: Establishing a connection
Table 8 on page 175 lists the routines needed to establish a connection. For more information, see CAE
Specification: X/Open Transport Interface (XTI).

Table 8. Establishing a connection

Call Description

t_accept() Accepts a connection after a connect indication is received.

t_connect() Requests connection to a transport user at a known destination.

t_listen() Listens for connect information from other transport users.

t_rcvconnect() Checks the status of a completed connect.

Coding XTI calls: Transferring data
Table 9 on page 175 lists the routines needed to transfer data. For more information, see CAE
Specification: X/Open Transport Interface (XTI).

Table 9. Transferring data

Routine Description

t_rcv() Receives normal or expedited data over a transport connection.

t_snd() Sends normal or expedited data over a transport connection.

Coding XTI calls: Releasing a connection
Table 10 on page 175 lists the routines needed to release a connection. For more information, see CAE
Specification: X/Open Transport Interface (XTI).

Table 10. Releasing a connection

Call Description

t_rcvdis() Determines the reason for an abortive release or connection reject.

t_snddis() Sends an abortive release or a connection reject.

Coding XTI calls: Disabling a connection
Table 11 on page 175 lists the routines needed to disable a connection. For more information, see CAE
Specification: X/Open Transport Interface (XTI).

Table 11. Disabling a connection

Call Description

t_close() Informs the XTI manager that you have finished with the endpoint, and frees
any locally allocated resources assigned to endpoint.

t_unbind() Resets the path to the transport endpoint. The connection is removed from
the transport system, and requests for this path are denied.

Coding XTI calls: Managing events
Table 12 on page 176 lists the routines needed to manage events. Each XTI call handles one event at a
time. Events are processed one at a time, and you can wait on only one event at a time. For more
information, see CAE Specification: X/Open Transport Interface (XTI).

Chapter 11. X/Open Transport Interface 175

Table 12. Managing events

Call Description

t_look() Returns the events current for a transport endpoint and notifies the calling
program of an asynchronous event when the calling program is in
synchronous mode.

Coding XTI calls: Using utility calls
Table 13 on page 176 lists utility routines that you can use to solve problems and monitor connections.
For more information, see CAE Specification: X/Open Transport Interface (XTI).

Table 13. Using utilities

Call Description

t_error() Returns the last error that occurred on a call to a transport function. You can
add an identifying prefix to this call to aid in problem solving.

t_getinfo() Returns information about the underlying transport protocol for the
connection associated with file descriptor fd.

t_getstate() Returns information about the state of the transport provider associated with
file descriptor fd.

Coding XTI calls: Using system calls
Table 14 on page 176 lists system routines that you can use to manage your program. For more
information see CAE Specification: X/Open Transport Interface (XTI).

Table 14. System function calls

Call Description

fcntl() Controls the operating characteristics of sockets. For more information, see
“selectex() ” on page 143.

select() Checks descriptor sets to see if information is available for a read or a write.
Select() also checks for pending exception conditions. For more information,
see “select() ” on page 140.

selectex() Extends the select() calls by allowing you to add an ECB to define extra
events. For more information, see “selectex() ” on page 143.

Compiling and linking XTI applications using cataloged procedures
Several methods are available to compile, link-edit, and run your XTI program. This topic contains
information about the data sets that you must include to run your XTI source program, using IBM-
supplied cataloged procedures.

The following compile and link-edit sample procedures are supplied by IBM:

• XTICL is a sample compile and link-edit procedure.
• XTIC is a sample client execute procedure.
• XTIS is a sample server execute procedure.

Note: For more information about compiling and linking, see IBM C/370 Programming Guide.

176 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

XTICL

//XTICL JOB XTICLJOB
//***
//* *
//* Communications Server IP *
//* *
//* Licensed Materials - Program Property of IBM. *
//* This product contains "Restricted Materials of IBM" *
//* 5694-A01 (C) Copyright IBM Corp. 1989, 2002 *
//* US Government Users Restricted Rights - *
//* Use, duplication or disclosure restricted *
//* by GSA ADP Schedule Contract with IBM Corp. *
//* See IBM Copyright Instructions *
//* *
//* SMP/E Distribution Name: EZAEB02Z *
//* *
//***
//* SYMBOLIC DEFINITIONS *
//* *
//* INSTLIB - TCPIP SEZAINST LIBRARY *
//* SEZALOD - TCPIP SEZALOAD LIBRARY *
//* SEZAMAC - TCPIP MACLIB *
//* SEZAMTX - TCPIP SEZACMTX LIBRARY *
//* SCEERUN - C/C++ SCEERUN LIBRARY *
//* SCBCCMP - C/C++ SCBCCMP *
//* CHEADRS - C/C++ HEADER LIBRARY *
//* CMSGS - C/C++ MESSAGE LIBRARY *
//* SCEELKD - C/C++ SCEELKED LIBRARY *
//* INSTMEM - MEMBER TO COMPILE AND LINK *
//* OBJLIB - LIBRARY TO PUT INSTMEM OBJ DECK *
//* XTILOAD - LIBRARY FOR XTI LOAD MODULES *
//* SOUT - SYSOUT PARAMETER *
//* *
//***
//CCOMP PROC REG='3072K',
// CPARM='DEF(MVS),SOURCE,LIST,NOMARG,SEQ(73,80)',
// INSTLIB=,
// SEZALOD=,
// SEZAMAC=,
// SEZAMTX=,
// SCEERUN=,
// SCBCCMP=,
// CHEADRS=,
// CMSGS=,
// SCEELKD=,
// OBJLIB=,
// XTILOAD=,
// DCB80='(RECFM=FB,LRECL=80,BLKSIZE=3200)',
// DCB3200='(RECFM=FB,LRECL=3200,BLKSIZE=12800)',
// SOUT=*
//* *
//**
//* COMPILE STEP:
//**
//* *
//COMPILE EXEC PGM=CBCDRVR,
// PARM=('&CPARM'),
// REGION=®
//STEPLIB DD DSN=&SEZALOD,DISP=SHR
// DD DSN=&SCEERUN,DISP=SHR
// DD DSN=&SCBCCMP,DISP=SHR
//SYSLIB DD DSN=&SEZAMAC,DISP=SHR
// DD DSN=&CHEADRS,DISP=SHR
//SYSIN DD DSN=&INSTLIB(&INSTMEM),DISP=SHR
//SYSLIN DD DSN=&OBJLIB(&INSTMEM),DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CMSGS,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT
//SYSCPRT DD SYSOUT=&SOUT
//SYSTERM DD DUMMY
//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB80
//SYSUT5 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT6 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT7 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT8 DD UNIT=VIO,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT9 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//*

Chapter 11. X/Open Transport Interface 177

//**
//* LINKEDIT STEP:
//**
//*
//LKED EXEC PGM=IEWL,COND=(1,LT),
// REGION=®
//OBJLIB DD DSN=&OBJLIB,DISP=SHR
//SYSLIB DD DSN=&SEZAMTX,DISP=SHR
// DD DSN=&SCEELKD,DISP=SHR
//SYSLMOD DD DSN=&XTILOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
// PEND
//*
//XTIC EXEC CCOMP,INSTMEM=XTICC
//LKED.SYSLIN DD *
 INCLUDE OBJLIB(XTICC)
 INCLUDE SYSLIB(XTI)
 MODE AMODE(31),RMODE(ANY)
 ENTRY CEESTART
 NAME XTIC(R)
//*
//XTIS EXEC CCOMP,INSTMEM=XTISC
//LKED.SYSLIN DD *
 INCLUDE OBJLIB(XTISC)
 INCLUDE SYSLIB(XTI)
 MODE AMODE(31),RMODE(ANY)
 ENTRY CEESTART
 NAME XTIS(R)
//*

Figure 57. Sample compile and link-edit job control procedure

178 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

XTIC

//XTICRUN JOB XTICJOB
//XTICPRC PROC P='XTIC',
// IPADDR=XXX.XXX.XXX.XXX,
// PORT='102',
// REG=6M,
// TIM=1440,
// USERLIB='',
// RUNLIB1='',
// SOUT=*
//***
//* *
//* Component Name: XTIC (alias EZAEC03S) *
//* *
//* TCP/IP FOR CS z/OS *
//* *
//* Licensed Materials - Program Property of IBM. *
//* This product contains "Restricted Materials of IBM" *
//* 5694-A01 (C) Copyright IBM Corp. 1989,2005 *
//* US Government Users Restricted Rights - *
//* Use, duplication or disclosure restricted *
//* by GSA ADP Schedule Contract with IBM Corp. *
//* See IBM Copyright Instructions *
//* *
//* TCP/IP for CS z/OS *
//* SMP/E Distribution Name: EZAEC03S *
//* *
//***
//* SYMBOLIC DEFINITIONS *
//* *
//* P - PROGRAM TO EXECUTE *
//* IPADDR - IP ADDRESS OF HOST THAT SERVER IS EXECUTING *
//* PORT - PORT THE SERVER IS EXECUTING ON *
//* REG - REGION SIZE *
//* TIM - TIME PARAMETER *
//* USERLIB - LIBRARY WHERE THE XTIC EXECUTEABLE MODULE IS LOCATED *
//* RUNLIB1 - C/C++ SCEERUN LIBRARY *
//* SOUT - SYSOUT PARAMETER *
//* *
//***
//XTIC EXEC PGM=&P,PARM='&PORT &IPADDR',
// REGION=®,TIME=&TIM
//STEPLIB DD DSN=&USERLIB,DISP=SHR
// DD DSN=&RUNLIB1,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT
//SYSERR DD SYSOUT=&SOUT
//SYSDEBUG DD SYSOUT=&SOUT
//LOG DD SYSOUT=&SOUT
//SYSABEND DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//CEEDUMP DD SYSOUT=&SOUT
// PEND
// EXEC PROC=XTICPRC

Figure 58. Sample client execution job control procedure

Chapter 11. X/Open Transport Interface 179

XTIS

//XTISRUN JOB XTISJOB
//XTISPRC PROC P='XTIS',
// REG=6M,
// TIM=1440,
// PORT='102',
// USERLIB='',
// RUNLIB1='',
// SOUT=*
//***
//* *
//* Component Name: XTIS (alias EZAEC03T) *
//* *
//* TCP/IP FOR CS z/OS *
//* *
//* Licensed Materials - Program Property of IBM. *
//* This product contains "Restricted Materials of IBM" *
//* 5694-A01 (C) Copyright IBM Corp. 1989, 2005 *
//* US Government Users Restricted Rights - *
//* Use, duplication or disclosure restricted *
//* by GSA ADP Schedule Contract with IBM Corp. *
//* See IBM Copyright Instructions *
//* *
//* TCP/IP for CS z/OS *
//* SMP/E Distribution Name: EZAEC03T *
//* *
//***
//* SYMBOLIC DEFINITIONS *
//* *
//* P - PROGRAM TO EXECUTE *
//* REG - REGION SIZE *
//* TIM - TIME PARAMETER *
//* PORT - PORT NUMBER TO START SERVER ON *
//* USERLIB - LIBRARY WHERE THE XTIS EXECUTEABLE MODULE IS LOCATED *
//* RUNLIB1 - C/C++ SCEERUN LIBRARY *
//* SOUT - SYSOUT PARAMETER *
//* *
//***
//XTIS EXEC PGM=&P,PARM='&PORT',
// REGION=®,TIME=&TIM
//STEPLIB DD DSN=&USERLIB,DISP=SHR
// DD DSN=&RUNLIB1,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT
//SYSERR DD SYSOUT=&SOUT
//SYSDEBUG DD SYSOUT=&SOUT
//LOG DD SYSOUT=&SOUT
//SYSABEND DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//CEEDUMP DD SYSOUT=&SOUT
// PEND
// EXEC PROC=XTISPRC

Figure 59. Sample server execution job control procedure

Understanding XTI sample programs
This topic contains sample XTI socket programs. The XTI source code can be found in the SEZAINST data
set.

Note: As with all TCP/IP applications, dynamic data set allocations are used unless explicitly overridden.

The following sample XTI socket programs are available:

Name when
shipped

Alias name Description

XTICC EZAEC0YL XTI socket client sample program

XTISC EZAEC0YM XTI socket server sample program

180 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

XTI socket client sample program
The following example shows an XTI socket client program.

/*** IBMCOPYR **/
/* */
/* Component Name: XTICC.C (alias EZAEC0YL) */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* */
/* SMP/E Distribution Name: EZAEC0YL */
/* */
/* */
/*** IBMCOPYR **/

static char ibmcopyr[] =
 "XTICC - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1994. "
 "See IBM Copyright Instructions.";

/***/
/* XTIC Sample : Client */
/* */
/* Function: */
/* */
/* 1. Establishes an XTI endpoint (Asynchronous mode) */
/* 2. Sends a connection request to an XTI server */
/* 3. Receives the request */
/* 4. Sends a block of data to the server */
/* 5. Receives a block of data from the server */
/* 6. Disconnects from the server */
/* 7. Client stops */
/* */
/* Command line: */
/* */
/* XTIC hostname */
/* */
/* hostname - name of the host that the server is running. */
/* */
/***/

#include "xti.h"
#include "xti1006.h"
#include "stdio.h"

/*
* bind request structure for t_bind()
*/

struct t_bind req,ret;

/*
* for client to make calls to server
*/

struct t_call scall,rcall;

/*
* store fd returned on open()
*/

int fd;

int tot_received;

Chapter 11. X/Open Transport Interface 181

char *hostname;

/*
* data buffer
*/

char buf[25];

int looking;

/*
* flags returned from t_rcv()
*/

int rflags,sflags;

/*
* transport provider for t_open()
*/

char tprov[1][8] =
 { "RFC1006" } ;

/*
* args that are optional
*/

int args;

int pnum = 102;
char *port = "102";
char *ctsel = "client";
char *stsel = "server";
unsigned int rqlen = 0;
struct xti1006tsap tsap, tsapret;
void cleanup(int);
void form_addr_1006(struct xti1006tsap *,int, char *, char*, int, int);

/*
* MAIN line program starts here !!!
*/

main(argc,argv)
int argc;
char *argv[];
{

 /*
 * Check arguments. The host name is required. Host name is the
 * last parameter passed. Port can be changed by passing it as the
 * first parameter.
 */

 if ((argc > 3) | (argc < 2)) {
 fprintf(stderr,"Usage XTIC <port> <host>\n");
 exit(1);
 }

 if(argc==2)
 hostname = argv[1];
 else
 {
 hostname = argv[2];
 port = argv[1];
 pnum = (unsigned short) atoi(argv[1]);
 }

 /*
 * assume normal data
 */

 sflags = 0;

 /*
 * establish endpoint to t_listen() on
 */

 if ((fd = t_open(tprov[0],O_NONBLOCK,NULL)) < 0)
 {
 t_error("Error on t_open for FD");
 exit(t_errno);
 }

182 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 /*
 * compose req structure for t_bind() calls
 */

 /*
 * length of tsap
 */

 req.qlen = 0;
 req.addr.len = sizeof(tsap);

 /*
 * allocate the buffer to contain the
 * port and tsel to bind server to
 */

 req.addr.buf = (char *)malloc(sizeof(tsap));

 /*
 * fill address buffer with the address information
 */

 form_addr_1006((struct xti1006tsap *)req.addr.buf,pnum,NULL, \
 ctsel,fd,-1);

 /*
 * now that we're done composing the req,
 * do the bind of fd to addr in req
 */

 if (t_bind(fd,&req,NULL) != 0)
 {
 t_error("ERROR ON BIND FOR FD");
 exit(t_errno);
 }

 /*
 * compose call structure for t_connect() call
 */

 scall.addr.len = sizeof(tsap);
 scall.addr.buf = (char *)malloc(sizeof(tsap));

 /*
 * fill address buffer with the address information
 */

 form_addr_1006((struct xti1006tsap *)scall.addr.buf,-1,hostname, \
 stsel,fd,-1);

 scall.opt.maxlen = 0;
 scall.opt.len = 0;
 scall.opt.buf = NULL;
 scall.udata.len = 0;
 scall.udata.buf = NULL;

 rcall.addr.maxlen = sizeof(tsapret);
 rcall.addr.buf = (char *)malloc(sizeof(tsapret));
 rcall.opt.maxlen = 0;
 rcall.udata.maxlen = 0;
 rcall.udata.buf = NULL;

 /*
 * issue connect request
 */

 looking = t_connect(fd,&scall,&rcall);
 if (looking < 0 & t_errno != TNODATA)
 {
 t_error("ERROR ON CONNECT");
 cleanup(fd);
 exit(t_errno);
 }

 looking = 1;
 while (looking)
 {
 looking = t_look(fd);
 if (looking == T_CONNECT & looking > 0)
 looking = 0;
 else

Chapter 11. X/Open Transport Interface 183

 if (looking != 0)
 {
 t_error("ERROR ON LOOK");
 cleanup(fd);
 exit(t_errno);
 }
 else
 looking = 1;
 }

 /*
 * establish connection
 */

 looking = 1;
 while (looking)
 if (t_rcvconnect(fd,&rcall) == 0)
 looking = 0;
 else
 if (t_errno != TNODATA)
 {
 t_error("ERROR ON RCVCONNECT");
 cleanup(fd);
 exit(t_errno);
 }

 /*
 * place message in buffer
 */

 memset(buf,'B',25);

 /*
 * send message to server
 */

 looking = 1;
 while (looking)
 if ((looking = t_snd(fd,buf,sizeof(buf),sflags)) < 0)
 {
 t_error("ERROR SENDING MESSAGE TO SERVER");
 cleanup(fd);
 exit(t_errno);
 }
 else
 if (looking == 0)
 looking = 1;
 else
 looking = 0;

 /*
 * receive data back from the server
 */

 looking = 1;
 while (looking)
 {
 if ((looking = t_rcv(fd,buf,sizeof(buf),&rflags)) > 0)
 looking = 0;
 else
 {
 if (looking < 0 & t_errno != TNODATA)
 {
 t_error("ERROR RECEIVING DATA FROM SERVER");
 cleanup(fd);
 exit(t_errno);
 }
 else
 looking = 1;
 }
 }

 /*
 * disconnect from server
 */

 looking = 1;
 while (looking)
 if (t_snddis(fd,NULL) == 0)
 looking = 0;
 else
 {

184 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 t_error("ERROR DISCONNECTING FROM SERVER");
 cleanup(fd);
 exit(t_errno);
 }

 /*
 * if fd is an endpoint, try to close it
 */

 if (t_unbind(fd) != 0)
 {
 t_error("ERROR ON BIND FOR FD");
 exit(t_errno);
 }

 cleanup(fd);

 printf("Client ended successfully\n");
 exit(0);

}

/***/

void form_addr_1006(addrbuf1006,portnum,hostnmstr,tselstr1006,fd1,fd2)

/*
* formats the provided address information
* into the buffer for RFC1006
*/

/*
* address buffer to be filled in
*/

struct xti1006tsap *addrbuf1006;

int portnum;

/*
* hostnmstr represented as a string
*/

char *hostnmstr;

/*
* tsel represented as a string
*/

char *tselstr1006;

/*
* one possible endpoint to close if
* an error occurs in forming address
*/

int fd1;

/*
* other possible endpoint to close
*/

int fd2;

{

 /*
 * check validity of hostname
 * there's no way program can
 * continue without valid addr
 */

 if (strlen(hostnmstr) > 64)
 {
 fprintf(stderr,"hostname %s too long\n",hostnmstr);
 /*
 * don't want TADDRBUSY when you try to reuse the address
 */
 cleanup(fd1);
 cleanup(fd2);
 exit(TBADADDR);

Chapter 11. X/Open Transport Interface 185

 }

 addrbuf1006->xti1006_hostnm_len = strlen(hostnmstr);
 strcpy(addrbuf1006->xti1006_hostnm,hostnmstr);

 /*
 * check validity of hostname
 * there's no way program can
 * continue without valid addr
 */

 if (strlen(tselstr1006) > 64)
 {
 fprintf(stderr,"tsel %s too long\n",tselstr1006);
 /*
 * don't want TADDRBUSY when you try to reuse the address
 */
 cleanup(fd1);
 cleanup(fd2);
 exit(TBADADDR);
 }

 addrbuf1006->xti1006_tsel_len = strlen(tselstr1006);
 strcpy(addrbuf1006->xti1006_tsel,tselstr1006);

 if (tselstr1006 == "Nulltsap")
 {
 addrbuf1006->xti1006_tsel_len = 0;
 strcpy(addrbuf1006->xti1006_tsel,NULL);
 }
 else
 {
 addrbuf1006->xti1006_tsel_len = strlen(tselstr1006);
 strcpy(addrbuf1006->xti1006_tsel,tselstr1006);
 } /* endif */

 if (portnum != -1)
 addrbuf1006->xti1006_tset = portnum;

}
/***/

void cleanup(fd)

int fd;

{
 if (fd >= 0)
 if (t_close(fd) != 0)
 {
 fprintf(stderr,"unable to t_close() endpoint while");
 fprintf(stderr," cleaning up from error\n");
 }
}

Figure 60. Sample client code for XTI

XTI socket server sample program
As with all TCP/IP applications, dynamic dataset allocations are used unless explicitly overridden. For
example, the TCPIP.DATA file can be specified using the SYSTCPD DD JCL statement. For more
information, see Chapter 10, “C Socket application programming interface,” on page 85.

The following example shows an XTI socket server program.

/*** IBMCOPYR **/
/* */
/* Component Name: XTISC.C (alias EZAEC0YM) */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */

186 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* */
/* SMP/E Distribution Name: EZAEC0YM */
/* */
/* */
/*** IBMCOPYR **/

static char ibmcopyr[]=
 "XTISC - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1994. "
 "See IBM Copyright Instructions.";

/***/
/* XTIS Sample : Server */
/* */
/* Function: */
/* */
/* 1. Establishes an XTI endpoint (Asynchronous mode) */
/* 2. Listens for a connection request from an XTI client */
/* 3. Accepts the connection request */
/* 4. Receives a block of data from the client */
/* 5. Echos the data back to the client */
/* 6. Waits for the disconnect request from the XTI client */
/* 7. Server stops */
/* */
/* Command line: */
/* */
/* XTIS H */
/* */
/***/

#include "xti.h"
#include "xti1006.h"
#include "stdio.h"

/*
* bind request structure for t_bind()
*/

struct t_bind req,ret;

/*
* for server to listen for calls with
*/

struct t_call call;

/*
* descriptor to t_listen() on
*/

int fd;

/*
* descriptor to t_accept() on
*/

int resfd;

int tot_received;

/*
* data buffer
*/

char buf[25];

int looking;

/*
* flags returned from t_rcv()
*/

int rflags,sflags;

/*

Chapter 11. X/Open Transport Interface 187

* transport provider for t_open()
*/

char tprov[1][8] =
 { "RFC1006" } ;

/*
* args that are optional
*/

int args;

int tot_sent;
int pnum = 102;
char *port = "102";
char *hostnm;
char *stsel = "server";
unsigned int rqlen = 0;
struct xti1006tsap tsap, tsapret;
void cleanup(int);
void form_addr_1006(struct xti1006tsap *,int, char *, char*, int, int);

/*
* MAIN line program starts here !!!
*/

main(argc,argv)
int argc;
char *argv[];
{

 /*
 * Check arguments. No arguments should be passed to the server
 */

 if (argc > 2) {
 fprintf(stderr,"Usage : XTIS <port>\n");
 exit(1);
 }

 if(argc == 2)
 {
 pnum = (unsigned short) atoi(argv[1]);
 port = argv[1];
 }
 /*
 * assume normal data
 */

 sflags = 0;

 /*
 * establish endpoint to t_listen() on
 */

 if ((fd = t_open(tprov[0],O_NONBLOCK,NULL)) < 0)
 {
 t_error("Error on t_open");
 exit(t_errno);
 }

 /*
 * establish endpoint to t_accept() on
 */

 if ((resfd = t_open(tprov[0],O_NONBLOCK,NULL)) < 0)
 {
 t_error("Error on t_open");
 cleanup(fd);
 exit(t_errno);
 }

 /*
 * compose req structure for t_bind() calls
 */

 /*
 * length of tsap
 */

 req.addr.len = sizeof(tsap);

188 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 /*
 * allocate the buffer to contain the
 * port and tsel to bind server to
 */

 req.addr.buf = (char *)malloc(sizeof(tsap));

 /*
 * fill address buffer with the address information
 */

 form_addr_1006((struct xti1006tsap *)req.addr.buf, \
 pnum, \
 NULL, \
 stsel, \
 fd, \
 resfd);

 /*
 * length of tsap
 */

 ret.addr.maxlen = sizeof(tsapret);
 ret.addr.buf = (char *)malloc(sizeof(tsapret));

 /*
 * listening endpoint needs qlen > 0,
 * ability to queue 10 requests
 */

 req.qlen = 10;
 ret.qlen = rqlen;

 /*
 * now that we're done composing the req,
 * do the bind of fd to addr in req
 */

 if (t_bind(fd,&req,&ret) != 0)
 {
 t_error("Error on t_bind");
 cleanup(fd);
 cleanup(resfd);
 exit(t_errno);
 }

 /*
 * accepting endpoint with same addr needs qlen == 0
 */

 req.qlen = 0;

 /*
 * now that we're done composing the req,
 * do the bind of resfd to addr in req
 */

 if (t_bind(resfd,&req,&ret) != 0)
 {
 t_error("Error on t_bind");
 cleanup(fd);
 cleanup(resfd);
 exit(t_errno);
 }

 /*
 * initialize call receipt structure for t_listen()
 */

 call.opt.maxlen = 0;
 call.addr.len = 0;
 call.opt.len = 0;
 call.udata.len = 0;
 call.opt.buf = NULL;

 call.addr.maxlen = sizeof(tsapret); /* listen for return*/
 call.addr.buf = (char *)malloc(sizeof(tsapret));

 call.udata.maxlen = 0;
 call.udata.buf = NULL;

 /*

Chapter 11. X/Open Transport Interface 189

 * wait for connect req & get seq num in the call variable
 */

 looking = 1;
 while (looking)
 if (t_listen(fd,&call) == 0)
 looking = 0;
 else
 if (t_errno != TNODATA)
 {
 t_error("Error on t_accept");
 cleanup(fd);
 cleanup(resfd);
 exit(t_errno);
 }

 /*
 * accept the connection on the accepting endpoint
 */

 if (t_accept(fd,resfd,&call) != 0)
 {
 t_error("Error on t_accept");
 cleanup(fd);
 cleanup(resfd);
 exit(t_errno);
 }

 /*
 * receive data from the client
 */

 looking = 1;
 while (looking)
 if (t_rcv(resfd,buf,sizeof(buf),&rflags) > 0)
 looking = 0;
 else
 if (t_errno != TNODATA)
 {
 t_error("Error on t_rcv");
 cleanup(fd);
 cleanup(resfd);
 exit(t_errno);
 }

 /*
 * sent data back to the client
 */

 strcpy(buf,"DATA FROM SERVER");

 looking = 1;
 while (looking)
 if (t_snd(resfd,buf,sizeof(buf),sflags) > 0)
 looking = 0;

 /*
 * wait for disconnect from the client
 */

 looking = 1;
 while (looking)
 if (t_look(resfd) == T_DISCONNECT)
 looking = 0;

 /*
 * receive the disconnect request
 */

 looking = 1;
 while (looking)
 if (t_rcvdis(resfd,NULL) == 0)
 looking = 0;

 /*
 * unbind the endpoints
 */

 if (t_unbind(resfd) != 0)
 {
 t_error("Error on t_unbind for resfd");
 cleanup(fd);

190 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 cleanup(resfd);
 exit(t_errno);
 }

 if (t_unbind(fd) != 0)
 {
 t_error("Error on t_unbind for fd");
 cleanup(fd);
 cleanup(resfd);
 exit(t_errno);
 }

 /*
 * if fd is an endpoint, try to close it
 */

 cleanup(fd);

 /*
 * if resfd is an endpoint, try to close it
 */

 cleanup(resfd);

 printf("Server ended successfully\n");
 exit(0);

}

/***/

void form_addr_1006(addrbuf1006,portnum,hostnmstr,tselstr1006,fd1,fd2)

/*
* formats the provided address information
* into the buffer for RFC1006
*/

/*
* address buffer to be filled in
*/

struct xti1006tsap *addrbuf1006;

int portnum;

/*
* hostnmstr represented as a string
*/

char *hostnmstr;

/*
* tsel represented as a string
*/

char *tselstr1006;

/*
* one possible endpoint to close if
* an error occurs in forming address
*/

int fd1;

/*
* other possible endpoint to close
*/

int fd2;

{

 /*
 * check validity of hostname
 * there's no way program can
 * continue without valid addr
 */

 if (strlen(hostnmstr) > 64)
 {

Chapter 11. X/Open Transport Interface 191

 fprintf(stderr,"hostname %s too long\n",hostnmstr);
 /*
 * don't want TADDRBUSY when you try to reuse the address
 */
 cleanup(fd1);
 cleanup(fd2);
 exit(TBADADDR);
 }

 addrbuf1006->xti1006_hostnm_len = strlen(hostnmstr);
 strcpy(addrbuf1006->xti1006_hostnm,hostnmstr);

 /*
 * check validity of hostname
 * there's no way program can
 * continue without valid addr
 */

 if (strlen(tselstr1006) > 64)
 {
 fprintf(stderr,"tsel %s too long\n",tselstr1006);
 /*
 * don't want TADDRBUSY when you try to reuse the address
 */
 cleanup(fd1);
 cleanup(fd2);
 exit(TBADADDR);
 }

 addrbuf1006->xti1006_tsel_len = strlen(tselstr1006);
 strcpy(addrbuf1006->xti1006_tsel,tselstr1006);

 if (tselstr1006 == "Nulltsap")
 {
 addrbuf1006->xti1006_tsel_len = 0;
 strcpy(addrbuf1006->xti1006_tsel,NULL);
 }
 else
 {
 addrbuf1006->xti1006_tsel_len = strlen(tselstr1006);
 strcpy(addrbuf1006->xti1006_tsel,tselstr1006);
 } /* endif */

 if (portnum != -1)
 addrbuf1006->xti1006_tset = portnum;

}
/***/

void cleanup(fd)

int fd;

{
 if (fd >= 0)
 if (t_close(fd) != 0)
 {
 fprintf(stderr,"unable to t_close() endpoint while");
 fprintf(stderr," cleaning up from error\n");
 }
}

Figure 61. Sample server code for XTI

192 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 12. Macro application programming interface

This information describes the macro API for IPv4 or IPv6 socket application programs written in z/OS
assembler language. The macro interface can be used to produce reentrant modules and can be used in a
multithread environment.

The following topics are included:

• Environmental restrictions and programming requirements
• Input register information
• Output register information
• Compatibility considerations
• Defining storage for the macro API
• Understanding common parameter descriptions
• Error messages and return codes
• Characteristics of sockets
• Task management and asynchronous function processing
• Using an unsolicited event exit routine
• Diagnosing problems in applications using the macro API
• Macros for assembler programs
• Macro interface assembler language sample programs

Sockets API environmental restrictions and programming
requirements

The following restrictions apply to both the Macro Socket API and the Callable Socket API:

Function Restriction

SRB mode These APIs can only be invoked in TCB mode (task mode).

Cross-memory mode These APIs can only be invoked in a non-cross-memory
environment (PASN=SASN=HASN).

Functional Recovery Routine (FRR) Do not invoke these APIs with an FRR set. This will cause
system recovery routines to be bypassed and severely
damage the system.

Locks No locks should be held when issuing these calls.

INITAP and TERMAPI socket commands The INITAPI and TERMAPI socket commands must be issued
under the same task.

Storage Storage acquired for the purpose of containing data returned
from a socket call must be obtained in the same key as the
application program status word (PSW) at the time of the
socket call. This includes the ECB that is posted upon
completion of an asynchronous EZASMI call that is issued
after an EZASMI TYPE=INITAPI with the ASYNC=('ECB')
option has been issued.

© Copyright IBM Corp. 2000, 2020 193

Function Restriction

Nested socket API calls You cannot issue nested API calls within the same task. That
is, if a request block (RB) issues a socket API call and is
interrupted by an interrupt request block (IRB) in an STIMER
exit, any additional socket API calls that the IRB attempts to
issue are detected and flagged as an error.

Addressability mode (Amode)
considerations

The EZASMI interface can be invoked while the caller is in
either 31-bit or 24-bit Amode. However, if the application is
running in 24-bit addressability mode at the time of the call,
all addresses of parameters passed by the application must
be addressable in 31-bit Amode. This implies that even if the
addresses being passed reside in storage below the 16 MB
line (and therefore addressable by 24-bit Amode programs)
the high-order byte of these addresses needs to be 0.

Use of z/OS UNIX System Services Each z/OS UNIX process within an address space that uses
the EZASMI API should not use any z/OS UNIX System
Services socket API facilities such as z/OS UNIX Assembler
Callable Services or Language Environment for z/OS C/C++.
Doing so can yield unpredictable results.

Dynamic allocation Socket calls should not be issued during START (initialization)
processing for LOGONs, MOUNTs, or started tasks. This is
because they require dynamic allocation that can fail during
these times.

The EZASMI macro is located in SEZACMAC.

Sockets API input register information
Before invoking the sockets API, the general purpose registers (GPRs) need to contain the following
registers:
Register

Contents
0-1

N/A
2-12

N/A, unless referenced by a macro parameter
13

Pointer to a standard save area in the key of the caller
14-15

N/A
The contents of the access registers (ARs) on entry to the sockets API call are not used.

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-14

Unchanged
15

Used as a work register by the system

194 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

If a caller depends on register contents to remain the same before and after issuing a service, the caller
must save the contents of a register before issuing the service and restore them after the system returns
control.

Sockets API output register information
When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

• For synchronous calls, it contains the entry point address of EZBSOH03.
• For asynchronous calls, see “Task management and asynchronous function processing” on page

198.

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-14

Unchanged
15

Used as a work register by the system

If a caller depends on register contents to remain the same before and after issuing a service, the caller
must save the contents of a register before issuing the service and restore them after the system returns
control.

Sockets API compatibility considerations
Unless noted in z/OS Communications Server: New Function Summary, an application program compiled
and link edited on a release of z/OS Communications Server IP can be used on higher level releases. That
is, the API is upward compatible.

Application programs that are compiled and link edited on a release of z/OS Communications Server IP
cannot be used on older releases. That is, the API is not downward compatible.

Defining storage for the macro API
The macro API requires the definition of a task storage area.

The task storage area must be known to and addressable by all socket users communicating across a
specified connection. A connection runs between the application and TCP/IP. The most common way to
organize storage is to assign one connection to each MVS subtask. If there are multiple modules using
sockets within a single task or connection, you must provide the address of the task storage to every user.

The following information describes how to define the address of the task storage:

Chapter 12. Macro application programming interface 195

• Code the instruction EZASMI TYPE=TASK with STORAGE=CSECT as part of the program code. This
makes the program nonreentrant, but simplifies the code. The expansion of this instruction generates
the equate field, TIELENTH, which is equal to the length of the storage area.

• Code the instruction EZASMI TYPE=TASK with STORAGE=DSECT as part of the program code. The
expansion of this instruction generates the equate field, TIELENTH, which is equal to the length of the
storage area. This can be used to issue an MVS GETMAIN to allocate the required storage.

Guideline: Clear the task storage prior to calling EZASMI TYPE=INIT. If the EZASMI TYPE=TASK definition
is not named, you can use the EZASMI default storage name of EZASMTIE. Use the TIELENTH field to
determine the length of the EZASMTIE storage to clear.

The defining program must make the address of this storage available to all other programs using this
connection. Programs running in these tasks must define the storage mapping with an EZASMI
TYPE=TASK with STORAGE=DSECT.

If the task storage is used to create a connection that is not deleted by a TERMAPI or termination of the
task that created the connection, then the task storage can be in use by the macro API, even if the task
storage is freed or cleared. If the application attempts to connect to TCP/IP by using a task storage area
that is currently in use, the connection attempt fails with ERRNO 10335. The application cannot free or
clear a task storage area that is currently in use. The application must first do a TERMAPI before freeing or
clearing the task storage.

Restriction: The task storage area used on an INITAPI call cannot be moved or copied to other storage
locations. Attempting to do so will result in an implicit INITAPI being performed with unexpected results.

The EZASMI TYPE=TASK macro generates only one parameter list for a connection. This can lead to
overlay problems for programs using APITYPE=3 connections (multiple calls can be issued
simultaneously). For more detail on APITYPE=3 connections, see “Task management and asynchronous
function processing” on page 198. A program should use the following format to build unique parameter
list storage areas if it will be issuing multiple calls simultaneously on one connection:

BINDPRML EZASMI MF=L This will generate the storage used for
 building the parm list in the following BIND call
 EZASMI TYPE=BIND, X
 S=SOCKDESC, X
 NAME=NAMEID, X
 ERRNO=ERRNO, X
 RETCODE=RETCODE, X
 ECB=ECB1, X
 MF=(E,BINDPRML)

This example of an asynchronous BIND macro would use the MF=L macro to generate the parameter list.
The fields that are common across all macro calls, for example, RETCODE and ERRNO, must be unique for
each outstanding call.

You can create multiple connections to TCP/IP from a single task. Each of these connections functions
independently of the other and is identified by its own task interface element (TIE). The TASK parameter
can be used to explicitly reference a TIE. If you do not include the TASK parameter, the macro uses the
TIE generated by the EZASMI TYPE=TASK macro.

TIE1 DS XL(TIELENTH) Length of TIE

 EZASMI TYPE=INITAPI,
 MAXSOC=MAX75, X
 ERRNO=ERRNO, X
 RETCODE=RETCODE, X
 APITYPE=2, X
 MAXSNO=MAXS, X
 TASK=TIE1

 EZASMI TYPE=SOCKET,
 AF='INET', X
 SOCTYPE='STREAM', X
 ERRNO=ERRNO, X
 RETCODE=RETCODE, X
 TASK=TIE1

196 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

In this example, the TIE TIE1 is used for the connection, not the TIE generated by the EZASMI
TYPE=TASK macro.

Understanding common parameter descriptions
The following describes the parameters and concepts common to the macros described in this topic.
Parameter

Description
address

The name of the field that contains the value of the parameter. The following example illustrates a
BIND macro where SOCKNO is set to 2.

 MVC SOCKNO,=H'2'
 EZASMI TYPE=BIND,S=SOCKNO

*indaddr
The name of the address field that contains the address of the field containing the parameter. The
following example produces the same result as the example above.

 MVC SOCKNO,=H'2'
 LA 0,SOCKNO
 ST 0,SOCKADD
 EZASMI TYPE=BIND,S=*SOCKADD

(reg)
The name (equated to a number) or the number of a general purpose register. Do not use a register 0,
1, 14, or 15. The following example produces the same result as the previous examples.

 MVC SOCKNO,=H'2'
 LA 3,SOCKNO
 EZASMI TYPE=BIND,SOCKNO=(3)

'value'
A literal value for the parameter; for example, AF='INET'

Sockets API error messages and return codes
For information about error messages, see z/OS Communications Server: IP Messages Volume 1 (EZA).

For information about codes returned by TCP/IP, see Appendix B, “Socket call error return codes,” on
page 745.

Characteristics of sockets
For stream sockets, data is processed as streams of information with no boundaries separating data. For
example, if applications A and B are connected with a stream socket and application A sends 1000 bytes,
each call to the SEND function can return 1 byte, 10 bytes, or the entire 1000 bytes, with the number of
bytes sent returned in the RETCODE call. Therefore, applications using stream sockets should place the
READ call and the SEND call in a loop that repeats until all of the data has been sent or received.

PROTO specifies a particular protocol to be used with the socket. In most cases, a single protocol exists to
support one type of socket in a domain (not true with raw sockets). If PROTO is set to 0, the system
selects the default protocol number for the domain and socket type requested. The PROTO defaults are
TCP for stream sockets and UDP for datagram sockets. There is no default for raw sockets.

SOCK_STREAM sockets model duplex byte streams. They provide reliable, flow-controlled connections
between peer applications. Stream sockets are either active or passive. Active sockets are used by clients
who initiate connection requests with CONNECT. By default, SOCKET creates active sockets. Passive
sockets are used by servers to accept connection requests with the CONNECT macro. An active socket is
transformed into a passive socket by binding a name to the socket with the BIND macro and by indicating

Chapter 12. Macro application programming interface 197

a willingness to accept connections with the LISTEN macro. If a socket is passive, it cannot be used to
initiate connection requests.

In the AF_INET or AF_INET6 domain, the BIND macro, applied to a stream socket, lets the application
specify the networks from which it is willing to accept connection requests. The application can fully
specify the network interface by setting the Internet address field in the address structure to the Internet
address of a network interface. Alternatively, the application can set the address in the name structure to
zeros to indicate that it wants to receive connection requests from any network.

After a connection has been established between stream sockets, the data transfer macros READ, WRITE,
SEND, RECV, SENDTO, and RECVFROM can be used. Usually, the READ-WRITE or SEND-RECV pairs are
used for sending data on stream sockets.

SOCK_DGRAM sockets are used to model datagrams. They provide connectionless message exchange
without guarantees of reliability. Messages sent have a maximum size. Datagram sockets are not
supported in the AF_IUCV domain.

The active or passive concepts for stream sockets do not apply to datagram sockets. Servers must still
call BIND to name a socket and to specify from which network interfaces it wants to receive datagrams.
Wildcard addressing, as described for stream sockets, also applies to datagram sockets. Because
datagram sockets are connectionless, the LISTEN macro has no meaning for them and must not be used.

After an application receives a datagram socket, it can exchange datagrams using the SENDTO and
RECVFROM macros. If the application goes one step further by calling CONNECT and fully specifying the
name of the peer with which all messages are exchanged, then the other data transfer macros READ,
WRITE, SEND, and RECV can be used as well. For more information about placing a socket into the
connected state, see “CONNECT” on page 403.

Datagram sockets allow message broadcasting to multiple recipients. Setting the destination address to a
broadcast address depends on the network interface (address class and whether subnets are used).

SOCK_RAW sockets supply an interface to lower layer protocols, such as IP. You can use this interface to
bypass the transport layer when you need direct access to lower layer protocols. Raw sockets are also
used to test new protocols. Raw sockets are not supported in the AF_IUCV domain.

Raw sockets are connectionless and data transfer is the same as for datagram sockets. You can also use
the CONNECT macro to specify a peer socket in the same way that is previously described for datagram
sockets.

Outgoing datagrams have an IP header prefixed to them. Your program receives incoming datagrams with
the IP header intact. You can set and inspect IP options by using the SETSOCKOPT and GETSOCKOPT
macros.

Use the CLOSE macro to deallocate sockets.

Regardless of the type of socket (SOCK_STREAM, SOCK_DGRAM or SOCK_RAW), all commands that pass
a socket address must be consistent with the address family specified when the socket was opened. If
the socket was opened with an address family of AF_INET, then any command for that socket that
includes a socket address must use an AF_INET socket address. If the socket was opened with an
address family of AF_INET6, then any command for that socket that includes a socket address must use
an AF_INET6 socket address.

Task management and asynchronous function processing
The sockets extended interface allows asynchronous operation, although by default the task issuing a
macro request is put into a WAIT state until the requested function completes. At that time, the issuing
task resumes and continues execution.

If you do not want the issuing task to be placed into a WAIT while its request is processed, use
asynchronous function processing.

198 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Macro API asynchronous function processing: How it works
The macro API provides for asynchronous function processing in two forms. Both forms cause the system
to return control to the application immediately after the function request has been sent to TCP/IP. The
difference between the two forms is in how the application is notified when the function is completed:
ECB method

Enables you to pass an MVS event control block (ECB) on each socket call. The socket library returns
control to the program immediately and posts the ECB when the call has completed.

EXIT method
Enables you to specify the entry point of an exit routine using the INITAPI() call. The individual socket
calls immediately return control to the program and the socket library drives the specified exit routine
when the socket call is complete.

In either case, the function is completed when the notification is delivered. Note that the notification can
be delivered at any time, in some cases even before the application has received control back from the
EZASMI macro call. It is therefore important that the application is ready to handle a notification as soon
as it issues the EZASMI macro call.

Like nonblocking calls, asynchronous calls return control to your program immediately. But in this case,
there is no need to reissue the call. When the requested event has taken place, an ECB is posted or an exit
routine is driven.

Using the API macro, you can specify APITYPE=2 or APITYPE=3
APITYPE=2

Allows an asynchronous macro API program to have only one outstanding socket call per socket
descriptor. An APITYPE=2 program can use macro API asynchronous calls, but synchronous calls are
equally well supported.

APITYPE=3
Allows an asynchronous macro API program to have many outstanding socket calls per socket
descriptor. Only the macro API supports APITYPE=3. An APITYPE=3 program must use macro API
asynchronous calls with either an ECB or REQAREA parameter.

The REQAREA parameter is used in macros using the EXIT form. This parameter is mutually exclusive with
the ECB parameter used with the ECB form.

ECB
(4 bytes)

Storage Area
(100 bytes)

Figure 62. ECB input parameter

Like the ECB parameter, the REQAREA parameter points to an area that contains:

• A 4-byte token that is presented to your asynchronous exit routine when the response to this function
request is complete

• A 100-byte storage area that is used by the interface to save the state information

Note: This storage must not be modified or freed until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

User Token
(4 bytes)

Storage Area
(100 bytes)

Figure 63. User token setting

Before you issue the macro, you must set the first word of the 104 bytes to a token of any value. The
token is used by your asynchronous exit routine to determine the function completion event for which it is
being invoked.

Chapter 12. Macro application programming interface 199

Asynchronous functions are processed in the following sequence:

1. The application must issue the EZASMI TYPE=INITAPI with ASYNC='ECB' or ASYNC=('EXIT', AEEXIT).
The ASYNC parameter notifies the API that asynchronous processing is to be used for this connection.
The API notes the type of asynchronous processing to be used, ECB or EXIT, and specifies the use of
the asynchronous exit routine for this connection.

2. When a function request is issued by the application, the API takes one of the following actions:

• If the type of asynchronous processing is ECB, and an ECB is supplied in the function request, the
API returns control to the application. If Register 15 is 0, the ECB is posted when the function has
completed. Note that the ECB might be posted prior to when control is returned to the application.

• If the type of asynchronous processing is EXIT, and a REQAREA parameter is supplied in the function
request, the API returns control to the application. If Register 15 is 0, the exit routine is invoked
when the function has completed. Note that the exit can be invoked prior to when control is returned
to the application.

In either case, Register 15 is used to inform the caller whether or not the ECB is posted or
asynchronous exit driven. Therefore, you must not use Register 15 for the RETCODE parameter.

When the asynchronous exit routine is invoked, the following linkage conventions are used:
GPR0

Register Setting
0

Normal return
1

TCP/IP address space has terminated (TCPEND).
GPR1

Points to a doubleword field containing the following information:
WORD1

The token specified by the INITAPI macro
WORD2

The token specified by the functional request macro (First 4 bytes of the REQAREA storage)
GPR13

Points to standard MVS save area in the same key as the application PSW at the time of the INITAPI
command.

GPR14
Return address

GPR15
Entry point of the exit routine

The following example shows how to code an asynchronous macro function:

**
* READ A BUFFER OF DATA FROM THE CONNECTION PEER. I MAY NEED TO *
* WAIT SO GIVE CONTROL BACK TO ME AND LET ME ISSUE MY OWN WAIT. *
* IT COULD BE PART OF A WAIT WHICH WOULD INCLUDE OTHER EVENTS. *
* SPECIFY ECB/STORAGE AREA FOR INTERFACE. *
**

 EZASMI TYPE=READ, X
 S=SOCKNO, X
 NBYTES=COUNT, X
 BUF=DATABUF, X
 ERRNO=ERROR, X
 RETCODE=RCODE, X
 ECB=MYECB, X
 ERROR=ERRORRTN

 LTR R15,R15 Was macro function passed to TCP/IP?
 BNZ BADRCODE If no, ECB will not be posted

200 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 WAIT ECB=MYECB TELL MVS TO WAIT UNTIL READ IS DONE

Asynchronous exit environmental and programming considerations
When utilizing the ASYNC=EXIT option of the EZASMI macro, the following requirements need to be
considered:

• Asynchronous calls can only be issued from a single request block (RB) in a given task (TCB).

The first RB that issues an ASYNC EZASMI call under a given task is deemed as the target RB that is
interrupted when an asynchronous exit needs to be driven. This means that after an asynchronous
EZASMI macro call is invoked you should not invoke any services that cause the current RB to no longer
be the top RB for this task (for example, a LINK call). If the target RB is no longer the top RB at the time
that the exit needs to be driven, then the exit is deferred until the target RB becomes the top RB. One
exception to this rule is that EZASMI calls can be issued under the asynchronous user exit.

• EZASMI macro calls within the asynchronous exits.

While running the asynchronous exit notification routine, an application can issue other EZASMI calls.
However, the application should avoid issuing any blocking calls and should not enter into long delays.
Doing so delays any additional exits from being driven and also blocks the TCB that made the original
call. Note that TERMAPI should not be issued under the asynchronous exit.

• Linkage stack.

Applications issuing EZASMI macro asynchronous exit calls should not issue any PC instructions that
cause the system linkage to be used. Doing so delays the asynchronous exits from being driven until the
linkage stack entry is removed. If the linkage stack entry is not removed, the exit will not be driven.

• Asynchronous exits are given control in the same key as the program status word (PSW) key of the TCB
from which the EZASMI call was issued.

Using an unsolicited event-exit routine
The unsolicited event-exit routine enables an application to specify an event exit routine that is invoked
when an unsolicited event occurs. This exit routine can be a part of the program that specifies it, or it can
be a separate module. The exit routine must be resident at the time that the EZASMI TYPE=INITAPI
macro is issued, and it must stay resident until the EZASMI TYPE=TERMAPI macro is issued.

The user invokes this facility by the issuing the optional UEEXIT parameter that is used in the EZASMI
TYPE=INITAPI macro, as shown in the following syntax fragment:

,UEEXIT = address

*indaddr

(reg)

Keyword
Description

UEEXIT
A double word value that is composed of two positional parameters. The first parameter is the
address of the event-exit routine that is invoked when an unsolicited event occurs. The second
parameter is the address of the token that is passed to the exit routine. On entry to the unsolicited
event-exit routine, the general purpose registers (GPRs) contain the following values:
GPR0

Register setting. The following values are supported:
0

TPC/IP is active

Chapter 12. Macro application programming interface 201

1
TCP/IP is inactive

GPR1
Address of the token that is specified in the INITAPI macro

GPR13
Pointer to a standard MVS save area. This save area is in the same key that the application
program status word (PSW) was in when the EZASMI TYPE=INITAPI macro was issued.

GPR14
Return address

The following code example shows how the EZASMI TYPE=INITAPI macro can be used to specify an
unsolicited event-exit routine (MYUEE). The MYUEE storage definition contains the address of the exit
routine, MYUEE1, followed by the address of the user exit token, UETOKEN:

 EZASMI TYPE=INITAPI, Issue INITAPI Macro X
 SUBTASK=SUBTASK, SPECIFY SUBTASK IDENTIFIER X
 MAXSOC=MAXSOC, SPECIFY MAXIMUM NUMBER OF SOCKETS X
 MAXSNO=MAXSNO, (HIGHEST SOCKET NUMBER ASSIGNED) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 APITYPE=APITYPE, (SPECIFY APITYPE FIELD) X
 ERROR=ERROR, ABEND IF ERROR ON MACRO X
 UEEXIT=MYUEE, X
 ASYNC=('EXIT',MYEXIT) (SPECIFY AN EXIT)

* UNSOLICITED EVENT EXIT

 CNOP 0,4
MYUEE DC A(MYUEE1,UETOKEN)
UETOKEN DS F
MYUEE1 SAVE (14,12),T,*
 LR R2,R15
 USING MYUEE1,R2
UEKEY WTO 'UEEXIT BEING DRIVEN'
 EZASMI TYPE=TERMAPI Issue EZASMI Macro for Termapi
 POST ECB,1
 RETURN (14,12),T,RC=0
 DROP R2

Diagnosing problems in applications using the macro API
TCP/IP provides a trace facility that can be helpful in diagnosing problems in applications using the Macro
API. The trace is implemented using the TCP/IP Component Trace (CTRACE) SOCKAPI trace option. The
SOCKAPI trace option allows all Macro socket API calls issued by an application to be traced in the TCP/IP
CTRACE. The SOCKAPI trace records include information such as the type of socket call, input, and output
parameters and return codes. This trace can be helpful in isolating failing socket API calls and in
determining the nature of the error or the history of socket API calls that might be the cause of an error.
For more information about the SOCKAPI trace option, see z/OS Communications Server: IP Diagnosis
Guide.

Macros for assembler programs
This information contains the description, syntax, parameters, and other related information for every
macro included in this API.

The EZASMI macro is located in the SEZACMAC library.

ACCEPT
The ACCEPT macro is issued when the server receives a connection request from a client. ACCEPT points
to a socket that was created with a SOCKET macro and marked by a LISTEN macro. If a process waits for
the completion of connection requests from several peer processes, a later ACCEPT macro can block until
one of the CONNECT macros completes. To avoid this, issue a SELECT macro between the CONNECT and

202 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

the ACCEPT macros. Concurrent server programs use the ACCEPT macro to pass connection requests to
subtasks.

When issued, the ACCEPT macro takes the following actions:

1. Accepts the first connection on a queue of pending connections.
2. Creates a new socket with the same properties as the socket used in the macro and returns the

address of the client for use by subsequent server macros. The new socket cannot be used to accept
new connections, but can be used by the calling program for its own connection. The original socket
remains available to the calling program for more connection requests.

3. Returns the new socket descriptor to the calling program.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 203

EZASMI TYPE=ACCEPT ,S = number

address

*indaddr

(reg)

,NAME =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,NS = number

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the descriptor of the
socket from which the connection is accepted.

NAME

Output parameter. Initially, the IPv4 or IPv6 application provides a pointer to the IPv4 or IPv6 socket
address structure, which is filled on completion of the call with the socket address of the connection
peer. Include the SYS1.MACLIB(BPXYSOCK) macro to get the assembler mappings for the socket
address structure. The socket address structure mappings begin at the SOCKADDR label. The
AF_INET socket address structure fields start at the SOCK_SIN label. The AF_INET6 socket address
structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field
Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For IPv4 the value is a decimal 2,
indicating AF_INET.

204 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

PORT
A halfword binary field that is set to the client port number.

IPv4-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 Internet address, in network byte order, of the
client host machine.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but not used.

The IPv6 socket address structure contains the following fields:
Field

Description
NAMELEN

A 1-byte binary field specifying the length of this IPv6 socket address structure. Any value
specified by the use of this field is ignored when processed as input and the field is set to 0 when
processed as output.

FAMILY
A 1-byte binary field specifying the IPv6 addressing family. For IPv6 the value is a decimal 19,
indicating AF_INET6.

PORT
A halfword binary field that is set to the client port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet address, in network byte order, of the
client host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. If RETCODE is positive, RETCODE is the new socket number.

If RETCODE is negative, check ERRNO for an error number.

Value
Description

>0
Successful call.

-1
Check ERRNO for an error code.

NS
Input parameter. A value or the address of a halfword binary number specifying the descriptor
number chosen for the new socket, which is the socket for the client at the time. If NS is not specified,
the interface assigns it.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:

Chapter 12. Macro application programming interface 205

For ECB
A 4-byte ECB posted by TCP/IP when the macro completes.

For REQAREA
A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

BIND
In a server program, the BIND macro normally follows a SOCKET macro to complete the new socket
creation process.

The BIND macro can specify the port or let the system choose the port. A listener program should always
bind to the same well-known port so that clients know the socket address to use when issuing a
CONNECT, SENDTO, or SENDMSG request.

In addition to the port, the application also specifies an IP address on the BIND macro. Most applications
typically specify a value of 0 for the IP address, which allows these applications to accept new TCP
connections or receive UDP datagrams that arrive over any of the network interfaces of the local host. This
enables client applications to contact the application using any of the IP addresses associated with the
local host.

Alternatively, an application can indicate that it is interested in receiving new TCP connections or UDP
datagrams that are targeted towards only a specific IP address associated with the local host. This can be
accomplished by specifying the IP address in the appropriate field of the socket address structure passed
on the NAME parameter.

Tip: Even if an application specifies the value 0 for the IP address on the BIND, the system administrator
can override that value by specifying the BIND parameter on the PORT reservation statement in the
TCP/IP profile. The effect of this override is similar to the effect of the application specifying an explicit IP
address on the BIND macro. For more information, see z/OS Communications Server: IP Configuration
Reference.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

206 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=BIND ,S = number

address

*indaddr

(reg)

,NAME = address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor.

NAME

Input parameter. The IPv4 or IPv6 application provides a pointer to an IPv4 or IPv6 socket address
structure. This structure specifies the port number and an IPv4 or IPv6 IP address from which the
application can accept connections. Include the SYS1.MACLIB(BPXYSOCK) macro to get the
assembler mappings for the socket address structure. The socket address structure mappings begin
at the SOCKADDR label. The AF_INET socket address structure fields start at the SOCK_SIN label. The
AF_INET6 socket address structure fields start at the SOCK_SIN6 label.

See Chapter 3, “Designing an iterative server program,” on page 23 for more information.

The IPv4 socket structure must specify the following fields:

Field
Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For IPv4 the value is a decimal 2,
indicating AF_INET.

PORT
A halfword binary field set to the port number that binds to the socket. The application can call the
GETSOCKNAME macro after the BIND macro to discover the assigned port number.

Chapter 12. Macro application programming interface 207

IPv4-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 Internet address, in network byte order, of the
host machine.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but not used.

The IPv6 socket structure must specify the following fields:

Field
Description

NAMELEN
A 1-byte binary field specifying the length of this IPv6 socket address structure. Any value
specified by the use of this field is ignored when processed as input and the field is set to 0 when
processed as output.

FAMILY
A 1-byte binary field specifying the IPv6 addressing family. For IPv6 the value is a decimal 19,
indicating AF_INET6.

PORT
A halfword binary field set to the port number that binds to the socket. The application can call the
GETSOCKNAME macro after the BIND macro to discover the assigned port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet address, in network byte order, of the
host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates that the SCOPE-ID field does
not identify the set of interfaces to be used, and can be specified for any address types and
scopes. For a link scope IPv6-ADDRESS, SCOPE-ID can specify a link index which identifies a set
of interfaces. For all other address scopes, SCOPE-ID must be set to 0.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

208 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

BIND2ADDRSEL
The BIND2ADDRSEL macro binds a socket to the local IP address that would be selected by the stack to
communicate with the input destination IP address.

Use the BIND2ADDRSEL macro when the application must verify that the local IP address assigned by the
stack meets its address selection criteria as specified by the IPV6_ADDR_PREFERENCES socket option
before the stack sends any packets to the remote host. In a TCP or UDP application, the BIND2ADDRSEL
macro usually follows the SETSOCKOPT macro with option IPV6_ADDR_PREFERENCES and precedes any
communication with a remote host.

Result: The stack attempts to select a local IP address according to your application preferences.
However, a successful BIND2ADDRSEL macro does not guarantee that all of your selection preferences of
source IP address were met.

Guidelines:

• Use the SETSOCKOPT macro to set the IPV6_ADDR_PREFERENCES option to indicate your selection
preferences of source IP address before binding the socket and before allowing an implicit bind of the
socket to occur.

Result: If a socket has not been explicitly bound to a local IP address with a BIND or BIND2ADDRSEL
macro when a CONNECT, SENDTO, or SENDMSG macro is issued, an implicit bind occurs. The stack
chooses the local IP address used for outbound packets.

Requirement: When your application is using stream sockets, and must prevent the stack from sending
any packets whatsoever (such as SYN) to the remote host before it can verify that the local IP address
meets the values specified for the IPV6_ADDR_PREFERENCES option, do not allow the CONNECT
macro to implicitly bind the socket to a local IP address. Instead, bind the socket with the
BIND2ADDRSEL macro and test the local IP address assigned with the INET6_IS_SRCADDR macro. If
the assigned local IP address is satisfactory, you can then use the CONNECT macro to establish
communication with the remote host.

• After you successfully issue the BIND2ADDRSEL macro, use the GETSOCKNAME macro to obtain the
local IP address that is bound to the socket. When the local IP address is obtained, use the
INET6_IS_SRCADDR macro to verify that the local IP address meets your address selection criteria.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Chapter 12. Macro application programming interface 209

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=BIND2ADDRSEL ,S = number

address

*indaddr

(reg)

,NAME =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number that specifies the socket
descriptor.

Requirements: The socket must be an AF_INET6 socket. The type can be SOCK_STREAM or
SOCK_DGRAM.

NAME

Input parameter. The application provides a pointer to an AF_INET6 socket address structure. You can
specify an IPv4 address by using its IPv4-mapped IPv6 format.

Guidelines:

• Include the SYS1.MACLIB(BPXYSOCK) macro to get the assembler mappings for the socket address
structure.

• Begin the socket address structure mappings at the SOCKADDR label.
• Begin the AF_INET6 socket address structure fields at the SOCK_SIN6 label.

The IPv6 socket structure must specify the following fields:

210 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Field
Description

FAMILY
A halfword binary field that specifies the IPv6 addressing family. For IPv6 the value is the decimal
value 19, indicating AF_INET6.

PORT
A halfword binary field. This field is ignored by BIND2ADDRSEL processing.

Guideline: The application can call the GETSOCKNAME macro after the BIND2ADDRSEL macro to
discover the assigned port number.

FLOW-INFO
A fullword binary field that specifies the traffic class and flow label. This field is ignored by
BIND2ADDRSEL processing.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet address, in network byte order, of the
remote host machine that the application communicates with.

Rule: Specify an IPv4 address by using its IPv4-mapped IPv6 format.

SCOPE-ID
A fullword binary field that identifies a set of interfaces as appropriate for the scope of the address
that is specified in the IPv6-ADDRESS field. The value 0 indicates that the SCOPE-ID field does
not identify the set of interfaces to be used.

Requirement: The SCOPE-ID field must be nonzero if the address is a link-local address. For all
other address scopes, the SCOPE-ID value must be set to 0.

ERRNO
Output parameter. A fullword binary field. If the RETCODE value is negative, the ERRNO field contains
a valid error number; otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you use APITYPE=3. This parameter points to a 104-
byte field containing one of the following values:
For ECB

A 4-byte ECB that is posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field that is used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

Chapter 12. Macro application programming interface 211

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

CANCEL
The CANCEL function terminates a call in progress. The call being canceled must have specified ECB or
REQAREA.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=CANCEL ,CALAREA = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

212 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Keyword
Description

CALAREA
Input parameter. The ECB or REQAREA specified in the call being canceled.

Note: To be compatible with TCP/IP for MVS V3R1, CALAREA can be specified as CALLAREA.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this contains an error number.

RETCODE
Output parameter. A fullword binary field. If RETCODE is 0, the CANCEL was successful.
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

CLOSE
The CLOSE macro shuts down the socket and frees the resources that are allocated to the socket. Issue
the SHUTDOWN macro before you issue the CLOSE macro.

CLOSE can also be issued by a concurrent server after it gives a socket to a subtask program. After issuing
GIVESOCKET and receiving notification that the client child has successfully issued TAKESOCKET, the
concurrent server issues the CLOSE macro to complete the transfer of ownership.

Note: If a stream socket is closed while input or output data is queued, the stream connection is reset
and data transmission can be incomplete. SETSOCKOPT can be used to set a SO_LINGER condition, in
which TCP/IP continues to send data for a specified period of time after the CLOSE macro is issued. For
information about SO_LINGER, see “SETSOCKOPT” on page 499.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 12. Macro application programming interface 213

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=CLOSE ,S = number

address

*indaddr

(reg)

,ERRNO =

address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket to be
closed.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description

214 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

0
Successful call.

-1
Check ERRNO for an error code.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

CONNECT
The CONNECT macro is used by a client to establish a connection between a local socket and a remote
socket.

For stream sockets, the CONNECT macro:

• Completes the binding process for a stream socket if BIND has not been previously issued.
• Attempts connection to a remote socket. This connection must be completed before data can be

transferred.

For datagram sockets, CONNECT is not essential, but you can use it to send messages without specifying
the destination.

For both types of sockets, the following CONNECT macro sequence applies:

1. The server issues BIND and LISTEN (stream sockets only) to create a passive open socket.
2. The client issues CONNECT to request a connection.
3. The server creates a new connected socket by accepting the connection on the passive open socket.

If the socket is in blocking mode, CONNECT blocks the calling program until the connection is established
or until an error is received.

If the socket is in nonblocking mode, the return code indicates the success of the connection request.

• A 0 RETCODE indicates that the connection was completed.
• A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates that the connection could not be

completed, but since the socket is nonblocking, the CONNECT macro completes its processing.

The caller must test the completion of the connection setup by calling SELECT and testing for the ability to
write to the socket. The completion cannot be checked by issuing a second CONNECT.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Chapter 12. Macro application programming interface 215

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=CONNECT ,S = number

address

*indaddr

(reg)

,NAME =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor.

NAME

Input parameter. The NAME parameter for CONNECT specifies the IPv4 or IPv6 socket address of the
IPv4 or IPv6 IP connection peer. Include the SYS1.MACLIB(BPXYSOCK) macro to get the assembler
mappings for the socket address structure. The socket address structure mappings begin at the
SOCKADDR label. The AF_INET socket address structure fields start at the SOCK_SIN label. The
AF_INET6 socket address structure fields start at the SOCK_SIN6 label.

The IPv4 socket structure must specify the following fields:

216 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Field
Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For IPv4 the value is always a
decimal 2, indicating AF_INET.

PORT
A halfword binary field that is set to the server port number in network byte order. For example, if
the port number is 5000 in decimal, it is set to X'1388'.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet Protocol address, in network byte order,
of the server host machine. For example, if the Internet Protocol address is 129.4.5.12 in dotted
decimal notation, it is set to X'8104050C'.

RESERVED
Specifies 8 bytes of binary zeros. This field is required, but not used.

The IPv6 socket structure must specify the following fields:
Field

Description
NAMELEN

A 1-byte binary field specifying the length of this IPv6 socket address structure. Any value
specified by the use of this field is ignored when processed as input and the field is set to 0 when
processed as output.

FAMILY
A 1-byte binary field specifying the IPv6 addressing family. For IPv6 the value is a decimal 19,
indicating AF_INET6.

PORT
A halfword binary field that is set to the port number in network byte order. For example, if the
port number is 5000 in decimal, it is set to X'1388'.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet Protocol address, in network byte
order, of the client host machine. For example, if the IPv6 Internet Protocol address is
12ab:0:0:cd30:123:4567:89AB:cedf in colon-hexadecimal notation, it is set to
X'12AB00000000CD300123456789ABCDEF'.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and can be specified for any address types and scopes.
For a link scope IPv6-ADDRESS, SCOPE-ID can specify a link index which identifies a set of
interfaces. For all other address scopes, SCOPE-ID must be set to 0.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.

Chapter 12. Macro application programming interface 217

-1
Check ERRNO for an error code.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

FCNTL
The blocking mode for a socket can be queried or set to nonblocking using the FNDELAY flag. You can
query or set the FNDELAY flag even though it is not defined in your program.

See “IOCTL” on page 457 for another way to control socket blocking.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

218 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=FCNTL ,S = number

address

*indaddr

(reg)

,COMMAND =

'F_GETFL'

'F_SETFL'

address

*indaddr

(reg)

,REQARG = address

*indaddr

(reg)

,ERRNO =

address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor
for the socket that you want to unblock or query.

COMMAND
Input parameter. A fullword binary field or a literal that sets the FNDELAY flag to one of the following
values:
Value

Description
3 or 'F_GETFL'

Query the blocking mode for the socket.
4 or 'F_SETFL'

Set the mode to nonblocking for the socket. REQARG is set by TCP/IP.

The FNDELAY flag sets the nonblocking mode for the socket. If data is not present on calls that can
block (READ, READV, and RECV), the call returns a -1, and ERRNO is set to 35 (EWOULDBLOCK).

Note: Values for COMMAND that are supported by the z/OS UNIX System Services FCNTL callable
service are supported also. see z/OS UNIX System Services Programming: Assembler Callable
Services Reference for more information.

Chapter 12. Macro application programming interface 219

REQARG
A fullword binary field containing a mask that TCP/IP uses to set the FNDELAY flag.

• If COMMAND is set to 3 (query), the REQARG field should be set to 0.
• If COMMAND is set to 4 (set),

– Set REQARG to 4 to turn the FNDELAY flag on. This places the socket in nonblocking mode.
– Set REQARG to 0 to turn the FNDELAY flag off. This places the socket in blocking mode.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:

• If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking. The FNDELAY flag is on.
– If RETCODE contains X'00000000', the socket is blocking. The FNDELAY flag is off.

• If the COMMAND field was 4 (set), a successful call returns 0 in RETCODE. For either COMMAND, a
RETCODE of -1 indicates an error. Check ERRNO for the error number.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

FREEADDRINFO
The FREEADDRINFO macro frees all the address information structures returned by GETADDRINFO in the
RES parameter.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

220 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=FREEADDRINFO ,ADDRINFO = address

*indaddr

(reg)

,ERRNO =

address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

Keyword
Description

ADDRINFO
Input parameter. The address of a set of address information structures returned by
TYPE=GETADDRINFO RES argument.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

Chapter 12. Macro application programming interface 221

GETADDRINFO
The GETADDRINFO macro translates either the name of a service location (for example, a host name), a
service name, or both, and returns a set of socket addresses and associated information to be used in
creating a socket with which to address the specified service or sending a datagram to the specified
service.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

222 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=GETADDRINFO

NODE = address

*indaddr

(reg)

NODELEN = number

address

*indaddr

(reg)

SERVICE = address

*indaddr

(reg)

SERVLEN = number

address

*indaddr

(reg)

HINTS = address

*indaddr

(reg)

RES = address

*indaddr

(reg)

CANNLEN = address

*indaddr

(reg)

,ERRNO

= address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

Keyword
Description

NODE
An input parameter. Storage up to 255 bytes long that contains the host name being queried. If the
AI_NUMERICHOST flag is specified in the storage pointed to by the HINTS operand, then NODE should
contain the queried host's IP address in network byte order presentation form. This is an optional
field, but if specified you must also code NODELEN. The NODE name being queried consists of up to
NODELEN or up to the first binary zero.

You can append scope information to the host name by using the format node%scope information.
The combined information must be 255 bytes or less. For more information, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

NODELEN
An input parameter. A fullword binary field set to the length of the host name specified in the NODE
field and should not include extraneous blanks. This is an optional field, but if specified you must also
code NODE.

SERVICE
An input parameter. Storage up to 32 bytes long that contains the service name being queried. If the
AI_NUMERICSERV flag is specified in the storage pointed to by the HINTS operand, then SERVICE

Chapter 12. Macro application programming interface 223

should contain the queried port number in presentation form. This is an optional field, but if specified
you must also code SERVLEN. The SERVICE name being queried consists of up to SERVLEN or up to
the first binary zero.

SERVLEN
An input parameter. A fullword binary field set to the length of the service name specified in the
SERVICE field and should not include extraneous blanks. This is an optional field but if specified you
must also code SERVICE.

HINTS
An input parameter. If the HINTS argument is specified, then it contains the address of an addrinfo
structure containing input values that can direct the operation by providing options and limiting the
returned information to a specific socket type, address family, or protocol. If the HINTS argument is
not specified, then the information returned is as if it referred to a structure containing the value 0 for
the FLAGS, SOCTYPE and PROTO fields, and AF_UNSPEC for the AF field. Include the EZBREHST
Resolver macro to enable your program to contain the assembler mappings for the ADDR_INFO
structure.

This is an optional field.

The address information structure has the following fields:

Field
Description

FLAGS
A fullword binary field. Must have the value of 0 or the bitwise OR of one or more of the following
values:
AI_PASSIVE (X'00000001')

• Specifies how to specify the NAME pointed to in the returned RES. If this flag is specified,
then the returned address information is suitable for use in binding a socket for accepting
incoming connections for the specified service (that is the TYPE=BIND call). In this case, if
the NODE argument is not specified, then the IP address portion of the socket address
structure pointed to by the returned RES is set to INADDR_ANY for an IPv4 address or to
the IPv6 unspecified address (in6addr_any) for an IPv6 address.

• If this flag is not set, the returned address information is suitable for the TYPE=CONNECT
call (for a connection-mode protocol) or for a TYPE=CONNECT, TYPE=SENDTO, or
TYPE=SENDMSG call (for a connectionless protocol). In this case, if the NODE argument is
not specified, then the IP address portion of the socket address structure pointed to by the
returned RES is set to the default loopback address for an IPv4 address (127.0.0.1) or the
default loopback address for an IPv6 address (::1).

• This flag is ignored if the NODE argument is specified.

AI_CANONNAMEOK (X'00000002')

• If this flag is specified and the NODE argument is specified, then the TYPE=GETADDRINFO
call attempts to determine the canonical name corresponding to the NODE argument.

AI_NUMERICHOST (X'00000004')

• If this flag is specified then the NODE argument must be a numeric host address in
presentation form. Otherwise, an error of host not found [EAI_NONAME] is returned.

AI_NUMERICSERV (X'00000008')

• If this flag is specified then the SERVICE argument must be a numeric port in presentation
form. Otherwise, an error [EAI_NONAME] is returned.

AI_V4MAPPED (X'00000010')

• If this flag is specified along with the AF field with the value of AF_INET6, or a value of
AF_UNSPEC when IPv6 is supported on the system, then the caller accepts IPv4-mapped
IPv6 addresses.

224 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

– If the AF field is AF_INET6, a query for IPv4 addresses is made if the AI_ALL flag is
specified or if no IPv6 addresses are found. Any IPv4 addresses that are found are
returned as IPv4-mapped IPv6 addresses.

– If the AF field is AF_UNSPEC, queries are made for both IPv6 and IPv4 addresses. If IPv4
addresses are found and IPv6 is supported, the IPv4 addresses are returned as IPv4-
mapped IPv6 addresses.

• Otherwise, this flag is ignored.

AI_ALL (X'00000020')

• If the AF field has a value of AF_INET6 and AI_ALL is set, the AI_V4MAPPED flag must also
be set to indicate that the caller accepts all addresses: IPv6 and IPv4-mapped IPv6
addresses.

• If the AF field has a value of AF_UNSPEC, AI_ALL is accepted, but has no impact on the
processing. No matter if AI_ALL is specified or not, the caller accepts both IPv6 and IPv4
addresses. A query is first made for IPv6 addresses and if successful, the IPv6 addresses
are returned. Another query is then made for IPv4 addresses:

– If the AI_V4MAPPED flag is also specified and the system supports IPv6, the IPv4
addresses are returned as IPv4-mapped IPv6 addresses.

– If the AI_V4MAPPED flag is not specified or the system does not support IPv6, the IPv4
addresses are returned as IPv4 addresses.

• Otherwise, the flag is ignored.

AI_ADDRCONFIG (X'00000040')
If this flag is specified, then a query for IPv6 on the NODE will occur if the Resolver determines
whether either of the following conditions is true:

• If the system is IPv6 enabled and has at least one IPv6 interface, the Resolver makes a
query for IPv6 (AAAA or A6 DNS) records.

• If the system is IPv4 enabled and has at least one IPv4 interface, the Resolver makes a
query for IPv4 (A DNS) records.

The loopback address is not considered in this case as a valid interface.
AI_EXTFLAGS (X'00000080') or a decimal value of 128

Requests the extended form of the getaddrinfo function. The extended form allows for
additional hints to be passed to the resolver for determining the order of destination
addresses that is returned. If this flag is specified, the EFLAGS field is required.

AF
A fullword binary field. Used to limit the returned information to a specific address family. The
value of AF_UNSPEC means that the caller accepts any protocol family. The value of a decimal 0
indicates AF_UNSPEC. The value of a decimal 2 indicates AF_INET, and the value of a decimal 19
indicates AF_INET6.

SOCTYPE

A fullword binary field. Used to limit the returned information to a specific socket type. A value of 0
means that the caller accepts any socket type. If a specific socket type is not given (for example, a
value of 0), then information on all supported socket types is returned.

The following table shows the acceptable socket types:

Type name Decimal value Description

SOCK_STREAM 1 for stream socket

SOCK_DGRAM 2 for datagram socket

SOCK_RAW 3 for raw-protocol interface

Chapter 12. Macro application programming interface 225

Anything else will fail with return code EAI_SOCKTYPE. Note that although SOCK_RAW is
accepted, it is valid only when SERVICE is numeric (for example, SERVICE=23). A lookup for a
SERVICE name will never occur in the appropriate services file (for example, hlq.ETC.SERVICES)
using any protocol value other than SOCK_STREAM or SOCK_DGRAM.

If PROTO is not 0 and SOCTYPE is 0, then the only acceptable input values for PROTO are
IPPROTO_TCP and IPPROTO_UDP. Otherwise, the TYPE=GETADDRINFO fails with return code
EAI_BADFLAGS.

If SOCTYPE and PROTO are both specified as 0 then TYPE=GETADDRINFO proceeds as follows:

• If SERVICE is null, or if SERVICE is numeric, then any returned addrinfos defaults to a
specification of SOCTYPE as SOCK_STREAM.

• If SERVICE is specified as a service name (for example, SERVICE=FTP), then
TYPE=GETADDRINFO searches the appropriate services file (such as, hlq.ETC.SERVICES)
twice. The first search uses SOCK_STREAM as the protocol, and the second search uses
SOCK_DGRAM as the protocol. No default socket type is provided in this case.

If both SOCTYPE and PROTO are specified as a value other than 0 then they should be
compatible, regardless of the value specified by SERVICE. In this context, compatible can have
one of the following meanings:

• SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
• SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
• SOCTYPE=SOCK_RAW and PROTO can be anything

PROTO
A fullword binary field. Used to limit the returned information to a specific protocol. A value of 0
means that the caller accepts any protocol.

The following table shows the acceptable protocols:

Protocol name Decimal value Description

IPPROTO_TCP 6 TCP

IPPROTO_UDP 17 user datagram

If SOCKTYPE is 0 and PROTO is not 0, then the only acceptable input values for PROTO are
IPPROTO_TCP and IPPROTO_UDP. Otherwise, the TYPE=GETADDRINFO is failed with return code
EAI_BADFLAGS.

If PROTO and SOCKTYPE are both specified as 0, then TYPE=GETADDRINFO proceeds as follows:

• If SERVICE is null, or if SERVICE is numeric, then any returned addrinfos default to a
specification of SOCKTYPE as SOCK_STREAM.

• If SERVICE is specified as a service name (for example, SERVICE=FTP), then
TYPE=GETADDRINFO searches the appropriate services file (such as, hlq.ETC.SERVICES) twice.
The first search uses SOCK_STREAM as the protocol, and the second search uses SOCK_DGRAM
as the protocol. No default socket type is provided in this case.

If both PROTO and SOCKTYPE are specified as nonzero, then they should be compatible,
regardless of the value specified by SERVICE. In this context, compatible can have one of the
following meanings:

• SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
• SOCTYPE=SOC_DGRAM and PROTO=IPPROTO_UDP
• SOCTYPE=SOCK_RAW and PROTO can be anything

If the lookup for the value specified in SERVICE fails [that is, the service name does not appear in
the appropriate services file (for example, hlq.ETC.SERVICES) using the input protocol], then the
TYPE=GETADDRINFO fails with return code EAI_SERVICE.

226 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

NAMELEN
A fullword binary field followed by 8 padding bytes. This field must be 0.

CANONNAME
A fullword binary field followed by 4 padding bytes. This field must be 0.

NAME
A fullword binary field followed by 4 padding bytes. This field must be 0.

NEXT
A fullword binary field. This field must be 0.

EFLAGS
A fullword binary field that specifies the source IPv6 address selection preferences. This field is
required if AI_EXTFLAGS is specified in the FLAGS field.

This field must contain the value 0 or the bitwise OR of one or more of the following values:
IPV6_PREFER_SRC_HOME (X'00000001') or the decimal value 1

Indicates that home source IPv6 addresses are preferred over care-of source IPv6 addresses.
IPV6_PREFER_SRC_COA (X'00000002') or the decimal value 2

Indicates that care-of source IPv6 addresses are preferred over home source IPv6 addresses.
IPV6_PREFER_SRC_TMP (X'00000004') or the decimal value 4

Indicates that temporary source IPv6 addresses are preferred over public source IPv6
addresses.

IPV6_PREFER_SRC_PUBLIC (X'00000008') or the decimal value 8
Indicates that public source IPv6 addresses are preferred over temporary source IPv6
addresses.

IPV6_PREFER_SRC_CGA (X'00000010') or the decimal value 16
Indicates that cryptographically generated source IPv6 addresses are preferred over non-
cryptographically generated source IPv6 addresses.

IPV6_PREFER_SRC_NONCGA (X'00000020') or the decimal value 32
Indicates that non-cryptographically generated source IPv6 addresses are preferred over
cryptographically generated source IPv6 addresses.

If contradictory EFLAGS (for example, IPV6_PREFER_SRC_TMP and IPV6_PREFER_SRC_PUBLIC)
or invalid EFLAGS (for example, X'00000040' or a decimal value 64) are specified, then the
GETADDRINFO call fails with RETCODE -1 and ERRNO EAI_BADEXTFLAGS (decimal value 11).

RES

Initially a fullword binary field. On a successful return, this field contains a pointer to a chain of one or
more address information structures. Use the EZBREHST macro to establish address information
mapping. The structures are allocated in the key of the calling application. The structures that are
returned by a TYPE=GETADDRINFO call are serially reusable storage for the z/OS UNIX process. They
can be used or referenced between process threads, but should not be used or referenced between
processes. When you finish using the structures, explicitly release their storage by specifying the
returned pointer on a TYPE=FREEADDRINFO call.

The address information structure contains the following fields. All fields in this structure that are not
specified with an explicit value are set to 0:

Field
Description

FLAGS
A fullword binary field that is not used as output.

AF
A fullword binary field. The value returned in this field can be used as the AF= argument on the
TYPE=SOCKET macro to create a socket suitable for use with the returned address NAME.

Chapter 12. Macro application programming interface 227

SOCTYPE
A fullword binary field. The value returned in this field can be used as the SOCTYPE= argument on
the TYPE=SOCKET macro to create a socket suitable for use with the returned address NAME.

PROTO
A fullword binary field. The value returned in this field can be used as the PROTO= argument on the
TYPE=SOCKET macro to create a socket suitable for use with the returned address NAME.

NAMELEN
A fullword binary field followed by 8 padding bytes. The length of the NAME socket address
structure. The value returned in this field can be used as the arguments for the TYPE=CONNECT or
TYPE=BIND macros with such a socket, according to the AI_PASSIVE flag.

CANONNAME
A fullword binary field followed by 4 padding bytes. The address of storage containing the
canonical name for the value specified by NODE. Initially, this field must be 0. If the NODE
argument is specified, and if the AI_CANONNAMEOK flag was specified by the HINTS argument,
then the CANONNAME field in the first returned address information structure contains the address
of storage containing the canonical name corresponding to the input NODE argument. If the
canonical name is not available, then the CANONNAME field refers to the NODE argument or a string
with the same contents. The CANNLEN field contains the length of the returned canonical name.

NAME
A fullword binary field followed by 4 padding bytes. The address of the returned socket address
structure. The value returned in this field can be used as the arguments for the TYPE=CONNECT or
TYPE=BIND macros with such a socket, according to the AI_PASSIVE flag.

NEXT
A fullword binary field. Contains the address of the next address information structure on the list,
or 0's if it is the last structure on the list.

EFLAGS
A fullword binary field that is not used as output.

CANNLEN
Initially an input parameter. A fullword binary field used to contain the length of the canonical name
returned by the RES CANONNAME field. This is an optional field.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

GETCLIENTID
The GETCLIENTID macro returns the identifier by which the calling application is known to the TCP/IP
address space. The client ID structure returned is used by the GIVESOCKET and TAKESOCKET macros.

When GETCLIENTID is called by a server or client, the identifier of the calling application is returned.

228 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=GETCLIENTID ,CLIENT = address

*indaddr

(reg)

,ERRNO =

address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

CLIENT
Input/Output parameter. A client ID structure describing the identifier for your application, regardless
whether a server or client.
Field

Description
DOMAIN

A fullword binary number specifying the domain of the client. On input, this is an optional
parameter for AF_INET, and a required parameter for AF_INET6 to specify the domain of the

Chapter 12. Macro application programming interface 229

client. For TCP/IP, the value is a decimal 2 indicating AF_INET, or decimal 19 indicating AF_INET6.
On output, this is the returned domain of the client.

NAME
An 8-byte character field that is filled, on completion of the call, with the client address space
identifier.

TASK
Output parameter. An 8-byte field set to the client task identifier.

RESERVED
Output parameter. Specifies 20 bytes of binary zeros. This field is required, but it is not used.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

GETHOSTBYADDR
The GETHOSTBYADDR macro returns domain and alias names of the host whose IPv4 Internet address is
specified by the macro. A TCP/IP host can have multiple alias names and host IPv4 Internet addresses.

The following requirements apply to this call:

Authorization: Supervisor state or problem state. The PSW key must match the key
in which the MVS application task was attached.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

230 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=GETHOSTBYADDR ,HOSTADR = number

address

*indaddr

(reg)

,HOSTENT

= address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Note: The storage for the HOSTENT structure returned by this call is released during TERMAPI
processing; therefore, the application program must not use the HOSTENT storage after the TERMAPI.

Keyword
Description

HOSTADR
Input parameter. A fullword unsigned binary field set to the Internet address of the host whose name
you want to find.

HOSTENT
Input parameter. A fullword containing the address of the HOSTENT structure returned by the macro.
For information about the HOSTENT structure, see Figure 64 on page 232.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
>0

Successful call.
-1

An error occurred.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

Chapter 12. Macro application programming interface 231

Figure 64. HOSTENT structure returned by the GETHOSTBYADDR macro

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 64 on page 232. The HOSTENT
structure is a tasks's serially reusable storage area. It should not be used or referenced between MVS
tasks. The storage is freed when the task terminates. The assembler mapping of the structure is defined
in macro EZBREHST, which is installed in the data set specified on your SMP/E DDDEF for MACLIB. This
structure contains:

• The address of the host name returned by the macro. The name length is variable and is ended by X'00'.
• The address of a list of addresses that point to the alias names returned by the GETHOSTBYADDR. This

list is ended by the pointer X'00000000'. Each alias name is a variable length field ended by X'00'.
• The value returned in the FAMILY field is always 2 to signify AF_INET.
• The length of the host Internet address returned in the HOSTADDR_LEN field is always 4 to signify

AF_INET.
• The address of a list of addresses that point to the host Internet addresses returned by the macro. The

list is ended by the pointer X'00000000'.

The HOSTENT structure uses indirect addressing to return a variable number of alias names and Internet
addresses.

GETHOSTBYNAME
The GETHOSTBYNAME macro returns the alias names and the IPv4 Internet addresses of a host whose
domain name is specified in the macro.

232 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The name resolution attempted depends on how the resolver is configured and if any local host tables
exist. See z/OS Communications Server: IP Configuration Guide for information about configuring the
resolver and using local host tables.

If the host name is not found, the return code is -1.

Important: Repeated use of GETHOSTBYNAME before calls which implicitly or explicitly invoke INITAPI
can result in the allocation of unreleased storage.

The following requirements apply to this call:

Authorization: Supervisor state or problem state. The PSW key must match the key
in which the MVS application task was attached.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=GETHOSTBYNAME ,NAMELEN = number

address

*indaddr

(reg)

,NAME =

address

*indaddr

(reg)

,HOSTENT = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Note: The storage for the HOSTENT structure returned by this call is released during TERMAPI
processing; therefore, the application program must not use the HOSTENT storage after the TERMAPI.

Keyword
Description

Chapter 12. Macro application programming interface 233

NAMELEN
Input parameter. A value or the address of a fullword binary field specifying the length of the name
and alias fields. This length has a maximum value of 255 bytes.

NAME
A character string, up to 255 characters, set to a host name. This call returns the address of HOSTENT
for this name. Any trailing blanks are removed from the specified name prior to trying to resolve it to
an IP address.

HOSTENT
Output parameter. A fullword word containing the address of HOSTENT returned by the macro. For
information about the HOSTENT structure, see Figure 65 on page 235.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
0

Successful call.
-1

An error occurred.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

234 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Figure 65. HOSTENT structure returned by the GETHOSTBYNAME macro

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 65 on page 235. The HOSTENT
structure is a tasks's serially reusable storage area. It should not be used or referenced between MVS
tasks. The storage is freed when the task terminates. The assembler mapping of the structure is defined
in macro EZBREHST, which is installed in the data set specified on your SMP/E DDDEF for MACLIB. This
structure contains:

• The address of the host name returned by the macro. The name length is variable and is ended by X'00'.
• The address of a list of addresses that point to the alias names returned by GETHOSTBYNAME. This list

is ended by the pointer X'00000000'. Each alias name is a variable length field ended by X'00'.
• The value returned in the FAMILY field is always 2 to signify AF_INET.
• The length of the host Internet address returned in the HOSTADDR_LEN field is always 4 to signify

AF_INET.
• The address of a list of addresses that point to the host Internet addresses returned by the macro. The

list is ended by the pointer X'00000000'.

The HOSTENT structure uses indirect addressing to return a variable number of alias names and Internet
addresses.

GETHOSTID
The GETHOSTID macro returns the 32-bit identifier for the current host. This value is the default home
Internet address.

The following requirements apply to this call:

Chapter 12. Macro application programming interface 235

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=GETHOSTID ,RETCODE = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

RETCODE
Output parameter. Returns a fullword binary field containing the 32-bit Internet address of the host. A
-1 in RETCODE indicates an error. There is no ERRNO parameter for this macro.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

236 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

GETHOSTNAME
The GETHOSTNAME macro returns the name of the host processor on which the program is running. As
many as NAMELEN characters are copied into the NAME field.

Note: The host name that is returned is the host name the TCPIP stack learned at startup from the
TCPIP.DATA file that was found. For more information about host name, see HOSTNAME statement in
z/OS Communications Server: IP Configuration Reference.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 237

EZASMI TYPE=GETHOSTNAME ,NAMELEN = address

*indaddr

(reg)

,NAME =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

NAMELEN
Input parameter. A fullword set to a value or the address of a fullword binary field set to the length of
the name field. The minimum length of the NAME field is 1 character. The maximum length of the
NAME field is 255 characters.

NAME
The application provides a pointer to a receiving field for the host name. If the host name is shorter
than the NAMELEN value, the NAME field is filled with binary zeros after the host name. If the host
name is longer than the NAMELEN value, the name is truncated.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

An error occurred.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:

238 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

For ECB
A 4-byte ECB posted by TCP/IP when the macro completes.

For REQAREA
A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

GETIBMOPT
The GETIBMOPT macro returns the number of TCP/IP images installed on a given MVS system and the
status, version, and name of each image. With this information, the caller can dynamically choose the
TCP/IP image with which to connect, using the INITAPI macro. The GETIBMOPT macro is optional. If you
do not use this macro, follow the standard method to determine the connecting TCP/IP image:

1. Connect to the TCP/IP specified by TCPIPJOBNAME in the active TCPIP.DATA file.
2. Locate TCPIP.DATA using the search order described in the z/OS Communications Server: IP

Configuration Reference.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 239

EZASMI TYPE=GETIBMOPT ,COMMAND = number

address

*indaddr

(reg)

,BUF =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

COMMAND
Input parameter. A value or the address of a fullword binary number specifying the command to be
processed. The only valid value is 1.

BUF
Output parameter. A 100-byte buffer into which each active TCP/IP image status, version, and name
are placed.

On successful return, these buffer entries contain the status, name and version of up to eight active
TCP/IP images. The following layout shows BUF upon completion of the call.

240 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

NUM_IMAGES

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

(4 bytes)

Figure 66. NUM_IMAGES field settings

The NUM_IMAGES field indicates how many entries of TCP_IMAGE are included in the total BUF field.
If the NUM_IMAGES returned is 0, there are no TCP/IP images present.

The status field can combine the following information:
Status Field

Meaning
X'8xxx'

Active
X'4xxx'

Terminating
X'2xxx'

Down
X'1xxx'

Stopped or stopping

Note: In the above status fields, xxx is reserved for IBM use and can contain any value.

When the status field returns Down and Stopped, TCP/IP abended. Stopped, returned alone, indicates
that TCP/IP was stopped. The following table shows the examples that are returned on version field:

Version Field

TCP/IP z/OS Communications Server V1R13 X'061D'

TCP/IP z/OS Communications Server V2R1 X'0621'

The name field is the PROC name, left-aligned, and padded with blanks.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

Chapter 12. Macro application programming interface 241

RETCODE
Output parameter. A fullword binary field with the following values:
Value

Description
-1

Call returned error. See ERRNO.
>=0

Successful call.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

GETNAMEINFO
The GETNAMEINFO macro returns the node name and service location of a socket address that is
specified in the macro. On successful completion, GETNAMEINFO returns the node and service named, if
requested, in the buffers provided.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

242 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=GETNAMEINFO ,NAME = address

*indaddr

(reg)

,NAMELEN =

number

address

*indaddr

(reg)

HOST = address

*indaddr

(reg)

HOSTLEN = number

address

*indaddr

(reg)

SERVICE = address

*indaddr

(reg)

SERVLEN = number

address

*indaddr

(reg)

FLAGS = 'NI_DGRAM'

'NI_NAMEREQD'

'NI_NOFQDN'

'NI_NUMERICHOST'

'NI_NUMERICSCOPE'

'NI_NUMERICSERV'

number

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

Keyword
Description

NAME

An input parameter. An IPv4 or IPv6 socket address structure to be translated. Include the
SYS1.MACLIB(BPXYSOCK) macro to get the assembler mappings for the socket address structure.
The socket address structure mappings begin at the SOCKADDR label. The AF_INET socket address

Chapter 12. Macro application programming interface 243

structure fields start at the SOCK_SIN label. The AF_INET6 socket address structure fields start at
the SOCK_SIN6 label.

The IPv4 socket address structure must specify the following fields:

Field
Description

FAMILY
A halfword binary number specifying the IPv4 addressing family. For TCP/IP the value is a decimal
2, indicating AF_INET.

PORT
A halfword binary number specifying the port number.

IPv4–ADDRESS
A fullword binary number specifying the 32-bit IPv4 Internet address.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure specifies the following fields:

Field
Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket address structure. Any value
specified by the use of this field is ignored when processed as input. The field is set to 0 when
processed as output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For TCP/IP the value is a decimal
19, indicating AF_INET6.

PORT
A halfword binary number that specifies the port number.

FLOW-INFO
This field is ignored by the TYPE=GETNAMEINFO macro.

IPv6–ADDRESS
A 16-byte binary field that specifies the 128-bit IPv6 Internet address, in network byte order.

SCOPE-ID
A fullword binary field that specifies the scope for an IPv6 address as an interface index. The
resolver ignores the SCOPE_ID field, unless the address in IPv6-ADDRESS is a link-local address
and the HOST parameter also is specified.

NAMELEN
An input parameter. A fullword binary field. The length of the socket address structure pointed to by
the NAME argument.

HOST
On input, storage capable of holding the returned resolved host name, which can be up to 255 bytes
long, for the input socket address. If inadequate storage is specified to contain the resolved host
name, then the resolver returns the host name up to the storage specified and truncation might occur.
If the host's name cannot be located, the numeric form of the host's address is returned instead of its
name. However, if the NI_NAMEREQD option is specified and no host name is located, an error is
returned. One or both of the following groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs. The HOST name being queried consists of up to HOSTLEN or up to the first
binary 0.

If the IPv6-ADDRESS value is a link-local address, and the SCOPE_ID interface index is nonzero,
scope information is appended to the resolved host name using the format host%scope information.

244 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The scope information can be the numeric form of the SCOPE_ID interface index or the interface
name that is associated with the SCOPE_ID interface index. Use the NI_NUMERICSCOPE option to
select which form is returned. The combined host name and scope information is 255 bytes or less.
For more information about scope information and TYPE=GETNAMEINFO processing, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

HOSTLEN
Initially an input parameter. A fullword binary field that contains the length of the host storage that is
used to contain the returned resolved host name. If HOSTLEN is 0 on input, then the resolved host
name is not returned. The HOSTLEN value must be equal to or greater than the length of the longest
host name, or hostname and scope information combination, to be returned. The
TYPE=GETNAMEINFO returns the host name, or host name and scope information combination, up to
the length specified by the HOSTLEN value. On output, HOSTLEN contains the length of the returned
resolved host name, or host name and scope information combination. This is an optional field, but if
you specify this field, you also must code the HOST value. One or both of the following groups of
parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
SERVICE

On input, storage capable of holding the returned resolved service name, which can be up to 32 bytes
long, for the input socket address. If inadequate storage is specified to contain the resolved service
name, then the resolver returns the service name up to the storage specified and truncation might
occur. If the service name cannot be located, or if NI_NUMERICSERV was specified in the FLAGS
operand, then the presentation form of the service address is returned instead of its name. This is an
optional field, but if you specify this field, you also must code the SERVLEN parameter. The SERVICE
name being queried consists of up to SERVLEN or up to the first binary zero. One or both of the
following groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
SERVLEN

Initially an input parameter. A fullword binary field that contains the length of the SERVICE storage
used to contain the returned resolved service name. If SERVLEN is 0 on input, then the service name
information is not returned. SERVLEN must be equal to or greater than the length of the longest
service name to be returned. The TYPE=GETNAMEINFO returns the service name up to the length
specified by SERVLEN. On output, SERVLEN contains the length of the returned resolved service
name. This is an optional field, but if you specify it, you also must code the SERVICE parameter. One or
both of the following groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
FLAGS

An input parameter. A fullword binary field. This is an optional field. A resultant binary value can
represent multiple flags. If this parameter is not specified, the fully qualified host name is returned.
The FLAGS argument can be a literal value or a fullword binary field:

Literal Value Binary Value Decimal
Value

Description

'NI_NOFQDN' X'00000001' 1 Return the NAME portion of the fully qualified
domain name.

'NI_NUMERICHOST' X'00000002' 2 Only return the numeric form of host's
address.

Chapter 12. Macro application programming interface 245

Literal Value Binary Value Decimal
Value

Description

'NI_NAMEREQD' X'00000004' 4 Return an error if the host's name cannot be
located.

'NI_NUMERICSERV' X'00000008' 8 Only return the numeric form of the service
address.

'NI_DGRAM' X'00000010' 16 Indicates that the service is a datagram
service. The default behavior is to assume
that the service is a stream service.

'NI_NUMERICSCOPE' X'00000020' 32 Only return the numeric form of the SCOPE-ID
interface index, if applicable.

Do not specify both the NI_NUMERICHOST and the NI_NAMEREQD flags; otherwise, you get the
EAI_FAIL (3) error. See Appendix F, “GETNAMEINFO flags and returned information examples,” on
page 779 for examples of returned information when various combinations of flags are used.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

GETPEERNAME
The GETPEERNAME macro returns the name of the remote socket to which the local socket is connected.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

246 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=GETPEERNAME ,S = number

address

*indaddr

(reg)

,NAME =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
A value or the address of a halfword binary number specifying the local socket connected to the
remote peer whose address is required.

NAME

Initially points to the peer name structure. It is filled when the call completes with the IPv4 or IPv6
address structure for the remote socket connected to the local socket, specified by S. Include the
SYS1.MACLIB(BPXYSOCK) macro to get the assembler mappings for the socket address structure.
The socket address structure mappings begin at the SOCKADDR label. The AF_INET socket address
structure fields start at the SOCK_SIN label. The AF_INET6 socket address structure fields start at the
SOCK_SIN6 label.

The IPv4 socket address structure must specify the following fields:

Field
Description

FAMILY
A halfword binary field set to the connection peer IPv4 addressing family. The IPv4 value is always
a decimal 2, indicating AF_INET.

PORT
A halfword binary field set to the connection peer port number.

Chapter 12. Macro application programming interface 247

IPv4-ADDRESS
A fullword binary field set to the 32-bit IPv4 Internet address of the connection peer host
machine.

RESERVED
Input parameter. Specifies an 8-byte reserved field. This field is required, but not used.

The IPv6 socket structure must specify the following fields:
Field

Description
NAMELEN

A 1-byte binary field specifying the length of this IPv6 socket address structure. Any value
specified by the use of this field is ignored when processed as input and the field is set to 0 when
processed as output.

FAMILY
A 1-byte binary field specifying the IPv6 addressing family. For IPv6 the value is a decimal 19,
indicating AF_INET6.

PORT
A halfword binary field set to the connection peer port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet address, in network byte order, of the
connection peer host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field.
Value

Description
0

Successful call.
-1

An error occurred.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

248 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

GETSOCKNAME
The GETSOCKNAME macro stores the name of the socket into the structure pointed to by NAME and
returns the address to the socket that has been bound. If the socket is not bound to an address, the
macro returns with the FAMILY field completed and the rest of the structure set to zeros.

Stream sockets are not assigned a name until after a successful call to BIND, CONNECT, or ACCEPT.

Use the GETSOCKNAME macro to determine the port assigned to a socket after that socket has been
implicitly bound to a port. If an application calls CONNECT without previously calling BIND, the CONNECT
macro completes the binding necessary by assigning a port to the socket. You can determine the port
assigned to the socket by issuing GETSOCKNAME.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 249

EZASMI TYPE=GETSOCKNAME ,S = number

address

*indaddr

(reg)

,NAME =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor.

NAME

Initially, the application provides a pointer to the IPv4 or IPv6 socket address structure, which is
specified on completion of the call with the socket name. Include the SYS1.MACLIB(BPXYSOCK)
macro to get the assembler mappings for the socket address structure. The socket address structure
mappings begin at the SOCKADDR label. The AF_INET socket address structure fields start at the
SOCK_SIN label. The AF_INET6 socket address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure must specify the following fields:

Field
Description

FAMILY
Output parameter. A halfword binary field containing the IPv4 addressing family. The value for
IPv4 socket descriptor (S parameter) is a decimal 2, indicating AF_INET.

PORT
Output parameter. A halfword binary field set to the port number bound to this socket. If the
socket is not bound, a 0 is returned.

IPv4-ADDRESS
Output parameter. A fullword binary field set to the 32-bit IPv4 Internet address of the local host
machine.

RESERVED
Output parameter. Specifies 8 bytes of binary zeros. This field is required, but not used.

The IPv6 socket structure must specify the following fields:

250 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Field
Description

NAMELEN
Output parameter. A 1-byte binary field specifying the length of this IPv6 socket address
structure. Any value specified by the use of this field is ignored when processed as input and the
field is set to 0 when processed as output.

FAMILY
Output parameter. A 1-byte binary field specifying the IPv6 addressing family. The value for IPv6
socket descriptor (S parameter) is a decimal 19, indicating AF_INET6.

PORT
Output parameter. A halfword binary field set to the port number bound to this socket. If the
socket is not bound, a 0 is returned.

FLOW-INFO
Output parameter. A fullword binary field specifying the traffic class and flow label. This value of
this field is undefined.

IPv6-ADDRESS
Output parameter. A 16-byte binary field that is set to the 128-bit IPv6 Internet address, in
network byte order, of the local host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

An error occurred.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

Chapter 12. Macro application programming interface 251

GETSOCKOPT
The GETSOCKOPT macro gets the options associated with a socket that were set using the SETSOCKOPT
macro.

The options for each socket are described by the following parameters. You must specify the option that
you want when you issue the GETSOCKOPT macro.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

252 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=GETSOCKOPT ,S = number

address

*indaddr

(reg)

,OPTNAME =

'IP_MULTICAST_IF'

'IP_MULTICAST_LOOP'

'IP_MULTICAST_TTL'

'IPV6_ADDR_PREFERENCES'

'IPV6_MULTICAST_HOPS'

'IPV6_MULTICAST_IF'

'IPV6_MULTICAST_LOOP'

'IPV6_UNICAST_HOPS'

'IPV6_V6ONLY'

'SO_BROADCAST'

'SO_ERROR'

'SO_KEEPALIVE'

'SO_LINGER'

'SO_OOBINLINE'

'SO_RCVBUF'

'SO_RCVTIMEO'

'SO_REUSEADDR'

'SO_SNDBUF'

'SO_SNDTIMEO'

'SO_TYPE'

'TCP_KEEPALIVE'

'TCP_NODELAY'

address

*indaddr

(reg)

,OPTVAL = address

*indaddr

(reg)

,OPTLEN

= address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

Chapter 12. Macro application programming interface 253

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor
of the socket requiring options.

OPTNAME
Input parameter. See the table below for a list of the options and their unique requirements. See
Appendix D, “GETSOCKOPT/SETSOCKOPT command values,” on page 769 for the numeric values of
OPTNAME.

OPTLEN
Input parameter. A fullword binary field containing the length of the data returned in OPTVAL. See the
table below for determining on what to base the value of OPTLEN.

OPTVAL
Output parameter. See the table below for a list of the options and their unique requirements.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

254 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_ADD_MEMBERSHIP

Use this option to enable an application to
join a multicast group on a specific
interface. An interface has to be specified
with this option. Only applications that
want to receive multicast datagrams need
to join multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a 4-
byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_ADD_SOURCE_MEMBERSHIP

Use this option to enable an application to
join a source multicast group on a specific
interface and a specific source address.
You must specify an interface and a
source address with this option.
Applications that want to receive
multicast datagrams need to join source
multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_BLOCK_SOURCE

Use this option to enable an application to
block multicast packets that have a
source address that matches the given
IPv4 source address. You must specify an
interface and a source address with this
option. The specified multicast group
must have been joined previously.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

Chapter 12. Macro application programming interface 255

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_DROP_MEMBERSHIP

Use this option to enable an application to
exit a multicast group or to exit all sources
for a multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a 4-
byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_DROP_SOURCE_MEMBERSHIP

Use this option to enable an application to
exit a source multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the IPv4
interface address used for sending
outbound multicast datagrams from the
socket application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be
transmitted only on one interface at a
time.

A 4-byte binary field containing
an IPv4 interface address.

A 4-byte binary field containing
an IPv4 interface address.

IP_MULTICAST_LOOP

Use this option to control or determine
whether a copy of multicast datagrams is
looped back for multicast datagrams sent
to a group to which the sending host itself
belongs. The default is to loop the
datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will contain a 1.

If disabled, will contain a 0.

256 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast
datagrams. The default value is '01'x
meaning that multicast is available only to
the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

IP_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given IPv4 multicast group. You must
specify an interface and a source address
with this option.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

Chapter 12. Macro application programming interface 257

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_ADDR_PREFERENCES

Use this option to query or set IPv6
address preferences of a socket. The
default source address selection
algorithm considers these preferences
when it selects an IP address that is
appropriate to communicate with a given
destination address.

This is an AF_INET6-only socket option.

Result: These flags are only preferences.
The stack could assign a source IP
address that does not conform to the
IPV6_ADDR_PREFERENCES flags that you
specify.

Guideline: Use the INET6_IS_SRCADDR
function to test whether the source IP
address matches one or more
IPV6_ADDR_PREFERENCES flags.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

Some of these flags are
contradictory. Combining
contradictory flags, such as
IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA,
results in error code EINVAL.

See IPV6_ADDR_PREFERENCES
and Mapping of GAI_HINTS/
GAI_ADDRINFO EFLAGS in
SEZAINST(CBLOCK) for the PL/I
example of the OPTNAME and
flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_ NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

See IPV6_ADDR_
PREFERENCES and Mapping of
GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

258 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_JOIN_GROUP

Use this option to control the reception of
multicast packets and specify that the
socket join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK) for
the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of
multicast packets and specify that the
socket leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK) for
the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: An application must be
APF authorized to enable it to
set the hop limit value above the
system defined hop limit value.
CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of multicast hops.

Chapter 12. Macro application programming interface 259

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_MULTICAST_IF

Use this option to set or obtain the index
of the IPv6 interface used for sending
outbound multicast datagrams from the
socket application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine
whether a multicast datagram is looped
back on the outgoing interface by the IP
layer for local delivery when datagrams
are sent to a group to which the sending
host itself belongs. The default is to loop
multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop
limit used for outgoing unicast IPv6
packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: APF authorized
applications are permitted to set
a hop limit that exceeds the
system configured default. CICS
applications cannot execute as
APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of unicast hops.

IPV6_V6ONLY

Use this option to set or determine
whether the socket is restricted to send
and receive only IPv6 packets. The
default is to not restrict the sending and
receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

260 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_BLOCK_SOURCE

Use this option to enable an application to
block multicast packets that have a
source address that matches the given
source address. You must specify an
interface index and a source address with
this option. The specified multicast group
must have been joined previously.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_JOIN_GROUP

Use this option to enable an application to
join a multicast group on a specific
interface. You must specify an interface
index. Applications that want to receive
multicast datagrams must join multicast
groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_JOIN_SOURCE_GROUP

Use this option to enable an application to
join a source multicast group on a specific
interface and a source address. You must
specify an interface index and the source
address. Applications that want to receive
multicast datagrams only from specific
source addresses need to join source
multicast groups.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

Chapter 12. Macro application programming interface 261

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_LEAVE_GROUP

Use this option to enable an application to
exit a multicast group or exit all sources
for a given multicast groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to
exit a source multicast group.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given multicast group. You must specify
an interface index and a source address
with this option.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

262 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to
ASCII. When SO_ASCII is not set, data is
not translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_BROADCAST

Use this option to set or determine
whether a program can send broadcast
messages over the socket to destinations
that can receive datagram messages. The
default is disabled.

Note: This option has no meaning for
stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the
status of the debug option. The default is
disabled. The debug option controls the
recording of debug information.

Notes:

1. This is a REXX-only socket option.
2. This option has meaning only for

stream sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set,
data is not translated to or from EBCDIC.
This option is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_ERROR

Use this option to request pending errors
on the socket or to check for
asynchronous errors on connected
datagram sockets or for other errors that
are not explicitly returned by one of the
socket calls. The error status is clear
afterwards.

N/A A 4-byte binary field containing
the most recent ERRNO for the
socket.

Chapter 12. Macro application programming interface 263

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_KEEPALIVE

Use this option to set or determine
whether the keep alive mechanism
periodically sends a packet on an
otherwise idle connection for a stream
socket.

The default is disabled.

When activated, the keep alive
mechanism periodically sends a packet on
an otherwise idle connection. If the
remote TCP does not respond to the
packet or to retransmissions of the
packet, the connection is terminated with
the error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine
how TCP/IP processes data that has not
been transmitted when a CLOSE is issued
for the socket. The default is disabled.

Notes:

1. This option has meaning only for
stream sockets.

2. If you set a zero linger time, the
connection cannot close in an orderly
manner, but stops, resulting in a RESET
segment being sent to the connection
partner. Also, if the aborting socket is
in nonblocking mode, the close call is
treated as though no linger option had
been set.

When SO_LINGER is set and CLOSE is
called, the calling program is blocked until
the data is successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and
TCP/IP continues to attempt to send data
for a specified time. This usually allows
sufficient time to complete the data
transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP waits only the amount of time
specified in OPTVAL for SO_LINGER.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable
this option. Set LINGER to the
number of seconds that TCP/IP
lingers after the CLOSE is issued.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a 0
indicates disabled. LINGER
indicates the number of seconds
that TCP/IP will try to send data
after the CLOSE is issued.

264 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_OOBINLINE

Use this option to control or determine
whether out-of-band data is received.

Note: This option has meaning only for
stream sockets.

When this option is set, out-of-band data
is placed in the normal data input queue
as it is received and is available to a RECV
or a RECVFROM even if the OOB flag is not
set in the RECV or the RECVFROM.

When this option is disabled, out-of-band
data is placed in the priority data input
queue as it is received and is available to
a RECV or a RECVFROM only when the
OOB flag is set in the RECV or the
RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

• TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
Socket

• UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
Socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP
receive buffer.

If disabled, contains a 0.

Chapter 12. Macro application programming interface 265

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_RCVTIMEO

Use this option to control or determine
the maximum length of time that a
receive-type function can wait before it
completes.

If a receive-type function has blocked for
the maximum length of time that was
specified without receiving data, control is
returned with an errno set to
EWOULDBLOCK. The default value for this
option is 0, which indicates that a receive-
type function does not time out.

When the MSG_WAITALL flag (stream
sockets only) is specified, the timeout
takes precedence. The receive-type
function can return the partial count. See
the explanation of that operation's
MSG_WAITALL flag parameter.

The following receive-type functions are
supported:

• READ
• READV
• RECV
• RECVFROM
• RECVMSG

This option requires a TIMEVAL
structure, which is defined in
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds can be a value in the
range 0 - 2 678 400 (equal to 31
days), and the microseconds can
be a value in the range 0 -
 1 000 000 (equal to 1 second).
Although TIMEVAL value can be
specified using microsecond
granularity, the internal TCP/IP
timers that are used to
implement this function have a
granularity of approximately 100
milliseconds.

This option stores a TIMEVAL
structure that is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2 678 400 (equal
to 31 days). The number of
microseconds value that is
returned is in the range 0 -
 1 000 000.

266 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_REUSEADDR

Use this option to control or determine
whether local addresses are reused. The
default is disabled. This alters the normal
algorithm used with BIND. The normal
BIND algorithm allows each Internet
address and port combination to be
bound only once. If the address and port
have been already bound, then a
subsequent BIND will fail and result error
will be EADDRINUSE.

When this option is enabled, the following
situations are supported:

• A server can BIND the same port
multiple times as long as every
invocation uses a different local IP
address and the wildcard address
INADDR_ANY is used only one time per
port.

• A server with active client connections
can be restarted and can bind to its port
without having to close all of the client
connections.

• For datagram sockets, multicasting is
supported so multiple bind() calls can
be made to the same class D address
and port number.

• If you require multiple servers to BIND
to the same port and listen on
INADDR_ANY, see the SHAREPORT
option on the PORT statement in
TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
send buffer. The size of the TCP/IP send
buffer is protocol specific and is based on
the following conditions:

• The TCPSENDBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
socket

• The UDPSENDBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP send
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP send
buffer.

If disabled, contains a 0.

Chapter 12. Macro application programming interface 267

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_SNDTIMEO

Use this option to control or determine
the maximum length of time that a send-
type function can remain blocked before it
completes.

If a send-type function has blocked for
this length of time, it returns with a partial
count or, if no data is sent, with an errno
set to EWOULDBLOCK. The default value
for this is 0, which indicates that a send-
type function does not time out.

For a SETSOCKOPT, the following send-
type functions are supported:

• SEND
• SENDMSG
• SENDTO
• WRITE
• WRITEV

This option requires a TIMEVAL
structure, which is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds value is in the range 0 -
 2 678 400 (equal to 31 days),
and the microseconds value is in
the range 0 - 1 000 000 (equal
to 1 second). Although the
TIMEVAL value can be specified
using microsecond granularity,
the internal TCP/IP timers that
are used to implement this
function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
SYS1.MACLIB(BPXYRLIM). The
TIMEVAL structure contains the
number of seconds and
microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2 678 400 (equal
to 31 days). The microseconds
value that is returned is in the
range 0 - 1 000 000.

SO_TYPE

Use this option to return the socket type.

N/A A 4-byte binary field indicating
the socket type:

X'1' indicates SOCK_STREAM.

X'2' indicates SOCK_DGRAM.

X'3' indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine
whether a socket-specific timeout value
(in seconds) is to be used in place of a
configuration-specific value whenever
keep alive timing is active for that socket.

When activated, the socket-specified
timer value remains in effect until
respecified by SETSOCKOPT or until the
socket is closed. For more information
about the socket option parameters, see
TCP_KeepAlive socket option inz/OS
Communications Server: IP Programmer's
Guide and Reference.

Tip: The site administrator can enable the
global keep-alive mechanism by
specifying the INTERVAL parameter on
the TCPCONFIG statement in the TCP/IP
stack profile data set, TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to a value in the
range of 1 – 2 147 460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the specific
timer value (in seconds) that is
in effect for the given socket.

If disabled, contains a 0
indicating keep alive timing is
not active.

268 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 15. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

TCP_NODELAY

Use this option to set or determine
whether data sent over the socket is
subject to the Nagle algorithm (RFC 896).

Under most circumstances, TCP sends
data when it is presented. When this
option is enabled, TCP will wait to send
small amounts of data until the
acknowledgment for the previous data
sent is received. When this option is
disabled, TCP will send small amounts of
data even before the acknowledgment for
the previous data sent is received.

Note: Use the following format to set
TCP_NODELAY OPTNAME value for COBOL
programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP
 VALUE 2147483649.
01 TCP-NODELAY-REDEF REDEFINES
 TCP-NODELAY-VAL.
 05 FILLER PIC 9(6) BINARY.
 05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.

If enabled, contains a 0.

If disabled, contains a 1.

GIVESOCKET
The GIVESOCKET macro makes the socket available for a TAKESOCKET macro issued by another
program. The GIVESOCKET macro can specify any connected stream socket. Typically, the GIVESOCKET
macro is issued by a concurrent server program that creates sockets to be passed to a subtask.

After a program has issued a GIVESOCKET macro for a socket, it can only issue a CLOSE macro for the
same socket. Sockets which are given but not taken for a period of four days will be closed and will no
longer be available for taking. If a select for the socket is outstanding, it is posted.

Note: Both concurrent servers and iterative servers use this interface. An iterative server handles one
client at a time. A concurrent server receives connection requests from multiple clients and creates
subtasks that process the client requests. When a subtask is created, the concurrent server gets a new
socket, passes the new socket to the subtask, and dissociates itself from the connection. The TCP/IP
Listener program is an example of a concurrent server.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Chapter 12. Macro application programming interface 269

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=GIVESOCKET ,S = number

address

*indaddr

(reg)

,CLIENT =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the descriptor of the
socket to be given.

CLIENT
Input parameter. The client ID for this application.
Field

Description
DOMAIN

Input parameter. A fullword binary number specifying the domain of the client. For TCP/IP the
value is a decimal 2, indicating AF_INET, or a decimal 19, indicating AF_INET6.

Note: A socket given by GIVESOCKET can only be taken by a TAKESOCKET with the same
DOMAIN, address family (AF_INET or AF_INET6).

NAME
An 8-character field, left-aligned, padded to the right with blanks. On completion of the call, this
field contains the MVS address space name of the application that is going to take the socket. If
the socket-taking application is in the same address space as the socket-giving application, NAME
can be obtained using the GETCLIENTID call. If this field is set to blanks, any MVS address space
requesting a socket can take this socket.

270 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

TASK
Specifies an 8-byte field that is set to the MVS subtask identifier of the socket-taking task
(specified on the SUBTASK parameter on its INITAPI macro). If this field is set to blanks, any
subtask in the address space specified in the NAME field can take the socket.

RESERVED
Input parameter. A 20-byte reserved field. This field is required, but not used.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the Ecb has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

GLOBAL
The GLOBAL macro allocates a global storage area that is addressable by all socket users in an address
space. If more than one module is using sockets, you must supply the address of the global storage area
to each user. Each program using the sockets interface should define global storage using the instruction
EZASMI TYPE=GLOBAL with STORAGE=DSECT.

If this macro is not named, the default name EZASMGWA is assumed.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 12. Macro application programming interface 271

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=GLOBAL ,STORAGE = DSECT

CSECT

Keyword
Description

STORAGE
Input parameter. Defines one of the following storage definitions:
Keyword

Description
DSECT

Generates a DSECT.
CSECT

Generates an inline storage definition that can be used within a CSECT or as a part of a larger
DSECT.

INET6_IS_SRCADDR
The INET6_IS_SRCADDR macro indicates whether an input IPV6 socket address matches an address that
is defined to the stack, which conforms to one or more input IPV6_ADDR_PREFERENCES flags.

A client or server program can use the INET6_IS_SRCADDR macro when it strictly requires the IP
addresses that it uses to have one or more specific attributes before allowing network activity. Such an
application would perform the following tasks:

1. (Optional) Issue the SETSOCKOPT macro with the IPV6_ADDR_PREFERENCES option to set the
selection preferences of the source IP address for the socket.

2. Issue the BIND2ADDRSEL macro to bind a socket to a local IP address. The BIND2ADDRSEL macro
attempts to assign a local IP address that matches the IPV6_ADDR_PREFERENCES flags that are
specified with the SETSOCKOPT macro, but does not guarantee that the local IP address that it selects
satisfies all preferences.

3. Issue the GETSOCKNAME macro to obtain the local IP address bound to the socket.
4. Issue the INET6_IS_SRCADDR macro to verify whether the local IP address has the correct attributes.

The macro returns true (value 1) when the IPv6 address corresponds to a valid address in the node, and
satisfies the given IPV6_ADDR_PREFERENCES flag or flags. If the IPv6 address input value does not
correspond to any address in the node, or if the flags are not valid preference flags, the macro returns a
failure (value -1). If the input address is a valid address on the node, but does not satisfy the preference
flags indicated, the function returns false (value 0).

You can specify more than one IPV6_ADDR_PREFERENCES flag on this macro. All flags must be satisfied
for the result to be true. Some IPV6_ADDR_PREFERENCES flags are contradictory. If you combine
contradictory flags on a single macro invocation, the result will be false.

272 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=INET6_IS_SRCADDR ,NAME = address

*indaddr

(reg)

,FLAGS =

'IPV6_PREFER_SRC_HOME'

'IPV6_PREFER_SRC_COA'

'IPV6_PREFER_SRC_PUBLIC'

'IPV6_PREFER_SRC_TMP'

'IPV6_PREFER_SRC_CGA'

'IPV6_PREFER_SRC_NONCGA'

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE

= address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Descriptions

NAME
An input parameter. An IPv6 socket address structure describing the interface address to be tested.
Include the SYS1.MACLIB(BPXYSOCK) macro in your program to get the assembler mappings for the
socket address structure. The socket address structure mappings begin at the SOCKADDR label. The
AF_INET6 socket address structure fields start at the SOCK_SIN6 label.

The IPv6 socket address structure specifies the following fields:
FAMILY

A halfword binary field that specifies the IPv6 addressing family. This value must be set to
AF_INET6.

Tip: You can specify an IPv4-mapped IPv6 address.

PORT
This field is ignored by the TYPE=INET6_IS_SRCADDR macro.

FLOWINFO
This field is ignored by the TYPE=INET6_IS_SRCADDR macro.

IP-ADDRESS
A 16-byte binary field that specifies the 128-bit IPv6 Internet address, in network byte order.

Chapter 12. Macro application programming interface 273

SCOPE-ID
A fullword binary field that specifies the scope for an IPv6 address as an interface index. This field
must be nonzero if the address specified in the IPv6-ADDRESS field is a link-local address and
must be 0 for any other scope.

FLAGS
An input parameter. The FLAGS argument can be a literal value or a fullword binary field. The following
flags can be specified individually or in combination.

Flag name Binary value Description

IPV6_PREFER_SRC_HOME X'00000001' Test whether the input IP address is
a home address.1

IPV6_PREFER_SRC_COA X'00000002' Test whether the input IP address is
a care-of address.2

IPV6_PREFER_SRC_TMP X'00000004' Test whether the input IP address is
a temporary address.

IPV6_PREFER_SRC_PUBLIC X'00000008' Test whether the input IP address is
a public address.

IPV6_PREFER_SRC_CGA X'00000010' Test whether the input IP address is
cryptographically generated.2

IPV6_PREFER_SRC_NONCGA X'00000020' Test whether the input IP address is
not cryptographically generated.1

Notes:

1. Any valid IP address that is known to the stack satisfies this flag.
2. z/OS Communications Server does not support this type of address. The macro always returns

FALSE if this flag is specified with a valid IP address that is known to the stack.

Requirement: You must pass a binary number to the macro to specify more than one preference
flags. Include the BPXYSOCK macro in your program to get the binary values for the flags.

Tip: Some of these flags are contradictory, for example:

• The flag IPV6_PREFER_SRC_HOME contradicts the flag IPV6_PREFER_SRC_COA.
• The flag IPV6_PREFER_SRC_CGA contradicts the flag IPV6_PREFER_SRC_NONCGA.
• The flag IPV6_PREFER_SRC_TMP contradicts the flags IPV6_PREFER_SRC_PUBLIC.

Result: If you specify contradictory flags on the macro, the result is FALSE.

Example:

MYFLAGS DC A(IPV6_PREFER_SRC_HOME+IPV6_PREFER_SRC_NONCGA) one way to combine flags
EZASMI TYPE=INET6_IS_SRCADDR,
 NAME=name,
 FLAGS=MYFLAGS

ERRNO
Output parameter. A fullword binary field. If the RETCODE value is negative, the ERRNO field contains a
valid error number; otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

ECB or REQAREA
Input parameter. This parameter is required if you use APITYPE=3. This parameter points to a 104-
byte field that contains one of the following values:

274 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

For ECB
A 4-byte ECB that is posted by TCP/IP when the macro completes.

For REQAREA
A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For both ECB and REQAREA
The last 100 bytes is a storage field that is used by the interface to save the state information.

Requirement: This storage must not be modified until the macro function has completed and the ECB
has been posted, or the asynchronous exit has been driven.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

False. The IPv6 address corresponds to a valid address in the node, but does not satisfy one or
more of the input IPV6_ADDR_PREFERENCES flags.

1
True. The IPv6 address corresponds to a valid address in the node and satisfies the given
IPV6_ADDR_PREFERENCES flag or flags.

Tip: Any valid IPv6 address on a z/OS V1R12 node satisfies the following preference flags:

• IPV6_PREFER_SRC_HOME
• IPV6_PREFER_SRC_NONCGA

-1
The input IPV6 address does not correspond to an address on the node or the input flags are not
valid IPV6_PREFER_SRC_ADDR flags. Check the ERRNO value for an error code.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

INITAPI
The INITAPI macro connects an application to the TCP/IP interface. Almost all sockets programs that are
written in COBOL, PL/I, or assembler language must issue the INITAPI macro before they issue other
sockets macros.

Note: Because the default INITAPI still requires the TERMAPI to be issued, you always code the INITAPI
command.

The exceptions to this rule are the following calls, which, when issued first, will generate a default
INITAPI call:

• GETCLIENTID
• GETHOSTID
• GETHOSTNAME
• GETIBMOPT
• SELECT
• SELECTEX
• SOCKET
• TAKESOCKET

Chapter 12. Macro application programming interface 275

Note: Only the first INITAPI triggers a read of the TCPIP.DATA and all other INITAPIs under that address
space will use the values read by the first INITAPI.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

276 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=INITAPI

,MAXSOC = number

address

*indaddr

(reg)

,SUBTASK = address

*indaddr

(reg)

,IDENT = address

*indaddr

(reg)

,MAXSNO = address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE

= address

*indaddr

(reg)

,APITYPE = '2'

'3'

address

*indaddr

(reg)

,UEEXIT = address

*indaddr

(reg)

,ASYNC = 'NO'

'ECB'

('EXIT', address)

*indaddr)

(reg))

,ERROR = indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Descriptions

MAXSOC
Optional input parameter. A halfword binary field specifying the maximum number of sockets
supported by this application. The maximum number is 65535 and the minimum number is 50. The
default value for MAXSOC is 50. If less than 50 are requested, MAXSOC defaults to 50.

SUBTASK
Optional input parameter. An 8-byte field that is used to identify a subtask in an address space that
can contain multiple subtasks. It is suggested that you use your own job name as part of your subtask

Chapter 12. Macro application programming interface 277

name. This will ensure that, if you issue more than one INITAPI command from the same address
space, each SUBTASK parameter will be unique.

IDENT
Optional input parameter. A structure containing the identities of the TCP/IP address space and your
address space. Specify IDENT on the INITAPI macro from an address space. The structure is as
follows:
Field

Description
TCPNAME

Input parameter. An 8-byte character field set to the name of the TCP/IP address space that you
want to connect to. If this is not specified, the system derives a value from the configuration file,
as described in the z/OS Communications Server: IP Configuration Reference.

ADSNAME
Input parameter. An 8-byte character field set to the name of the calling program's address space.
If this is not specified, the system will derive a value from the MVS control block structure.

MAXSNO
Output parameter. A fullword binary field containing the greatest descriptor number assigned to this
application. The lowest socket number is 0. If you have 50 sockets, they are numbered in the range 0
– 49. If MAXNO is not specified, the value for MAXNO is 49.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO field contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
APITYPE

Optional input parameter. A halfword binary field specifying the APITYPE. For details on usage, see
“Task management and asynchronous function processing” on page 198.
Value

Meaning
2

APITYPE 2. This is the default.
3

APITYPE 3
For an APITYPE value of 3, the ASYNC parameter must be either 'ECB' or 'EXIT'.

UEEXIT
Optional input parameter. A doubleword value as follows:

• A fullword specifying the entry point address of the user unsolicited event exit.
• A fullword specifying the token that will be presented to the unsolicited event exit at invocation.

ASYNC
Optional input parameter. One of the following:

• The literal 'NO' indicating no asynchronous support.

278 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• The literal 'ECB' indicating the asynchronous support using ECBs is to be used.
• The combination of the literal 'EXIT' and the address of a doubleword value as follows:

– A fullword specifying the entry point address of the user's asynchronous event exit.
– A fullword specifying the token which will be presented to the asynchronous event exit at

invocation.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

IOCTL
The IOCTL macro is used to control certain operating characteristics for a socket.

Before you issue an IOCTL macro, you must load a value representing the characteristic that you want to
control in COMMAND.

Note: IOCTL can be used only with programming languages that support address pointers.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 279

EZASMI TYPE=IOCTL ,S = number

address

*indaddr

(reg)

,COMMAND =

'FIONBIO'

'FIONREAD'

'SIOCATMARK'

'SIOCGHOMEIF6'

'SIOCGIFADDR'

'SIOCGIFBRDADDR'

'SIOCGIFCONF'

'SIOCGIFDSTADDR'

'SIOCGIFMTU'

'SIOCGIFNAMEINDEX'

'SIOCGIPMSFILTER'

'SIOCGMONDATA'

'SIOCGMSFILTER'

'SIOCGPARTNERINFO'

'SIOCGSPLXFQDN'

'SIOCSAPPLDATA'

'SIOCSIPMSFILTER'

'SIOCSMSFILTER'

'SIOCSPARTNERINFO'

'SIOCTTLSCTL'

address

*indaddr

(reg)

,REQARG = address

*indaddr

(reg)

,RETARG =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

280 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

S
Input parameter. A value or the address of a halfword binary number specifying the socket to be
controlled.

COMMAND
Input parameter. To control an operating characteristic, set this field to one of the following symbolic
names. A value in a bit mask is associated with each symbolic name. By specifying one of these
names, you are turning on a bit in a mask that communicates the requested operating characteristic to
TCP/IP.
Value

Description
'FIONBIO'

Sets or clears blocking status.
'FIONREAD'

Returns the number of immediately readable bytes for the socket.
'SIOCATMARK'

Determines whether the current location in the data input is pointing to out-of-band data.
'SIOCGHOMEIF6'

Requests all IPv6 home interfaces.

Note: To request OSM interfaces, the application must have READ authorization to the
EZB.OSM.sysname.tcpname resource.

When the SIOCGHOMEIF6 IOCTL is issued, the REQARG must contain a Network Configuration
Header. The NETCONFHDR is defined in the SYS1.MACLIB(BPXYIOC6). The following fields are
input fields and must be filled out:
NchEyeCatcher

Contains Eye Catcher '6NCH'.
NchIoctl

Contains the command code.
NchBufferLength

Buffer length of storage pointed to by NchBufferPTR. This buffer needs to be large enough to
contain all the IPv6 interface records. Each interface record is length of HOMEIFADDRESS. If
the buffer is not large enough, then errno will be set to ERANGE and the NchNumEntryRet will
be set to number of interfaces. Based on NchNumEntryRet and size of HOMEIFADDRESS,
calculate the necessary storage to contain the entire list.

NchBufferPtr
This is the pointer to an array of HOMEIF structures returned on a successful call. The size
depends on the number of qualifying interfaces returned.

NchNumEntryRet
If return code is 0, this will be set to number of HOMEIFADDRESS returned. If errno is
ERANGE, this will be set to number of qualifying interfaces. No interfaces are returned.
Recalculate the NchBufferLength based on this value times the size of HOMEIFADDRESS.

'SIOCGIFADDR'
Requests the IPv4 network interface address for an interface name. For the address format, see
the IOCN_SADDRIF field in the SYS1.MACLIB(BPXYIOCC) macro.

'SIOCGIFBRDADDR'
Requests the IPv4 network interface broadcast address for an interface name. For the address
format, see the IOCN_SADDRIFBROADCAST field in the SYS1.MACLIB(BPXYIOCC) macro.

'SIOCGIFCONF'
Requests the IPv4 network interface configuration. The configuration consists of a variable
number of 32-byte arrays. For the structure format, see the IOCN_IFREQ field in the
SYS1.MACLIB(BPXYIOCC) macro.

Chapter 12. Macro application programming interface 281

• When IOCTL is issued, the first word in REQARG must contain the length (in bytes) of the array to
be returned, and the second word in REQARG should be set to the number of interfaces
requested times 32 (one address structure for each network interface). The maximum number
of array elements that TCP/IP Services will return is 100.

• When IOCTL is issued, RETARG must be set to the beginning of the area in your program's
storage, which is reserved for the array that is to be returned by IOCTL.

• The COMMAND 'SIOGIFCONF' returns a variable number of network interface configurations.

'SIOCGIFDSTADDR'
Requests the IPv4 network interface destination address. For the address format, see the
IOCN_SADDRIFDEST field in the SYS1.MACLIB(BPXYIOCC) macro.

'SIOCGIFMTU'
Requests the IPv4 network interface MTU (maximum transmission unit). For the MTU format, see
the IOCN_MTUSIZE field in the SYS1.MACLIB(BPXYIOCC) macro.

'SIOCGIFNAMEINDEX'
Requests all interface names and indexes including local loopback but excluding VIPAs.
Information is returned for both IPv4 and IPv6 interfaces whether they are active or inactive. For
IPv6 interfaces, information is returned to an interface only if it has at least one available IP
address. See z/OS Communications Server: IPv6 Network and Application Design Guide for more
information.

Note: To request OSM interfaces, the application must have READ authorization to the
EZB.OSM.sysname.tcpname resource.

The configuration consists of the IF_NAMEINDEX structure which is defined in
SYS1.MACLIB(BPX1IOCC).

• When the SIOCGIFNAMEINDEX IOCTL is issued, REQARG must contain the length of application
storage (in bytes) being used to contain the returned IF_NAMEINDEX structure. The formula to
compute this length is as follows:

1. Determine the number of interfaces expected to be returned upon successful completion of
this command.

2. Multiply the number of interfaces by the array element (size of IF_NIINDEX, IF_NINAME, and
IF_NIEXT) to determine the size of the array element.

3. To the size of the array add the size of IF_NITOTALIF and IF_NIENTRIES to determine the
total number of bytes needed to accommodate the name and index information returned.

Upon successful completion of this call, the stack returns the number of entries required by the
way of the IF_NITOTALIF field in the storage referenced by RETARG.

• When IOCTL is issued, RETARG must be set to the address of the beginning of the area in your
program's storage which is reserved for the IF_NAMEINDEX structure that is to be returned by
IOCTL.

• The command 'SIOCGIFNAMEINDEX' returns a variable number of all the qualifying network
interfaces.

'SIOCGIPMSFILTER'
Requests a list of the IPv4 source addresses that comprise the source filter, with the current mode
on a given interface and a multicast group for a socket. The source filter can include or exclude the
set of source address, depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).
When the SIOCGIPMSFILTER IOCTL is issued, the REQARG parameters must contain an
IP_MSFILTER structure, which is defined in SYS1.MACLIB(BPXYIOCC). The IP_MSFILTER option
must include an interface address (input), a multicast address (input), filter mode (output), the
number of source addresses in the following array (input and output), and an array of source
addresses (output). On input, the number of source addresses is the number of source addresses
that fit in the input array. On output, the number of source addresses contains the total number of
source filters in the source filter list for the multicast group. If the application does not know the
size of the source list prior to processing, it makes a reasonable guess (for example, 0), and if

282 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

when the call completes the number of source addresses is a greater value, then the IOCTL can be
repeated with a larger buffer. On output, the number of source addresses is always updated to be
the total number of sources in the filter, but the array holds as many source addresses as will fit,
up to the minimum of the array size that is passed in as the input number.

Calculate the size of IP_MSFILTER value as follows:

1. Determine the expected number of source addresses.
2. Multiply the number of source addresses by the array element (size of the IMSF_SrcEntry

value) to determine the size of all array elements.
3. Add the size of all array elements to the size of the IMSF_Header value to determine the total

number of bytes that are needed to accommodate the source addresses information that is
returned.

'SIOCGMONDATA'
Returns TCP/IP stack IPv4 and IPv6 statistical counters. REQARG must point to a MonDataIn
structure. The counters are returned in a MonDataOut structure. Both of these structures are
defined in EZBZMONP in SEZANMAC.

Note: The ARP counter data provided differs depending on the type of device. See the z/OS
Communications Server: IP Configuration Guide for information about devices that support ARP
Offload and what is supported for each device.

'SIOCGMSFILTER'
Requests a list of the IPv4 or IPv6 source addresses that comprise the source filter, with the
current mode on a given interface index and a multicast group for a socket. The source filter can
include or exclude the set of source address, depending on the filter mode (MCAST_INCLUDE or
MCAST_EXCLUDE). When the SIOCGMSFILTER IOCTL is issued, the REQARG parameter must
contain a GROUP_FILTER structure, which is defined in SYS1.MACLIB(BPXYIOCC). The
GROUP_FILTER option must include an interface index (input), a sockaddr_storage structure of the
multicast address (input), filter mode (output), the number of source addresses in the following
array (input and output), and an array of the sockaddr_storage structure of source addresses
(output). On input, the number of source addresses is the number of source addresses that will fit
in the input array. On output, the number of source addresses contains the total number of source
filters in the source filter list for the multicast group. If the application does not know the size of
the source list prior to processing, it can make a reasonable guess (for example, 0), and if when
the call completes the number of source addresses is a greater value, the IOCTL can be repeated
with a buffer that is large enough. That is, on output, the number of source addresses is always
updated to be the total number of sources in the filter, but the array holds as many source
addresses as will fit, up to the minimum of the array size passed in as the input number.

The application calculates the size of GROUP_FILTER value in the following way:

1. Determines the expected number of source addresses.
2. Multiplies the number of source addresses by the array element (size of the GF_SrcEntry value)

to determine the size of all array elements.
3. Adds the size of all array elements to the size of the GF_Header value to determine the total

number of bytes that are needed to accommodate the source-address information that is
returned.

'SIOCGPARTNERINFO'
Provides an interface for an application to retrieve security credentials about its partner. When you
issue the SIOCGPARTNERINFO IOCTL, the REQARG parameter must contain a PartnerInfo
structure as defined by the EZBPINFA macro in SEZANMAC. For more information about using the
SIOCGPARTNERINFO IOCTL, see z/OS Communications Server: IP Programmer's Guide and
Reference.

'SIOCGSPLXFQDN'
Requests the fully qualified domain name for a given server and group name in a sysplex. This is a
special purpose command to support applications that have registered with WorkLoad Manager
(WLM) for connection optimization services by way of the DNS. When IOCTL is issued, REQARG

Chapter 12. Macro application programming interface 283

and RETARG must use the address structure sysplexFqDn, which contains the pointer for
sysplexFqDnData structure. The fully qualified domain name is returned in the domainName field
of sysplexFqDnData. The group name and the server name can be passed using the groupName
and serverName fields of sysplexFqDnData structure. Their structures are defined in the
EZBZSDNP MACRO file.

'SIOCSAPPLDATA'
The SIOCSAPPLDATA IOCTL enables an application to set 40 bytes of user-specified application
data against a socket endpoint. You can use this application data to identify socket endpoints in
interfaces such as Netstat, SMF, or network management applications. When you issue the
SIOCSAPPLDATA IOCTL, the REQARG parameter must contain a SetApplData structure as defined
by the EZBYAPPL macro. See z/OS Communications Server: IP Programmer's Guide and Reference
for more information about programming the SIOCSAPPLDATA IOCTL.

SetAD_buffer: The user-defined application data is 40 bytes of data that identifies the endpoint
with the application. You can obtain this application data from the following sources:

• Netstat reports. The information is displayed in the ALL/-A report. If you use the APPLDATA
modifier, then the information also is displayed on the ALLConn/-a and COnn/-c reports.

• The SMF 119 TCP connection termination record. See TCP connection termination record
(subtype 2) in z/OS Communications Server: IP Programmer's Guide and Reference for more
information.

• Network management interfaces. See Network management interfaces in z/OS Communications
Server: IP Programmer's Guide and Reference for more information.

Consider the following guidelines:

• The application must document the content, format and meaning of the ApplData strings that it
associates with the sockets that it owns.

• The application should uniquely identify itself with printable EBCDIC characters at the beginning
of the string. Strings beginning with 3-character IBM product identifiers, such as TCP/IP's EZA or
EZB, are reserved for IBM use. IBM product identifiers begin with a letter in the range A-I.

• Use printable EBCDIC characters for the entire string to enable searching with Netstat filters.

Tip: Separate application data elements with a blank for easier reading.

'SIOCSIPMSFILTER'
Sets a list of the IPv4 source addresses that comprise the source filter, with the current mode on a
given interface and a multicast group for a socket. The source filter can include or exclude the set
of source address, depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE). When
the SIOCSIPMSFILTER IOCTL is issued, the REQARG value must contain an IP_MSFILTER
structure, which is defined in SYS1.MACLIB(BPXYIOCC). The IP_MSFILTER option must include an
interface address, a multicast address, filter mode, the number of source addresses in the
following array, and an array of source addresses.

Calculate the size of the IP_MSFILTER structure as follows:

1. Determine the expected number of source addresses.
2. Multiply the number of source addresses by the array element (size of IMSF_SrcEntry) to get

the size of all array elements.
3. Add the size of all array elements to the size of the IMSF_Header value to get the total number

of bytes needed to accommodate the source addresses information that is returned.

'SIOCSMSFILTER'
Sets a list of the IPv4 or IPv6 source addresses that comprise the source filter, with the current
mode on a given interface index and a multicast group for a socket. The source filter can include or
exclude the set of source address, depending on the filter mode (MCAST_INCLUDE or
MCAST_EXCLUDE). When the SIOCSMSFILTER IOCTL is issued, the REQARG parameter must
contain a GROUP_FILTER option structure, which is defined in SYS1.MACLIB(BPXYIOCC). The
GROUP_FILTER option must include an interface index, a sockaddr_storage structure of the

284 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

multicast address, filter mode, the number of source addresses in the following array, and an array
of the sockaddr_storage structure of source addresses.

Calculate the size of the GROUP_FILTER value as follows:

1. Determine the expected number of source addresses.
2. Multiply the number of source addresses by the array element (size of the GF_SrcEntry value)

to determine the size of all array elements.
3. Add the size of all array elements to the size of the GF_Header value to determine the total

number of bytes needed to accommodate the source addresses information that is returned.

'SIOCSPARTNERINFO'
The SIOCSPARTNERINFO IOCTL sets an indicator to retrieve the partner security credentials
during connection setup and saves the information. In this way, an application can issue a
SIOCGPARTNERINFO IOCTL without suspending the application or can at least minimize the time
it takes to retrieve the information. When you issue the SIOCSPARTNERINFO IOCTL, the REQARG
parameter must contain a constant value, PI_REQTYPE_SET_PARTNERDATA, as defined by the
EZBPINFA macro in SEZANMAC. For more information about using the SIOCSPARTNERINFO
IOCTL, see z/OS Communications Server: IP Programmer's Guide and Reference.

SIOCTTLSCTL
Controls Application Transparent Transport Layer Security (AT-TLS) for the connection. REQARG
and RETARG must contain a TTLS_IOCTL structure. If a partner certificate is requested, the
TTLS_IOCTL must include a pointer to additional buffer space and the length of that buffer.
Information is returned in the TTLS_IOCTL structure. If a partner certificate is requested and one
is available, it is returned in the additional buffer space. The TTLS_IOCTL structure for assembler
programs is defined in EZBZTLSP in SEZANMAC For details about usage, see the Application
Transparent TLS information in z/OS Communications Server: IP Programmer's Guide and
Reference.

Restriction: Use of this ioctl for functions other than query requires that the AT-TLS policy
mapped to the connection be defined with the ApplicationControlled parameter set to On.

REQARG and RETARG
Point to arguments that are passed between the calling program and IOCTL. The length of the
argument is determined by the COMMAND request. REQARG is an input parameter or an output
parameter and is used to pass and receive arguments to and from IOCTL. RETARG is an output
parameter and is used for arguments returned by IOCTL.

For the lengths and meanings of REQARG and RETARG for each COMMAND type, see Table 16 on page
285.

Table 16. IOCTL macro arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO

X'8004A77E'

4 Set socket mode to: X'00'=blocking;
X'01'=nonblocking.

0 Not used.

FIONREAD

X'4004A77F'

0 Not used. 4 Number of characters
available for read.

SIOCATMARK

X'4004A707'

0 Not used. 4 X'00'= not at OOB data

X'01'= at OOB data

.

SIOCGHOMEIF6

X' C014F608'

20 NetConfHdr See NETCONFHDR in
macro BPXYIOC6.

Chapter 12. Macro application programming interface 285

Table 16. IOCTL macro arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG

SIOCGIFADDR

X'C020A70D'

32 First 16-bytes -
interface name.
Last 16-bytes -
not used.

32 Network interface
address, see the
IOCN_SADDRIF field in
the SYS1.MACLIB
(BPXYIOCC) macro for
format.

SIOCGIFBRDADDR

X'C020A712'

32 First 16-bytes -
interface name.
Last 16-bytes -
not used.

32 Network interface
address, see the
IOCN_SADDRIF
BROADCAST field in the
SYS1.MACLIB (BPXYIOCC)
macro for format.

SIOCGIFCONF

X'C008A714'

8 First 4 bytes- size of return buffer.

Last 4 bytes - address of return buffer.

See note1.

SIOCGIFDSTADDR

X'C020A70F'

32 First 16-bytes -
interface name.
Last 16-bytes -
not used.

32 Destination interface
address, see the
IOCN_SADDRIFDEST field
in the SYS1.MACLIB
(BPXYIOCC) macro for
format.

SIOCGIFMTU

X'C020A726'

32 First 16-bytes -
interface name.
Last 16-bytes -
not used.

32 IPv4 interface MTU
(maximum transmission
unit), see the
IOCN_MTUSIZE field in
the SYS1.MACLIB
(BPXYIOCC) macro for
format.

SIOCGIFNAMEINDEX

X'4000F603'

4 First 4 bytes size of return buffer. See IF_NAMEINDEX in
macro BPXYIOCC.

SIOCGIPMSFILTER

X'C000A724'

— See IP_MSFILTER structure in macro
BPXYIOCC. See note 3.

0 Not used

SIOCGMONDATA

X'C018D902'

— See MONDATAIN structure in macro
EZBZMONP.

— See MONDATAOUT
structure in macro
EZBZMONP.

SIOCGMSFILTER

X'C000F610'

— See GROUP_FILTER structure in macro
BPXYIOCC. See note 4.

0 Not used

SIOCGPARTNERINFO

X'C000F612'

— For the PartnerInfo structure layout, see
SEZANMAC(EZBPINFA). See note 5.

0 Not used

SIOCGSPLXFQDN

X'C018D905'

4082 See sysplexFqDn and sysplexFqDnData in
macro EZBZSDNP.

4082 See sysplexFqDn and
sysplexFqDnData in macro
EZBZSDNP.

SIOCSAPPLDATA

X'8018D90C'

— See SETAPPLDATA structure in macro
EZBYAPPL.

0 Not used

SIOCSIPMSFILTER

X'8000A725'

— See IP_MSFILTER structure in macro
BPXYIOCC. See note 3.

0 Not used

286 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 16. IOCTL macro arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG

SIOCSMSFILTER

X'8000F611'

— See GROUP_FILTER structure in macro
BPXYIOCC. See note 4.

0 Not used

SIOCSPARTNERINFO

X'8004F613'

4 See PI_REQTYPE_SET_PARTNERDATA in
SEZANMAC(EZBPINFA).

0 Not used

SIOCTTLSCTL

X'C038D90B'

56 For IOCTL structure layout, see
SEZANMAC (EZBZTLSP).

56 For IOCTL structure
layout, see SEZANMAC
(EZBZTLSP).

Notes:

1. The second 4-bytes in the RETARG is the address of the user buffer containing an array of 32-byte socket name
structures (see IOCN_IFREQ in the SYS1.MACLIB(BPXYIOCC) macro for format). Each interface is assigned a 32-byte
array element and the REQARG value should be set to the number of interfaces times 32. TCP/IP services can return up
to 100 array elements.

2. REQARG and RETARG must contain both sysplexFqDn and sysplexFqDnData.
3. The size of the IP_MSFILTER structure must be equal to or greater than the size of the IMSF_Header.
4. The size of the GROUP_FILTER structure must be equal to or greater than the size of the GF_Header.
5. The size of the PartnerInfo structure must be equal to or greater than the PI_FIXED_SIZE value.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

Chapter 12. Macro application programming interface 287

TASK
Input parameter. The location of the task storage area in your program.

LISTEN
Only servers use the LISTEN macro. The LISTEN macro:

• Completes the bind, if BIND has not already been called for the socket. If the BIND has already been
called for in the socket, the LISTEN macro uses what was specified in the BIND call.

• Creates a connection-request queue of a specified number of entries for incoming connection requests.

The LISTEN macro is typically used by a concurrent server to receive connection requests from clients.
When a connection request is received, a new socket is created by a later ACCEPT macro. The original
socket continues to listen for additional connection requests.

Note: Concurrent servers and iterative servers use this macro. An iterative server handles one client at a
time. A concurrent server receives connection requests from multiple clients and creates subtasks that
process the client requests. When a subtask is created, the concurrent server gets a new socket, passes
the new socket to the subtask, and dissociates itself from the connection. The TCP/IP Listener program is
an example of a concurrent server.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the primary
address space

288 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=LISTEN ,S = number

address

*indaddr

(reg)

,BACKLOG =

'number'

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor.

BACKLOG
Input parameter. A value (enclosed in single quotation marks) or the address of a fullword binary
number specifying the number of messages that can be backlogged.

Rule: The BACKLOG value specified on the LISTEN macro is limited to the value configured by the
SOMAXCONN statement in the stack's TCPIP PROFILE (default=10); no error is returned if a larger
backlog is requested. You might need to update SOMAXCONN if a larger backlog is desired. See the
SOMAXCONN information in the z/OS Communications Server: IP Configuration Reference for details.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

Chapter 12. Macro application programming interface 289

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

NTOP
The NTOP macro converts an IP address from its numeric binary form into a standard text presentation
form. On successful completion, NTOP returns the converted IP address in the buffer provided.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

290 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=NTOP ,AF = 'INET'

'INET6'

address

*indaddr

(reg)

,SRCADDR =

address

*indaddr

(reg)

,DSTADDR = address

*indaddr

(reg)

,DSTLEN =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

Keyword
Description

AF
Input parameter. Specify one of the following:
Value

Description
'INET' or a decimal '2'

Indicates the address being converted is an IPv4 address.
'INET6' or a decimal '19'

Indicates the address being converted is an IPv6 address.

AF can also indicate a fullword binary number specifying the address family.

SRCADDR
Input parameter. A field containing the numeric binary form of the IPv4 or IPv6 address being
converted. For an IPv4 address, this field must be a fullword. For an IPv6 address, this field must be
16 bytes. The address must be in network byte order.

DSTADDR
Input parameter. A field used to receive the standard text presentation form of the IPv4 or IPv6
address being converted. For IPv4 the address will be in dotted-decimal format and for IPv6 the
address will be in colon-hex format. The size of the converted IPv4 address will be a maximum of 15
bytes and the size of the converted IPv6 address will be a maximum of 45 bytes. Consult the value
returned in DSTLEN for the actual length of the value in DSTADDR.

DSTLEN
Initially, an input parameter. The address of a binary halfword field that is used to specify the length of
the DSTADDR field on input and upon a successful return will contain the length of the converted IP
address.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

Chapter 12. Macro application programming interface 291

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
–1

Check ERRNO for an error code.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

PTON
The PTON macro converts an IP address in its standard text presentation form to its numeric binary form.
On successful completion, PTON returns the converted IP address in the buffer provided.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

292 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=PTON ,AF = 'INET'

'INET6'

address

*indaddr

(reg)

,SRCADDR =

address

*indaddr

(reg)

,SRCLEN = address

*indaddr

(reg)

,DSTADDR =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

Keyword
Description

AF
Input parameter. Specify one of the following:
Value

Description
'INET' or a decimal '2'

Indicates the address being converted is an IPv4 address.
'INET6' or a decimal '19'

Indicates the address being converted is an IPv6 address.

AF can also indicate a fullword binary number specifying the address family.

SRCADDR
Input parameter. A field containing the standard text presentation form of the IPv4 or IPv6 address
being converted. For IPv4 the address must be in dotted-decimal format and for IPv6 the address
must be in colon-hex format. The size of the field for an IPv4 address must be 15 bytes and the size
for an IPv6 address must be 45 bytes.

SRCLEN
Input parameter. A binary halfword field that must contain the length of the IP address to be
converted.

DSTADDR
A field used to receive the numeric binary form of the IPv4 or IPv6 address being converted in
network byte order. For an IPv4 address, this field must be a fullword. For an IPv6 address, this field
must be 16 bytes.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

Chapter 12. Macro application programming interface 293

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
–1

Check ERRNO for an error code.
ERROR

Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

READ
The READ macro reads data on a socket and stores it in a buffer. The READ macro applies only to
connected sockets.

For datagram sockets, the READ call returns the entire datagram that was sent. If a datagram packet is
too long to fit in the supplied buffer, datagram sockets discard extra bytes.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

294 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=READ ,S = number

address

*indaddr

(reg)

,NBYTE = number

address

*indaddr

(reg)

,BUF = address

*indaddr

(reg)

,ALET = address

*indaddr

(reg)

,ERRNO

= address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket that is
going to read the data.

NBYTE
Input parameter. A fullword binary number set to the size of BUF. READ does not return more than the
number of bytes of data in NBYTE even if more data is available.

BUF
On input, a buffer to be filled by completion of the call. The length of BUF must be at least as long as
the value of NBYTE.

ALET
Optional input parameter. A fullword binary field containing the ALET or BUF. The default is 0 (primary
address space).

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit access
list (DU-AL) for the task issuing this call. Note that ALETs can be specified only for synchronous socket
calls (for example, ECB/REQAREA cannot be specified). An exception to this is an ALET representing a
SCOPE=COMMON data space.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

Chapter 12. Macro application programming interface 295

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing the following information:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

READ returns up to the number of bytes specified by NBYTE. If less than the number of bytes requested
is available, the READ macro returns the number currently available.

If data is not available for the socket and the socket is in blocking mode, the READ macro blocks the caller
until data arrives. If data is not available and the socket is in nonblocking mode, READ returns a -1 and
sets ERRNO to 35 (EWOULDBLOCK). See “IOCTL” on page 279 or “FCNTL” on page 218 for a description
of how to set the nonblocking mode.

READV
The READV macro reads data on a socket and stores it in a set of buffers. If a datagram packet is too long
to fit in the supplied buffer, datagram sockets discard extra bytes.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

296 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=READV ,S = number

address

*indaddr

(reg)

,IOV = address

*indaddr

(reg)

,IOVCNT = address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE

= address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the descriptor of the
socket into which the data is to be read.

IOV
An array of three fullword structures with the number of structures equal to the value in IOVCNT and
the format of the structures as follows:
Fullword 1

Input parameter. A buffer to be filled by the completion of the call.
Fullword 2

Input parameter. The ALET for this buffer. If the buffer is in the primary address space, this should
be zeros.

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit
access list (DU-AL) for the task issuing this call. Note that ALETs can be specified only for
synchronous socket calls (for example, ECB/REQAREA cannot be specified). An exception to this is
an ALET representing a SCOPE=COMMON data space.

Fullword 3
Input parameter. The length of the data buffer referred to in Fullword 1.

Chapter 12. Macro application programming interface 297

IOVCNT
Input parameter. A fullword binary field specifying the number of data buffers provided for this call.
The limit is 120.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this contains an error number.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

RECV
The RECV macro receives data on a socket and stores it in a buffer. The RECV macro applies only to
connected sockets. RECV can read the next message, but leaves the data in a buffer, and can read out-of-
band data. RECV gives you the option of setting flags with the FLAGS parameter.

Note: Out-of-band data (called urgent data in TCP) appears to the application like a separate stream of
data from the main data stream.

RECV returns the length of the incoming message or data. If a datagram packet is too long to fit in the
supplied buffer, datagram sockets discard extra bytes.

For stream sockets, the data is processed like streams of information with no boundaries separating data.
For example, if applications A and B are connected with a stream socket and Application A sends 1000
bytes, each call to RECV can return 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications
using stream sockets should place RECV in a loop that repeats the call until all data has been received.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

298 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 299

EZASMI TYPE=RECV ,S = number

address

*indaddr

(reg)

,NBYTE = number

address

*indaddr

(reg)

,BUF = address

*indaddr

(reg)

,ALET = address

*indaddr

(reg)

,ERRNO

= address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,FLAGS = 'MSG_OOB'

'MSG_PEEK'

'MSG_WAITALL'

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor.

NBYTE
Input parameter. A fullword binary number set to the size of BUF. RECV does not receive more than
the number of bytes of data in NBYTE even if more data is available.

BUF
On input, a buffer to be filled by completion of the call. The length of BUF must be at least as long as
the value of NBYTE.

300 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ALET
Optional input parameter. A fullword binary field containing the ALET of BUF. The default is 0 (primary
address space).

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit access
list (DU-AL) for the task issuing this call. Note that ALETs can be specified only for synchronous socket
calls (for example, ECB/REQAREA cannot be specified). An exception to this is an ALET representing a
SCOPE=COMMON data space.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.
FLAGS

Input parameter. FLAGS can be a literal value or a fullword binary field.

Literal Value Binary Value Description

'MSG_OOB' X'00000001' Receive out-of-band data (stream sockets only).
Out-of-band data can be read if the
SO_OOBINLINE option is set for the socket
regardless of whether the MSG_OOB flag is set.

'MSG_PEEK' X'00000002' Peek at the data, but do not destroy the data. If
the peek flag is set, the next receive operation
reads the same data.

'MSG_WAITALL' X'00000040' Requests that the function block until the full
amount of requested data can be returned
(stream sockets only). The function might return
a smaller amount of data if the connection is
terminated, if an error is pending, or if the
SO_RCVTIMEO field is set and the timer expired
for the socket.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Chapter 12. Macro application programming interface 301

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

If data is not available for the socket and the socket is in blocking mode, the RECV macro blocks the caller
until data arrives. If data is not available and the socket is in nonblocking mode, RECV returns a -1 and
sets ERRNO to 35 (EWOULDBLOCK). See “FCNTL” on page 218 or “IOCTL” on page 279 for a description of
how to set nonblocking mode.

RECVFROM
The RECVFROM macro receives data for a socket and stores it in a buffer. RECVFROM returns the length of
the incoming message or data stream.

If data is not available for the socket designated by descriptor S, and socket S is in blocking mode, the
RECVFROM call blocks the caller until data arrives.

If data is not available and socket S is in nonblocking mode, RECVFROM returns a -1 and sets ERRNO to 35
(EWOULDBLOCK). Because RECVFROM returns the socket address in the NAME structure, it applies to any
datagram socket, whether connected or unconnected. See “FCNTL” on page 218 or “IOCTL” on page 279
for a description of how to set nonblocking mode. If a datagram packet is too long to fit in the supplied
buffer, datagram sockets discard extra bytes.

For stream sockets, the data is processed as streams of information with no boundaries separating data.
For example, if applications A and B are connected with a stream socket and Application A sends 1000
bytes, each call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes. Applications using
stream sockets should place RECVFROM in a loop that repeats until all of the data has been received.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

302 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=RECVFROM ,S = number

address

*indaddr

(reg)

,NBYTE =

number

address

*indaddr

(reg)

,BUF = address

*indaddr

(reg)

,NAME = address

*indaddr

(reg)

,ALET = address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,FLAGS = 'MSG_OOB'

'MSG_PEEK'

'MSG_WAITALL'

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket to receive
the data.

NBYTE
Input parameter. A value or the address of a fullword binary number specifying the length of the input
buffer. NBYTE must first be initialized to the size of the buffer associated with NAME. On return the
NBYTE contains the number of bytes of data received.

Chapter 12. Macro application programming interface 303

BUF
On input, a buffer to be filled by completion of the call. The length of BUF must be at least as long as
the value of NBYTE.

NAME

Initially, the IPv4 or IPv6 application provides a pointer to a structure that will contain the peer socket
name on completion of the call. If the NAME parameter value is nonzero, the IPv4 or IPv6 source
address of the message is specified with the address of who sent the datagram. Include the
SYS1.MACLIB(BPXYSOCK) macro to get the assembler mappings for the socket address structure.
The socket address structure mappings begin at the SOCKADDR label. The AF_INET socket address
structure fields start at the SOCK_SIN label. The AF_INET6 socket address structure fields start at the
SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field
Description

FAMILY
Output parameter. A halfword binary number specifying the IPv4 addressing family. The value for
the IPv4 socket descriptor (S parameter) is a decimal 2, indicating AF_INET.

PORT
Output parameter. A halfword binary number specifying the port number of the sending socket.

IPv4-ADDRESS
Output parameter. A fullword binary number specifying the 32-bit IPv4 Internet address of the
sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket structure contains the following fields:
Field

Description
NAMELEN

Output parameter. A 1-byte binary field specifying the length of this IPv6 socket address
structure. Any value specified by the use of this field is ignored when processed as input and the
field is set to 0 when processed as output.

FAMILY
Output parameter. A 1-byte binary field specifying the IPv6 addressing family. The value for IPv6
socket descriptor (S parameter) is a decimal 19, indicating AF_INET6.

PORT
Output parameter. A halfword binary number specifying the port number of the sending socket.

FLOW-INFO
Output parameter. A fullword binary field specifying the traffic class and flow label. This value of
this field is undefined.

IPv6-ADDRESS
Output parameter. A 16-byte binary field that is set to the 128-bit IPv6 Internet address, in
network byte order, of the sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ALET
Optional input parameter. A fullword binary field containing the ALET of BUF. The default is 0 (primary
address space).

304 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit access
list (DU-AL) for the task issuing this call. Note that ALETs can only be specified for synchronous socket
calls (for example, ECB/REQAREA cannot be specified). An exception to this is an ALET representing a
SCOPE=COMMON data space.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes transferred by the RECVFROM call.
-1

Check ERRNO for an error code.
FLAGS

Input parameter. FLAGS can be a literal value or a fullword binary field.

Literal Value Binary Value Description

'MSG_OOB' X'00000001' Receive out-of-band data (stream sockets only).
Out-of-band data can be read if the
SO_OOBINLINE option is set for the socket
regardless of whether the MSG_OOB flag is set.

'MSG_PEEK' X'00000002' Peek at the data, but do not destroy the data. If
the peek flag is set, the next receive operation
reads the same data.

'MSG_WAITALL' X'00000040' Requests that the function block until the full
amount of requested data can be returned
(stream sockets only). The function might return
a smaller amount of data if the connection is
terminated, if an error is pending, or if the
SO_RCVTIMEO field is set and the timer expired
for the socket.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

Chapter 12. Macro application programming interface 305

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

RECVMSG
The RECVMSG macro receives messages on a socket with descriptor s and stores them in an array of
message headers. If a datagram packet is too long to fit in the supplied buffer, datagram sockets discard
extra bytes.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

306 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=RECVMSG ,S = number

address

*indaddr

(reg)

,MSG =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,FLAGS = 'MSG_OOB'

'MSG_PEEK'

'MSG_WAITALL'

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor.

MSG
On input, this is a pointer to a message header into which the message is received on completion of
the call.
NAME

On input, a pointer to a buffer where the sender's IPv4 or IPv6 address will be stored on
completion of the call. The storage being pointed to should be for an IPv4 or IPv6 socket address.
Include the SYS1.MACLIB(BPXYSOCK) macro to get the assembler mappings for the socket
address structure. The socket address structure mappings begin at the SOCKADDR label. The
AF_INET socket address structure fields start at the SOCK_SIN label. The AF_INET6 socket
address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Chapter 12. Macro application programming interface 307

Field
Description

FAMILY
Output parameter. A halfword binary number specifying the IPv4 addressing family. The value
for the IPv4 socket descriptor (S parameter) is a decimal 2, indicating AF_INET.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

IPv4-ADDRESS
Output parameter. A fullword binary number specifying the 32-bit IPv4 Internet address of the
sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure contains the following fields:

Field
Description

NAMELEN
Output parameter. A 1-byte binary field specifying the length of this IPv6 socket address
structure. Any value specified by the use of this field is ignored when processed as input and
the field is set to 0 when processed as output.

FAMILY
Output parameter. A 1-byte binary field specifying the IPv6 addressing family. The value for
the IPv6 socket descriptor (S parameter) is a decimal 19, indicating AF_INET6.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

FLOW-INFO
Output parameter. A fullword binary field specifying the traffic class and flow label. This value
of this field is undefined.

IPv6-ADDRESS
Output parameter. A 16-byte binary field specifying the 128-bit IPv6 Internet address, in
network byte order, of the sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is
undefined.

IOV
On input, a pointer to an array of three fullword structures with the number of structures equal to
the value in IOVCNT and the format of the structures as follows:
Fullword 1

Input parameter. The address of a data buffer.
Fullword 2

Input parameter. The ALET for this buffer. If the buffer is in the primary address space, this
should be zeros.

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit
access list (DU-AL) for the task issuing this call. Note that ALETs can only be specified for
synchronous socket calls (for example, ECB/REQAREA cannot be specified). An exception to
this is an ALET representing a SCOPE=COMMON data space.

Fullword 3
Input parameter. The length of the data buffer referenced in Fullword 1.

308 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IOVCNT
On input, a pointer to a fullword binary field specifying the number of data buffers provided for this
call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is ignored.

ACCRLEN
On input, a pointer to the length of the access rights received. This field is ignored.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this contains an error number.

RETCODE
Output parameter. A fullword binary field with the following values:
Value

Description
-1

Call returned error. See ERRNO field.
0

Connection partner has closed connection.
>0

Number of bytes read.
FLAGS

Input parameter. FLAGS can be a literal value or a fullword binary field.

Literal Value Binary Value Description

'MSG_OOB' X'00000001' Receive out-of-band data (stream sockets only).
Out-of-band data can be read if the
SO_OOBINLINE option is set for the socket
regardless of whether the MSG_OOB flag is set.

'MSG_PEEK' X'00000002' Peek at the data, but do not destroy the data. If
the peek flag is set, the next receive operation
reads the same data.

'MSG_WAITALL' X'00000040' Requests that the function block until the full
amount of requested data can be returned
(stream sockets only). The function might return
a smaller amount of data if the connection is
terminated, if an error is pending, or if the
SO_RCVTIMEO field is set and the timer expired
for the socket.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

Chapter 12. Macro application programming interface 309

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

SELECT
In a process where multiple I/O operations can occur it is necessary for the program to be able to wait on
one or several of the operations to complete. For example, consider a program that issues a READ to
multiple sockets whose blocking mode is set. Because the socket would block on a READ macro, only one
socket could be read at a time. Setting the sockets to nonblocking would solve this problem, but would
require polling each socket repeatedly until data becomes available. The SELECT macro allows you to test
several sockets and to process a later I/O macro only when one of the tested sockets is ready. This
ensures that the I/O macro does not block.

Tip: You do not need to use the SELECT macro when you are using APITYPE=3 (asynchronous) calls.
Simply issue the intended call and let the specified notification mechanism (ECB or exit routine) take
effect.

To use the SELECT macro as a timer in your program, take either of the following actions:

• Set the read, write, and exception arrays to zeros.
• Do not specify MAXSOC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Testing sockets
Read, write, and exception operations can be tested. The SELECT macro monitors activity on selected
sockets to determine whether:

• A buffer for the specified sockets contains input data. If input data is available for a given socket, a read
operation on that socket does not block.

• TCP/IP can accommodate additional output data. If TCP/IP can accept additional output for a socket, a
write operation on the socket does not block.

• An exceptional condition occurs on a socket.
• A timeout occurs on the SELECT macro itself. A TIMEOUT period can be specified when the SELECT

macro is issued.

310 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Each socket descriptor is represented by a bit in a bit string. The length of this bit-mask array is
dependent on the value in MAXSOC and must be a multiple of 4 bytes. See “Selecting requests in a
concurrent server program” on page 37 for more information.

Read operations
The ACCEPT, READ, READV, RECV, RECVFROM, and RECVMSG macros are read operations. A socket is
ready for reading when data is received on it, or when an exception condition occurs.

To determine if a socket is ready for the read operation, set the appropriate bit in RSNDMSK to 1 before
issuing the SELECT macro. When the SELECT macro returns, the corresponding bits in the RRETMSK
indicate sockets ready for reading.

Write operations
A socket is selected for writing, ready to be written, when:

• TCP/IP can accept additional outgoing data.
• A connection request is received in response to an ACCEPT macro.
• A CONNECT call for a nonblocking socket, which has previously returned ERRNO 36 (EINPROGRESS),

completes the connection.

The WRITE, WRITEV, SEND, SENDMSG, or SENDTO macros block when the data to be sent exceeds the
amount that TCP/IP can accept. To avoid this, you can precede the write operation with a SELECT macro
to ensure that the socket is ready for writing. After a socket is selected for WRITE, your program can
determine the amount of TCP/IP buffer space available by issuing the GETSOCKOPT macro with the
SO_SNDBUF option.

To determine if a socket is ready for the write operation, set the appropriate bit in WSNDMSK to 1.

Exception operations
For each socket to be tested, the SELECT macro can check for an exception condition. The exception
conditions are:

• The calling program (concurrent server) has issued a GIVESOCKET command and the target subtask has
successfully issued the TAKESOCKET call. When this condition is selected, the calling program
(concurrent server) should issue CLOSE to dissociate itself from the socket.

• A socket has received out-of-band data. For this condition, a READ macro returns the out-of-band data
before the program data.

To determine if a socket has an exception condition, use the ESNDMSK character string and set the
appropriate bits to 1.

Returning the results
For each event tested by a xSNDMSK, a bit string records the results of the check. The bit strings are
RRETMSK, WRETMSK, and ERETMSK for read, write, and exceptional events. On return from the SELECT
macro, each bit set to 1 in the xRETMSK is a read, write, or exceptional event for the associated socket.

MAXSOC parameter
The SELECT call must test each bit in each string before returning results. For efficiency, the MAXSOC
parameter can be used to specify the largest socket descriptor number that needs to be tested for any
event type. The SELECT call tests only bits in the range 0 through the MAXSOC value minus one.

Example: If MAXSOC value is set to 50, the range would be 0 – 49.

Chapter 12. Macro application programming interface 311

TIMEOUT parameter
If the time in the TIMEOUT parameter elapses before an event is detected, the SELECT call returns and
RETCODE is set to 0.

EZASMI TYPE=SELECT ,MAXSOC = address

*indaddr

(reg)

,ERRNO =

address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,TIMEOUT = address

*indaddr

(reg)

,RSNDMSK = address

*indaddr

(reg)

,RRETMSK = address

*indaddr

(reg)

,WSNDMSK = address

*indaddr

(reg)

,WRETMSK = address

*indaddr

(reg)

,ESNDMSK = address

*indaddr

(reg)

,ERETMSK = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

312 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

MAXSOC
Input parameter. A fullword binary field that specifies the largest socket descriptor value being
checked. The SELECT call tests only bits that are in the range 0 through the MAXSOC value minus 1.
For example, if you set the MAXSOC value to 50, the range is 0 – 49.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
>0

Indicates the number of ready sockets in the three return masks.

Note: If the number of ready sockets is greater than 65535, only 65535 is reported.

=0
Indicates that the SELECT time limit has expired.

-1
Check ERRNO for an error code.

TIMEOUT
Input parameter.

If TIMEOUT is not specified, the SELECT call blocks until a socket becomes ready.

If TIMEOUT is specified, TIMEOUT is the maximum interval for the SELECT call to wait until completion
of the call. If you want SELECT to poll the sockets and return immediately, TIMEOUT should be
specified to point to a 0-valued TIMEVAL structure.

TIMEOUT is specified in the two-word TIMEOUTas follows:

• TIMEOUT-SECONDS, word one of TIMEOUT, is the seconds component of the timeout value.
• TIMEOUT-MICROSEC, word two of TIMEOUT, is the microseconds component of the timeout value

(0–999999).

For example, if you want SELECT to timeout after 3.5 seconds, set TIMEOUT-SECONDS to 3 and
TIMEOUT-MICROSEC to 500000.

For APITYPE=3 with an ECB specified, the SELECT call will return immediately because it is
asynchronous; the ECB will be POSTed when the timer pops.

RSNDMSK
Input parameter. The bit-mask array to control checking for read interrupts. If this parameter is not
specified or the specified bit-mask is zeros, the SELECT does not check for read interrupts. The length
of this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

RRETMSK
Output parameter. The bit-mask array returned by the SELECT if RSNDMSK is specified. The length of
this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

WSNDMSK
Input parameter. The bit-mask array to control checking for write interrupts. If this parameter is not
specified or the specified bit-mask is zeros, the SELECT does not check for write interrupts. The length
of this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

Chapter 12. Macro application programming interface 313

WRETMSK
Output parameter. The bit-mask array returned by the SELECT if WSNDMSK is specified. The length of
this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

ESNDMSK
Input parameter. The bit-mask array to control checking for exception interrupts. If this parameter is
not specified or the specified bit-mask is zeros, the SELECT does not check for exception interrupts.
The length of this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4
bytes. See “Selecting requests in a concurrent server program” on page 37 for more information.

ERETMSK
Output parameter. The bit-mask array returned by the SELECT if ESNDMSK is specified. The length of
this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

SELECTEX
The SELECTEX macro monitors a set of sockets, a time value, and an ECB or list of ECBs. It completes
when either one of the sockets has activity, the time value expires, or the ECBs are posted.

To use the SELECTEX call as a timer in your program, take either of the following actions:

• Set the read, write, and exception arrays to zeros.
• Do not specify MAXSOC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

314 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Testing sockets
Read, write, and exception operations can be tested. The SELECTEX macro monitors activity on selected
sockets to determine whether:

• A buffer for the specified sockets contains input data. If input data is available for a given socket, a read
operation on that socket does not block.

• TCP/IP can accommodate additional output data. If TCP/IP can accept additional output for a socket, a
write operation on the socket does not block.

• An exceptional condition occurs on a socket.
• A timeout occurs on the SELECTEX macro itself. A TIMEOUT period can be specified when the

SELECTEX macro is issued.

Each socket descriptor is represented by a bit in a bit string.

Read operations
The ACCEPT, READ, READV, RECV, RECVFROM, and RECVMSG macros are read operations. A socket is
ready for reading when data is received on it, or when an exception condition occurs.

To determine if a socket is ready for the read operation, set the appropriate bit in RSNDMSK to 1 before
issuing the SELECTEX macro. When the SELECTEX macro returns, the corresponding bits in the RRETMSK
indicate sockets ready for reading.

Write operations
A socket is selected for writing, ready to be written, when:

• TCP/IP can accept additional outgoing data.
• A connection request is received in response to an ACCEPT macro.
• A CONNECT call for a nonblocking socket, which has previously returned ERRNO 36 (EINPROGRESS),

completes the connection.

The WRITE, WRITEV, SEND, SENDMSG, or SENDTO macros block when the data to be sent exceeds the
amount that TCP/IP can accept. To avoid this, you can precede the write operation with a SELECTEX
macro to ensure that the socket is ready for writing. After a socket is selected for WRITE, your program
can determine the amount of TCP/IP buffer space available by issuing the GETSOCKOPT macro with the
SO_SNDBUF option.

To determine if a socket is ready for the write operation, set the appropriate bit in WSNDMSK to 1.

Exception operations
For each socket to be tested, the SELECTEX macro can check for an exception condition. The exception
conditions are:

• The calling program (concurrent server) has issued a GIVESOCKET command and the target subtask has
successfully issued the TAKESOCKET call. When this condition is selected, the calling program
(concurrent server) should issue CLOSE to dissociate itself from the socket.

• A socket has received out-of-band data. For this condition, a READ macro returns the out-of-band data
before the program data.

To determine whether a socket has an exception condition, use the ESNDMSK character string and set the
appropriate bits to 1.

Chapter 12. Macro application programming interface 315

Returning the results
For each event tested by a xSNDMSK, a bit string records the results of the check. The bit strings are
RRETMSK, WRETMSK, and ERETMSK for read, write, and exceptional events. On return from the
SELECTEX macro, each bit set to 1 in the xRETMSK is a read, write, or exceptional event for the associated
socket.

MAXSOC parameter
The SELECTEX call must test each bit in each string before returning results. For efficiency, the MAXSOC
parameter can be used to specify the largest socket descriptor number that needs to be tested for any
event type. The SELECTEX call tests only bits that are in the range 0 through the MAXSOC value minus 1.

Example: If MAXSOC value is set to 50, the range would be 0 – 49.

TIMEOUT parameter
If the time in the TIMEOUT parameter elapses before an event is detected, the SELECTEX macro returns
and RETCODE is set to 0.

316 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=SELECTEX ,MAXSOC = address

*indaddr

(reg)

,ERRNO =

address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,TIMEOUT = address

*indaddr

(reg)

,RSNDMSK = address

*indaddr

(reg)

,RRETMSK = address

*indaddr

(reg)

,WSNDMSK = address

*indaddr

(reg)

,WRETMSK = address

*indaddr

(reg)

,ESNDMSK = address

*indaddr

(reg)

,ERETMSK = address

*indaddr

(reg)

,SELECB

(

address

*indaddr

(reg)

,'LIST')

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

MAXSOC
Input parameter. A fullword binary field that specifies the largest socket descriptor value being
checked. The SELECTEX call tests only bits that are in the range 0 through the MAXSOC value minus 1.
For example, if you set the MAXSOC value to 50, the range is 0 – 49.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this contains an error number.

RETCODE
Output parameter. A fullword binary field.
Value

Meaning

Chapter 12. Macro application programming interface 317

>0
The number of ready sockets.

Note: If the number of ready sockets is greater than 65535, only 65535 is reported.

0
Either the SELECTEX time limit has expired (ECB value is 0) or one of the caller's ECBs has been
posted (ECB value is nonzero and the caller's descriptor sets is set to 0). The caller must initialize
the ECB values to zero before issuing the SELECTEX socket command.

-1
Check ERRNO for an error code.

TIMEOUT
Input parameter.

If TIMEOUT is not specified, the SELECTEX call blocks until a socket becomes ready or until a user
ECB is posted.

If a TIMEOUT value is specified, TIMEOUT is the maximum interval for the SELECTEX call to wait until
completion of the call. If you want SELECTEX to poll the sockets and return immediately, TIMEOUT
should be specified to point to a zero-valued TIMEVAL structure.

TIMEOUT is specified in the two-word TIMEOUT as follows:

• TIMEOUT-SECONDS, word one of TIMEOUT, is the seconds component of the timeout value.
• TIMEOUT-MICROSEC, word two of TIMEOUT, is the microseconds component of the timeout value

(0—999999).

For example, if you want SELECT to timeout after 3.5 seconds, set TIMEOUT-SECONDS to 3 and
TIMEOUT-MICROSEC to 500000. TIMEOUT, SELECTEX returns to the calling program.

RSNDMSK
Input parameter. The bit-mask array to control checking for read interrupts. If this parameter is not
specified or the specified bit-mask is zeros, the SELECT does not check for read interrupts. The length
of this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

RRETMSK
Output parameter. The bit-mask array returned by the SELECT if RSNDMSK is specified. The length of
this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

WSNDMSK
Input parameter. The bit-mask array to control checking for write interrupts. If this parameter is not
specified or the specified bit-mask is zeros, the SELECT does not check for write interrupts. The length
of this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

WRETMSK
Output parameter. The bit-mask array returned by the SELECT if WSNDMSK is specified. The length of
this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

ESNDMSK
Input parameter. The bit-mask array to control checking for exception interrupts. If this parameter is
not specified or the specified bit-mask is zeros, the SELECT does not check for exception interrupts.
The length of this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4
bytes. See “Selecting requests in a concurrent server program” on page 37 for more information.

ERETMSK
Output parameter. The bit-mask array returned by the SELECT if ESNDMSK is specified. The length of
this bit-mask array is dependent on the value in MAXSOC and must be a multiple of 4 bytes. See
“Selecting requests in a concurrent server program” on page 37 for more information.

318 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SELECB
Input parameter. An ECB or list of ECB addresses which, if posted, causes completion of the
SELECTEX.

If the address of an ECB list is specified, you must set the high-order bit of the last entry in the ECB
list to 1 and you must also add the LIST keyword. The ECBs must reside in the caller's home address
space.

Note: The maximum number of ECBs that can be specified in a list is 1013.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

SEND
The SEND macro sends datagrams on a specified connected socket.

FLAGS allows you to:

• Send out-of-band data, for example, interrupts, aborts, and data marked urgent. Only stream sockets
created in the AF_INET address family support out-of-band data.

• Suppress use of local routing tables. This implies that the caller takes control of routing and writing
network software.

For datagram sockets, SEND transmits the entire datagram if it fits into the receiving buffer. Extra data is
discarded.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each call to this function can send any number
of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in RETCODE. Therefore,
programs using stream sockets should place this call in a loop and reissue the call until all data has been
sent.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 319

EZASMI TYPE=SEND ,S = number

address

*indaddr

(reg)

,NBYTE = number

address

*indaddr

(reg)

,BUF = address

*indaddr

(reg)

,ALET = address

*indaddr

(reg)

,ERRNO

= address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,FLAGS = 'MSG_OOB'

'MSG_DONTROUTE'

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor
of the socket that is sending data.

NBYTE
Input parameter. A value or the address of a fullword binary number specifying the number of bytes to
transmit.

BUF
The address of the data being transmitted. The length of BUF must be at least as long as the value of
NBYTE.

320 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ALET
Optional input parameter. A fullword binary field containing the ALET of BUF. The default is 0 (primary
address space).

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit access
list (DU-AL) for the task issuing this call. Note that ALETs can be specified only for synchronous socket
calls (for example, ECB/REQAREA cannot be specified). An exception to this is an ALET representing a
SCOPE=COMMON data space.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field.
Value

Description
0 or >0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNO for an error code.
FLAGS

Input parameter. FLAGS can be a literal value or a fullword binary field:

Literal Value Binary Value Description

'MSG_OOB' X'00000001' Send out-of-band data. (Stream
sockets only.)

'MSG_DONTROUTE' X'00000004' Do not route. Routing is handled by the
calling program.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

SENDMSG
The SENDMSG macro sends messages on a socket with descriptor s passed in an array of messages.

The following requirements apply to this call:

Chapter 12. Macro application programming interface 321

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=SENDMSG ,S = number

address

*indaddr

(reg)

,MSG =

address

*indaddr

(reg)

,FLAGS = 'MSG_OOB'

'MSG_PEEK'

address

*indaddr

(reg)

,ERRNO =

address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

322 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor.

MSG
On input, this is a pointer to a message header into which the message is received on completion of
the call.
NAME

On input, a pointer to a buffer where the sender's IPv4 or IPv6 address will be stored on
completion of the call. The storage being pointed to should be for an IPv4 or IPv6 socket address.
Include the SYS1.MACLIB(BPXYSOCK) macro to get the assembler mappings for the socket
address structure. The socket address structure mappings begin at the SOCKADDR label. The
AF_INET socket address structure fields start at the SOCK_SIN label. The AF_INET6 socket
address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field
Description

FAMILY
A halfword binary number specifying the IPv4 addressing family. The value for the IPv4 socket
descriptor (S parameter) is a decimal 2, indicating AF_INET.

PORT
A halfword binary number specifying the port number of the sending socket.

IPv4-ADDRESS
A fullword binary number specifying the 32-bit IPv4 Internet address of the sending socket.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure contains the following fields:
Field

Description
NAMELEN

A 1-byte binary field specifying the length of this IPv6 socket address structure. Any value
specified by the use of this field is ignored when processed as input and the field is set to 0
when processed as output.

FAMILY
A 1-byte binary field specifying the IPv6 addressing family. The value for the IPv6 socket
descriptor (S parameter) is a decimal 19, indicating AF_INET6.

PORT
A halfword binary number specifying the port number of the sending socket.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IPv6-ADDRESS
16-byte binary field specifying the 128-bit IPv6 Internet address, in network byte order, of the
sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does
not identify the set of interfaces to be used, and can be specified for any address types and
scopes. For a link scope IPv6-ADDRESS, SCOPE-ID can specify a link index which identifies a
set of interfaces. For all other address scopes, SCOPE-ID can be set to 0.

IOV
A pointer to an array of three fullword structures with the number of structures equal to the value
in IOVCNT and the format of the structures as follows:

Chapter 12. Macro application programming interface 323

Fullword 1
Input parameter. The address of a data buffer.

Fullword 2
Input parameter. The ALET for this buffer. If the buffer is in the primary address space, this
should be zeros.

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit
access list (DU-AL) for the task issuing this call. Note that ALETs can be specified only for
synchronous socket calls (for example, ECB/REQAREA cannot be specified). An exception to
this is an ALET representing a SCOPE=COMMON data space.

Fullword 3
Input parameter. The length of the data buffer referenced in Fullword 1.

IOVCNT
A pointer to a fullword binary field specifying the number of data buffers provided for this call.

ACCRIGHTS
A pointer to the access rights sent. This field is ignored.

ACCRLEN
A pointer to the length of the access rights sent. This field is ignored.

FLAGS
Input parameter. FLAGS can be a literal value or a fullword binary field:

Literal Value Binary Value Description

'MSG_OOB' X'00000001' Send out-of-band data. (Stream
sockets only.)

'MSG_DONTROUTE' X'00000004' Do not route. Routing is handled by the
calling program.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this contains an error number.

RETCODE
Output parameter. A fullword binary field.
Value

Description
0 or >0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte
field containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this
function request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

324 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ERROR
Input parameter. The location in your program to receive control when the application
programming interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

SENDTO
SENDTO is similar to SEND, except that it includes the destination address parameter. You can use the
destination address on the SENDTO macro to send datagrams on a UDP socket that is connected or not
connected.

Use the FLAGS parameter to:

• Send out-of-band data, such as interrupts, aborts, and data marked as urgent.
• Suppress the local routing tables. This implies that the caller takes control of routing, which requires

writing network software.

For datagram sockets, the SENDTO macro sends the entire datagram if the datagram fits into the buffer.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each SENDTO macro call can send any number
of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in RETCODE. Therefore,
programs using stream sockets should place SENDTO in a loop that repeats the macro until all data has
been sent.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 325

EZASMI TYPE=SENDTO ,S = number

address

*indaddr

(reg)

,NBYTE =

number

address

*indaddr

(reg)

,BUF = address

*indaddr

(reg)

,ALET = address

*indaddr

(reg)

,NAME = address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE

= address

*indaddr

(reg)

,FLAGS = 'MSG_OOB'

'MSG_DONTROUTE'

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Output parameter. A value or the address of a halfword binary number specifying the socket
descriptor of the socket sending the data.

NBYTE
Input parameter. A value or the address of a fullword binary number specifying the number of bytes to
transmit.

BUF
Input parameter. The address of the data being transmitted. The length of BUF must be at least as
long as the value of NBYTE.

326 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ALET
Optional input parameter. A fullword binary field containing the ALET of BUF. The default is 0 (primary
address space).

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit access
list (DU-AL) for the task issuing this call. Note that ALETs can be specified only for synchronous socket
calls (for example, ECB/REQAREA cannot be specified). An exception to this is an ALET representing a
SCOPE=COMMON data space.

NAME

Input parameter. The address of the IPv4 or IPv6 target. Include the SYS1.MACLIB(BPXYSOCK) macro
to get the assembler mappings for the socket address structure. The socket address structure
mappings begin at the SOCKADDR label. The AF_INET socket address structure fields start at the
SOCK_SIN label. The AF_INET6 socket address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure must specify the following fields:

Field
Description

FAMILY
A halfword binary field containing the IPv4 addressing family. The value for the IPv4 socket
descriptor (S parameter) is a decimal 2, indicating AF_INET.

PORT
A halfword binary field containing the port number bound to the socket.

IP-ADDRESS
A fullword binary field containing the 32-bit IPv4 Internet Protocol address of the socket.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is not used.

The IPv6 socket structure must specify the following fields:
Field

Description
NAMELEN

A 1-byte binary field specifying the length of this IPv6 socket address structure. Any value
specified by the use of this field is ignored when processed as input and the field is set to 0 when
processed as output.

FAMILY
A 1-byte binary field specifying the IPv6 addressing family. The value for IPv6 socket descriptor (S
parameter) is a decimal 19, indicating AF_INET6.

PORT
A halfword binary field containing the port number bound to the socket.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet Protocol address, in network byte
order, of the client host machine. If 0 is specified, the application accepts connections from any
network address.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and can be specified for any address types and scopes.
For a link scope IPv6-ADDRESS, SCOPE-ID can specify a link index which identifies a set of
interfaces. For all other address scopes, SCOPE-ID must be set to 0.

Chapter 12. Macro application programming interface 327

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore ERRNO.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0 or >0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNO for an error code.
FLAGS

Input parameter. FLAGS can be a literal value or a fullword binary field:

Literal Value Binary Value Description

'MSG_OOB' X'00000001' Send out-of-band data. (Stream
sockets only.)

'MSG_DONTROUTE' X'00000004' Do not route. Routing is handled by the
calling program.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

SETSOCKOPT
The SETSOCKOPT macro sets the options associated with a socket.

The OPTVAL and OPTLEN parameters are used to pass data used by the particular set command. The
OPTVAL parameter points to a buffer containing the data needed by the set command. The OPTLEN
parameter must be set to the size of the data pointed to by OPTVAL.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

328 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 329

EZASMI TYPE=SETSOCKOPT ,S = number

address

*indaddr

(reg)

,OPTLEN =

address

*indaddr

(reg)

,OPTNAME = 'IP_ADD_SOURCE_MEMBERSHIP'

'IP_BLOCK_SOURCE'

'IP_ADD_MEMBERSHIP'

'IP_DROP_SOURCE_MEMBERSHIP'

'IP_DROP_MEMBERSHIP'

'IP_MULTICAST_IF'

'IP_MULTICAST_LOOP'

'IP_UNBLOCK_SOURCE'

'IP_MULTICAST_TTL'

'IPV6_ADDR_PREFERENCES'

'IPV6_JOIN_GROUP'

'IPV6_LEAVE_GROUP'

'IPV6_MULTICAST_HOPS'

'IPV6_MULTICAST_IF'

'IPV6_MULTICAST_LOOP'

'IPV6_UNICAST_HOPS'

'IPV6_V6ONLY'

'MCAST_BLOCK_SOURCE'

'MCAST_JOIN_GROUP'

'MCAST_JOIN_SOURCE_GROUP'

'MCAST_LEAVE_GROUP'

'MCAST_LEAVE_SOURCE_GROUP'

'MCAST_UNBLOCK_SOURCE'

'SO_BROADCAST'

'SO_KEEPALIVE'

'SO_LINGER'

'SO_OOBINLINE'

'SO_RCVBUF'

'SO_RCVTIMEO'

'SO_REUSEADDR'

'SO_SNDBUF'

'SO_SNDTIMEO'

'TCP_KEEPALIVE'

'TCP_NODELAY'

address

*indaddr

(reg)

,OPTVAL = address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE

= address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

330 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor
of the socket requiring options.

OPTNAME
Input parameter. See the table below for a list of the options and their unique requirements. See
Appendix D, “GETSOCKOPT/SETSOCKOPT command values,” on page 769 for the numeric values of
OPTNAME.

OPTVAL
Input parameter. Contains data about the option specified in OPTNAME. See the table below for a list
of the options and their unique requirements

OPTLEN
Input parameter. A fullword binary field containing the length of the data returned in OPTVAL. See the
table below for determining on what to base the value of OPTLEN.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

Chapter 12. Macro application programming interface 331

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_ADD_MEMBERSHIP

Use this option to enable an application to
join a multicast group on a specific
interface. An interface has to be specified
with this option. Only applications that
want to receive multicast datagrams need
to join multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a 4-
byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_ADD_SOURCE_MEMBERSHIP

Use this option to enable an application to
join a source multicast group on a specific
interface and a specific source address.
You must specify an interface and a
source address with this option.
Applications that want to receive
multicast datagrams need to join source
multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_BLOCK_SOURCE

Use this option to enable an application to
block multicast packets that have a
source address that matches the given
IPv4 source address. You must specify an
interface and a source address with this
option. The specified multicast group
must have been joined previously.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

332 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_DROP_MEMBERSHIP

Use this option to enable an application to
exit a multicast group or to exit all sources
for a multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a 4-
byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_DROP_SOURCE_MEMBERSHIP

Use this option to enable an application to
exit a source multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the IPv4
interface address used for sending
outbound multicast datagrams from the
socket application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be
transmitted only on one interface at a
time.

A 4-byte binary field containing
an IPv4 interface address.

A 4-byte binary field containing
an IPv4 interface address.

IP_MULTICAST_LOOP

Use this option to control or determine
whether a copy of multicast datagrams is
looped back for multicast datagrams sent
to a group to which the sending host itself
belongs. The default is to loop the
datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will contain a 1.

If disabled, will contain a 0.

Chapter 12. Macro application programming interface 333

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast
datagrams. The default value is '01'x
meaning that multicast is available only to
the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

IP_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given IPv4 multicast group. You must
specify an interface and a source address
with this option.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

334 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_ADDR_PREFERENCES

Use this option to query or set IPv6
address preferences of a socket. The
default source address selection
algorithm considers these preferences
when it selects an IP address that is
appropriate to communicate with a given
destination address.

This is an AF_INET6-only socket option.

Result: These flags are only preferences.
The stack could assign a source IP
address that does not conform to the
IPV6_ADDR_PREFERENCES flags that you
specify.

Guideline: Use the INET6_IS_SRCADDR
function to test whether the source IP
address matches one or more
IPV6_ADDR_PREFERENCES flags.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

Some of these flags are
contradictory. Combining
contradictory flags, such as
IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA,
results in error code EINVAL.

See IPV6_ADDR_PREFERENCES
and Mapping of GAI_HINTS/
GAI_ADDRINFO EFLAGS in
SEZAINST(CBLOCK) for the PL/I
example of the OPTNAME and
flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_ NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

See IPV6_ADDR_
PREFERENCES and Mapping of
GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Chapter 12. Macro application programming interface 335

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_JOIN_GROUP

Use this option to control the reception of
multicast packets and specify that the
socket join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK) for
the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of
multicast packets and specify that the
socket leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK) for
the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: An application must be
APF authorized to enable it to
set the hop limit value above the
system defined hop limit value.
CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of multicast hops.

336 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_MULTICAST_IF

Use this option to set or obtain the index
of the IPv6 interface used for sending
outbound multicast datagrams from the
socket application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine
whether a multicast datagram is looped
back on the outgoing interface by the IP
layer for local delivery when datagrams
are sent to a group to which the sending
host itself belongs. The default is to loop
multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop
limit used for outgoing unicast IPv6
packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: APF authorized
applications are permitted to set
a hop limit that exceeds the
system configured default. CICS
applications cannot execute as
APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of unicast hops.

IPV6_V6ONLY

Use this option to set or determine
whether the socket is restricted to send
and receive only IPv6 packets. The
default is to not restrict the sending and
receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

Chapter 12. Macro application programming interface 337

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_BLOCK_SOURCE

Use this option to enable an application to
block multicast packets that have a
source address that matches the given
source address. You must specify an
interface index and a source address with
this option. The specified multicast group
must have been joined previously.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_JOIN_GROUP

Use this option to enable an application to
join a multicast group on a specific
interface. You must specify an interface
index. Applications that want to receive
multicast datagrams must join multicast
groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_JOIN_SOURCE_GROUP

Use this option to enable an application to
join a source multicast group on a specific
interface and a source address. You must
specify an interface index and the source
address. Applications that want to receive
multicast datagrams only from specific
source addresses need to join source
multicast groups.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

338 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_LEAVE_GROUP

Use this option to enable an application to
exit a multicast group or exit all sources
for a given multicast groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to
exit a source multicast group.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given multicast group. You must specify
an interface index and a source address
with this option.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

Chapter 12. Macro application programming interface 339

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to
ASCII. When SO_ASCII is not set, data is
not translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_BROADCAST

Use this option to set or determine
whether a program can send broadcast
messages over the socket to destinations
that can receive datagram messages. The
default is disabled.

Note: This option has no meaning for
stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the
status of the debug option. The default is
disabled. The debug option controls the
recording of debug information.

Notes:

1. This is a REXX-only socket option.
2. This option has meaning only for

stream sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set,
data is not translated to or from EBCDIC.
This option is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_ERROR

Use this option to request pending errors
on the socket or to check for
asynchronous errors on connected
datagram sockets or for other errors that
are not explicitly returned by one of the
socket calls. The error status is clear
afterwards.

N/A A 4-byte binary field containing
the most recent ERRNO for the
socket.

340 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_KEEPALIVE

Use this option to set or determine
whether the keep alive mechanism
periodically sends a packet on an
otherwise idle connection for a stream
socket.

The default is disabled.

When activated, the keep alive
mechanism periodically sends a packet on
an otherwise idle connection. If the
remote TCP does not respond to the
packet or to retransmissions of the
packet, the connection is terminated with
the error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine
how TCP/IP processes data that has not
been transmitted when a CLOSE is issued
for the socket. The default is disabled.

Notes:

1. This option has meaning only for
stream sockets.

2. If you set a zero linger time, the
connection cannot close in an orderly
manner, but stops, resulting in a RESET
segment being sent to the connection
partner. Also, if the aborting socket is
in nonblocking mode, the close call is
treated as though no linger option had
been set.

When SO_LINGER is set and CLOSE is
called, the calling program is blocked until
the data is successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and
TCP/IP continues to attempt to send data
for a specified time. This usually allows
sufficient time to complete the data
transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP only waits the amount of time
specified in OPTVAL for SO_LINGER.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable
this option. Set LINGER to the
number of seconds that TCP/IP
lingers after the CLOSE is issued.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a 0
indicates disabled. LINGER
indicates the number of seconds
that TCP/IP will try to send data
after the CLOSE is issued.

Chapter 12. Macro application programming interface 341

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_OOBINLINE

Use this option to control or determine
whether out-of-band data is received.

Note: This option has meaning only for
stream sockets.

When this option is set, out-of-band data
is placed in the normal data input queue
as it is received and is available to a RECV
or a RECVFROM even if the OOB flag is not
set in the RECV or the RECVFROM.

When this option is disabled, out-of-band
data is placed in the priority data input
queue as it is received and is available to
a RECV or a RECVFROM only when the
OOB flag is set in the RECV or the
RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

• TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
Socket

• UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
Socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP
receive buffer.

If disabled, contains a 0.

342 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_RCVTIMEO

Use this option to control or determine
the maximum length of time that a
receive-type function can wait before it
completes.

If a receive-type function has blocked for
the maximum length of time that was
specified without receiving data, control is
returned with an errno set to
EWOULDBLOCK. The default value for this
option is 0, which indicates that a receive-
type function does not time out.

When the MSG_WAITALL flag (stream
sockets only) is specified, the timeout
takes precedence. The receive-type
function can return the partial count. See
the explanation of that operation's
MSG_WAITALL flag parameter.

The following receive-type functions are
supported:

• READ
• READV
• RECV
• RECVFROM
• RECVMSG

This option requires a TIMEVAL
structure, which is defined in
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds can be a value in the
range 0 - 2 678 400 (equal to 31
days), and the microseconds can
be a value in the range 0 -
 1 000 000 (equal to 1 second).
Although TIMEVAL value can be
specified using microsecond
granularity, the internal TCP/IP
timers that are used to
implement this function have a
granularity of approximately 100
milliseconds.

This option stores a TIMEVAL
structure that is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2 678 400 (equal
to 31 days). The number of
microseconds value that is
returned is in the range 0 -
 1 000 000.

Chapter 12. Macro application programming interface 343

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_REUSEADDR

Use this option to control or determine
whether local addresses are reused. The
default is disabled. This alters the normal
algorithm used with BIND. The normal
BIND algorithm allows each Internet
address and port combination to be
bound only once. If the address and port
have been already bound, then a
subsequent BIND will fail and result error
will be EADDRINUSE.

When this option is enabled, the following
situations are supported:

• A server can BIND the same port
multiple times as long as every
invocation uses a different local IP
address and the wildcard address
INADDR_ANY is used only one time per
port.

• A server with active client connections
can be restarted and can bind to its port
without having to close all of the client
connections.

• For datagram sockets, multicasting is
supported so multiple bind() calls can
be made to the same class D address
and port number.

• If you require multiple servers to BIND
to the same port and listen on
INADDR_ANY, see the SHAREPORT
option on the PORT statement in
TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
send buffer. The size of the TCP/IP send
buffer is protocol specific and is based on
the following conditions:

• The TCPSENDBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
socket

• The UDPSENDBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP send
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP send
buffer.

If disabled, contains a 0.

344 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_SNDTIMEO

Use this option to control or determine
the maximum length of time that a send-
type function can remain blocked before it
completes.

If a send-type function has blocked for
this length of time, it returns with a partial
count or, if no data is sent, with an errno
set to EWOULDBLOCK. The default value
for this is 0, which indicates that a send-
type function does not time out.

For a SETSOCKOPT, the following send-
type functions are supported:

• SEND
• SENDMSG
• SENDTO
• WRITE
• WRITEV

This option requires a TIMEVAL
structure, which is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds value is in the range 0 -
 2 678 400 (equal to 31 days),
and the microseconds value is in
the range 0 - 1 000 000 (equal
to 1 second). Although the
TIMEVAL value can be specified
using microsecond granularity,
the internal TCP/IP timers that
are used to implement this
function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
SYS1.MACLIB(BPXYRLIM). The
TIMEVAL structure contains the
number of seconds and
microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2 678 400 (equal
to 31 days). The microseconds
value that is returned is in the
range 0 - 1 000 000.

SO_TYPE

Use this option to return the socket type.

N/A A 4-byte binary field indicating
the socket type:

X'1' indicates SOCK_STREAM.

X'2' indicates SOCK_DGRAM.

X'3' indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine
whether a socket-specific timeout value
(in seconds) is to be used in place of a
configuration-specific value whenever
keep alive timing is active for that socket.

When activated, the socket-specified
timer value remains in effect until
respecified by SETSOCKOPT or until the
socket is closed. For more information
about the socket option parameters, see
TCP_KeepAlive socket option inz/OS
Communications Server: IP Programmer's
Guide and Reference.

Tip: The site administrator can enable the
global keep-alive mechanism by
specifying the INTERVAL parameter on
the TCPCONFIG statement in the TCP/IP
stack profile data set, TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to a value in the
range of 1 – 2 147 460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the specific
timer value (in seconds) that is
in effect for the given socket.

If disabled, contains a 0
indicating keep alive timing is
not active.

Chapter 12. Macro application programming interface 345

Table 17. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

TCP_NODELAY

Use this option to set or determine
whether data sent over the socket is
subject to the Nagle algorithm (RFC 896).

Under most circumstances, TCP sends
data when it is presented. When this
option is enabled, TCP will wait to send
small amounts of data until the
acknowledgment for the previous data
sent is received. When this option is
disabled, TCP will send small amounts of
data even before the acknowledgment for
the previous data sent is received.

Note: Use the following format to set
TCP_NODELAY OPTNAME value for COBOL
programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP
 VALUE 2147483649.
01 TCP-NODELAY-REDEF REDEFINES
 TCP-NODELAY-VAL.
 05 FILLER PIC 9(6) BINARY.
 05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.

If enabled, contains a 0.

If disabled, contains a 1.

SHUTDOWN
One way to terminate a network connection is to issue a CLOSE macro that attempts to complete all
outstanding data transmission requests prior to breaking the connection. The SHUTDOWN macro can be
used to close one-way traffic while completing data transfer in the other direction. The HOW parameter
determines the direction of the traffic to shutdown.

A client program can use the SHUTDOWN macro to reuse a given socket with a different connection.

If you issue SHUTDOWN for a socket that currently has outstanding socket calls pending, see Table 3 on
page 32 to determine the effects of this operation on the outstanding socket calls.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

346 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=SHUTDOWN ,S = number

address

*indaddr

(reg)

,HOW =

number

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket to be
shutdown.

HOW
Input parameter. A fullword binary field specifying the shutdown method.
Value

Description
0

Ends further receive operations.
1

Ends further send operations.
2

Ends further send and receive operations.
ERRNO

Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns the following values:

Chapter 12. Macro application programming interface 347

Value
Description

0
Successful call.

-1
Check ERRNO for an error code.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

SOCKET
The SOCKET macro creates an endpoint for communication and returns a socket descriptor representing
the endpoint. Different types of sockets provide different communication services.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

348 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASMI TYPE=SOCKET ,AF = 'INET'

'INET6'

address

*indaddr

(reg)

,SOCTYPE =

'STREAM'

'DATAGRAM'

'RAW'

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,NS = number

address

*indaddr

(reg)

,PROTO = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

AF
Input parameter. Specify one of the following values:
Value

Description
'INET' or a decimal 2

Indicates the socket being created will use the IPv4 Internet protocol.
'INET6' or decimal 19

Indicates the socket being created will use the IPv6 Internet protocol.

Note: AF can also indicate a fullword binary number specifying the address family.

SOCTYPE
Input parameter. A fullword binary field set to the type of socket required. The types are:

Chapter 12. Macro application programming interface 349

Value
Description

1 or 'STREAM'
Stream sockets provide sequenced, two-way byte streams that are reliable and connection-
oriented. They support a mechanism for out-of-band data. This is the normal type for TCP/IP.

2 or 'DATAGRAM'
Datagram sockets provide datagrams, which are connectionless messages of a fixed maximum
length whose reliability is not guaranteed. Datagrams can be corrupted, received out of order, lost,
or delivered multiple times. This type is supported only in the AF_INET domain.

3 or 'RAW'
Raw sockets provide the interface to internal protocols (such as IP and ICMP).

Note: For SOCK_RAW sockets, the application must by APF-authorized.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
> or = 0

Contains the new socket descriptor.
-1

Check ERRNO for an error code.
NS

Optional input. A value or the address of a halfword binary number specifying the socket number for
the new socket. If a socket number is not specified, the interface assigns one.

PROTO
Input parameter. A fullword binary number specifying the protocol supported. PROTO only applies to
new sockets and should be set to 0 for TCP/IP. PROTO for IPv6 raw sockets cannot be set to the
following values:
Protocol name

Numeric value
IPROTO_HOPOPTS

0
IPPROTO_TCP

6
IPPROTO_UDP

17
IPPROTO_IPV6

41
IPPROTO_ROUTING

43
IPPROTO_FRAGMENT

44
IPPROTO_ESP

50
IPPROTO_AH

51

350 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IPPROTO_NONE
59

IPPROTO_DSTOPTS
60

PROTO numbers are found in the hlq.etc.proto data set.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

TAKESOCKET
The TAKESOCKET macro acquires a socket from another program and creates a new socket. Typically, a
subtask issues this macro using client ID and socket descriptor data that it obtained from the concurrent
server.

Notes:

1. When TAKESOCKET is issued, a new socket descriptor is returned in RETCODE. You should use this
new socket descriptor in later macros such as GETSOCKOPT, which require the S (socket descriptor)
parameter.

2. Both concurrent servers and iterative servers use this interface. An iterative server handles one client
at a time. A concurrent server receives connection requests from multiple clients and creates subtasks
that process the client requests. When a subtask is created, the concurrent server gets a new socket,
passes the new socket to the subtask, and dissociates itself from the connection. The TCP/IP Listener
program is an example of a concurrent server.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Chapter 12. Macro application programming interface 351

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=TAKESOCKET ,CLIENT = address

*indaddr

(reg)

,SOCRECV =

address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE =

address

*indaddr

(reg)

,NS = number

address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

CLIENT
Input parameter. The client data returned by the GETCLIENTID macro.
Field

Description
DOMAIN

Input parameter. A fullword binary number set to the domain of the program that is giving the
socket. For TCP/IP the value is a decimal 2, indicating AF_INET, or a decimal 19, indicating
AF_INET6.

Note: The TAKESOCKET can only acquire a socket of the same address family from a
GIVESOCKET.

NAME
An 8-byte character field set to the MVS address space identifier of the program giving the socket.

352 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

TASK
Input parameter. Specifies an 8-byte field. This field must match the value of the SUBTASK
parameter on the INITAPI for the MVS task that issued the GIVESOCKET request.

RESERVED
Input parameter. A 20-byte reserved field. This field is required, but not used.

SOCRECV
Input parameter. A halfword binary field containing the socket descriptor number assigned by the
application that called GIVESOCKET.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field.
Value

Description
0 or >0

Contains the new socket descriptor.
-1

Check ERRNO for an error code.
NS

Input parameter. A value or a halfword binary number specifying the socket descriptor number for the
new socket. If a number is not specified, the interface assigns a socket number.

ECB or REQAREA
Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

TASK
The TASK macro allocates a task storage area addressable to all socket users communicating across a
particular connection. Most commonly this is done by assigning one connection to each MVS subtask. If
more than one module is using sockets within a connection or task, it is your responsibility to provide the
task storage address to each user. Each program using sockets should define task storage using the
instruction EZASMI TYPE=TASK with STORAGE=DSECT.

If this macro is not named, the default name EZASMTIE is assumed.

The following requirements apply to this call:

Chapter 12. Macro application programming interface 353

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=TASK ,STORAGE = DSECT

CSECT

Keyword
Description

STORAGE
Input parameter. Defines one of the following storage definitions:
Keyword

Description
DSECT

Generates a DSECT.
CSECT

Generates an inline storage definition that can be used within a CSECT or as a part of a larger
DSECT.

TERMAPI
The TERMAPI macro ends the session created by the INITAPI macro.

Note: The INITAPI and TERMAPI macros must be issued under the same task.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

354 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=TERMAPI

,TASK = address

*indaddr

(reg)

Keyword
Description

TASK
Input parameter. The location of the task storage area in your program.

WRITE
The WRITE macro writes data on a connected socket. The WRITE macro is similar to the SEND macro
except that it does not have the control flags that can be used with SEND.

For datagram sockets, this macro writes the entire datagram, if it will fit into one TCP/IP buffer.

For stream sockets, the data is processed as streams of information with no boundaries separating the
data. For example, if you want to send 1000 bytes of data, each call to the write macro can send 1 byte,
10 bytes, or the entire 1000 bytes. You should place the WRITE macro in a loop that cycles until all of the
data has been sent.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 12. Macro application programming interface 355

EZASMI TYPE=WRITE ,S = number

address

*indaddr

(reg)

,NBYTE = number

address

*indaddr

(reg)

,BUF = address

*indaddr

(reg)

,ALET = address

*indaddr

(reg)

,ERRNO

= address

*indaddr

(reg)

,RETCODE = address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the socket descriptor
of the socket to receive the data.

NBYTE
Input parameter. A value or the address of a fullword binary field specifying the number of bytes of
data to transmit.

BUF
The address of the data being transmitted. The length of BUF must be at least as long as the value of
NBYTE.

ALET
Optional input parameter. A fullword binary field containing the ALET of BUF. The default is 0 (primary
address space).

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit access
list (DU-AL) for the task issuing this call. Note that ALETs can be specified only for synchronous socket
calls (for example, ECB/REQAREA cannot be specified). An exception to this is an ALET representing a
SCOPE=COMMON data space.

356 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this field contains an error number.
See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field.
Value

Description
>0

A successful call. The value is set to the number of bytes transmitted.
0

Connection partner has closed connection.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

This macro writes up to NBYTE bytes of data. If there is not enough available buffer space for the socket
data to be transmitted, and the socket is in blocking mode, WRITE blocks the caller until additional buffer
space is available. If the socket is in nonblocking mode, WRITE returns a -1 and sets ERRNO to 35
(EWOULDBLOCK). See “FCNTL” on page 218 or “IOCTL” on page 279 for a description of how to set the
nonblocking mode.

WRITEV
The WRITEV function writes data on a socket from a set of buffers.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

Chapter 12. Macro application programming interface 357

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

EZASMI TYPE=WRITEV ,S = number

address

*indaddr

(reg)

,IOV = address

*indaddr

(reg)

,IOVCNT = address

*indaddr

(reg)

,ERRNO = address

*indaddr

(reg)

,RETCODE

= address

*indaddr

(reg)

,ECB = address

*indaddr

(reg)

,REQAREA = address

*indaddr

(reg)

,ERROR = address

*indaddr

(reg)

,TASK = address

*indaddr

(reg)

Keyword
Description

S
Input parameter. A value or the address of a halfword binary number specifying the descriptor of the
socket from which the data is to be written.

IOV
Input parameter. An array of three fullword structures with the number of structures equal to the
value in IOVCNT and the format of the structures as follows:
Fullword 1

Input parameter. The address of a data buffer.
Fullword 2

Input parameter. The ALET for this buffer. If the buffer is in the primary address space, this should
be zeros.

If a nonzero ALET is specified, the ALET must represent a valid entry in the dispatchable unit
access list (DU-AL) for the task issuing this call. Note that ALETs can be specified only for
synchronous socket calls (for example, ECB/REQAREA cannot be specified). An exception to this is
an ALET representing a SCOPE=COMMON data space.

Fullword 3
Input parameter. The length of the data buffer referenced in Fullword 1.

358 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IOVCNT
Input parameter. A fullword binary field specifying the number of data buffers provided for this call.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this contains an error number.

RETCODE
Output parameter. A fullword binary field.
Value

Description
>0

A successful call. The value is set to the number of bytes transmitted.
0

Connection partner has closed connection.
-1

Check ERRNO for an error code.
ECB or REQAREA

Input parameter. This parameter is required if you are using APITYPE=3. It points to a 104-byte field
containing:
For ECB

A 4-byte ECB posted by TCP/IP when the macro completes.
For REQAREA

A 4-byte user token (set by you) that is presented to your exit when the response to this function
request is complete.

For ECB/REQAREA
The last 100 bytes is a storage field used by the interface to save the state information.

Note: This storage must not be modified until the macro function has completed and the ECB has
been posted, or the asynchronous exit has been driven.

ERROR
Input parameter. The location in your program to receive control when the application programming
interface (API) processing module cannot be loaded.

TASK
Input parameter. The location of the task storage area in your program.

Macro interface assembler language sample programs
This information provides sample programs for the macro interface that you can use for assembler
language applications. The source code can be found in the SEZAINST data set.

The following sample programs are included:

Program Description

EZASOKAS Sample IPv4 macro interface server program

EZASOKAC Sample IPv4 macro interface client program

EZASO6AS Sample IPv6 macro interface server program

EZASO6AC Sample IPv6 macro interface client program

EZASOKAS sample server program for IPv4
The EZASOKAS program is a server program that shows you how to use the following calls provided by the
macro socket interface:

• INITAPI

Chapter 12. Macro application programming interface 359

• SOCKET
• GETHOSTID
• BIND
• LISTEN
• ACCEPT
• READ
• WRITE
• CLOSE
• TERMAPI

EZASOKAS CSECT
EZASOKAS AMODE ANY
EZASOKAS RMODE ANY
* PRINT NOGEN

* *
* MODULE NAME: EZASOKAS Sample server program *
* *
* Copyright: Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5694-A01 *
* *
* (C) Copyright IBM Corp. 1977, 2003 *
* *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by *
* GSA ADP Schedule Contract with IBM Corp. *
* *
* Status: CSV1R5 *
* *
* *
* LANGUAGE: Assembler *
* *
* ATTRIBUTES: NON-REUSABLE *
* *
* REGISTER USAGE: *
* R1 = *
* R2 = *
* R3 = BASE REG 1 *
* R4 = BASE REG 2 (UNUSED) *
* R5 = FUTURE BASE REG? *
* R6 = TEMP *
* R7 = RETURN REG *
* R8 = *
* R9 = A(WORK AREA) *
* R10 = *
* R11 = *
* R12 = *
* R13 = SAVE AREA *
* R14 = *
* R15 = *
* *
* INPUT: NONE *
* OUTPUT: WTO results of each test case *
* *

 GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION
&TRACE SETB 1 1=TRACE ON 0=TRACE OFF
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12

360 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

R13 EQU 13
R14 EQU 14
R15 EQU 15

* START OF EXECUTABLE CODE *

 USING *,R3,R4 TELL ASSEMBLER OF OTHERS
 SAVE (14,12),T,*
 LR R3,R15 COPY EP REG TO FIRST BASE
 LA R5,2048 GET R5 HALFWAY THERE
 LA R5,2048(R5) GET R5 THERE
 LA R4,0(R5,R3) GET R4 THERE
 LA R12,12 JUST FOR FUN!
 ST R1,PARMADDR SAVE ADDRESS OF PARAMETER LIST
 L R1,0(R1) GET POINTER
 LH R1,0(R1) GET LENGTH
* STC R1,TRACE USE IT AS FLAG
 L R7,=A(SOCSAVE) GET NEW SAVE AREA
 ST R7,8(R13) SAVE ADDRESS OF NEW SAVE AREA
 ST R13,4(R7) COMPLETE SAVE AREA CHAIN
 LR R13,R7 NOW SWAP THEM
 L R9,=A(MYCB) POINT TO THE CONTROL BLOCK
 USING MYCB,R9 TELL ASSEMBLER

* BUILD MESSAGE FOR CONSOLE

* INITIALIZE MESSAGE TEXT FIELDS
LOOP EQU *
 MVC MSGNUM(8),SUBTASK WHO I AM
 MVC TYPE,MSGSTART MOVE 'STARTED' TO MESSAGE
*
 MVC MSGRSLT1,MSGSUCC ...SUCCESSFUL TEXT
 MVC MSGRSLT2,BLANK35
*
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB --> DO STARTING WTO

* *
* Issue INITAPI to connect to interface *
* *

 POST ECB,1 NEXT IS ALWAYS SYNCH
 MVI SYNFLAG,1 MOVE A 1 FOR ASYNC
 MVC TYPE,MINITAPI MOVE 'INITAPI' TO MESSAGE
*
 EZASMI TYPE=INITAPI, Issue INITAPI Macro X
 SUBTASK=SUBTASK, SPECIFY SUBTASK IDENTIFIER X
 MAXSOC=MAXSOC, SPECIFY MAXIMUM NUMBER OF SOCKETS X
 MAXSNO=MAXSNO, (HIGHEST SOCKET NUMBER ASSIGNED) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 APITYPE=APITYPE, (SPECIFY APITYPE FIELD) X
 ERROR=ERROR, ABEND IF ERROR ON MACRO X
 ASYNC=('EXIT',MYEXIT) (SPECIFY AN EXIT)
* IDENT=IDENT, TCP ADDR SPACE AND MY ADDR SPACE
* ASYNC=('ECB') (SPECIFY ECBS)
*
 BAL R14,RCCHECK --> DID IT WORK?

* *
* Issue SOCKET Macro to obtain a socket descriptor *
* *** INET and STREAM *** *
* *

 MVC TYPE,MSOCKET MOVE 'SOCKET' TO MESSAGE
*
 EZASMI TYPE=SOCKET, Issue SOCKET Macro X
 AF='INET', INET or IUCV X
 SOCTYPE='STREAM', STREAM(TCP) DATAGRAM(UDP) or RAW X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*

* Get socket descriptor number

 STH R8,S SAVE RETCODE (=SOCKET DESCRIPTOR)

* *

Chapter 12. Macro application programming interface 361

* ISSUE GETHOSTID CALL *
* *

 MVC TYPE,=CL8'GETHOSTI' 'GETHOSTI' TO MESSAGE
 EZASMI TYPE=GETHOSTID,RETCODE=RETCODE,ERRNO=ERRNO, X
 REQAREA=REQAREA IN CASE WE ARE DOING EXITS OR ECBS
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
 ST R8,ADDR SAVE OUR ID

* *
* Issue BIND socket *
* *

 MVC TYPE,MBIND MOVE 'BIND' TO MESSAGE
 MVC PORT(2),PORTS Load STREAM port #
 MVC ADDRESS(4),ADDR Load MVS1 internet address
*
 EZASMI TYPE=BIND, Issue Macro X
 S=S, STREAM X
 NAME=NAME, (SOCKET NAME STRUCTURE) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

* *
* Issue LISTEN - Backlog = 5 *
* *

 MVC TYPE,MLISTEN MOVE 'LISTEN' TO MESSAGE
*
 EZASMI TYPE=LISTEN, Issue Macro X
 S=S, STREAM X
 BACKLOG=BACKLOG, BACKLOG X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

* *
* Issue ACCEPT - Block until connection from peer *
* *

 MVC TYPE,MACCEPT MOVE 'ACCEPT' TO MESSAGE
 MVC PORT(2),PORTS Load STREAM port #
 MVC ADDRESS(4),ADDR Load MVS1 internet address
*
 EZASMI TYPE=ACCEPT, Issue Macro X
 S=S, STREAM X
 NAME=NAME, (SOCKET NAME STRUCTURE) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
* Message RESULTS text
 STH R8,SOCDESCA SAVE RETCODE (SOCKET DESCRIPTOR)

* *
* Issue READ - Read data and store in buffer *
* *

 MVC TYPE,MREAD MOVE 'READ ' TO MESSAGE
*
 EZASMI TYPE=READ, Issue Macro X
 S=SOCDESCA, ACCEPT SOCKET X
 NBYTE=NBYTE, SIZE OF BUFFER X
 BUF=BUF, (BUFFER) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
 MVC MSGRSLT1,MSGBUFF
 MVC MSGRSLT2,BUF
 BAL R14,WTOSUB --> PRINT IT

362 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

*
*

* *
* Issue WRITE - Write data from buffer *
* *

 MVC TYPE,MWRITE MOVE 'WRITE ' TO MESSAGE
*
 EZASMI TYPE=WRITE, Issue Macro X
 S=SOCDESCA, ACCEPT Socket X
 NBYTE=NBYTE, SIZE OF BUFFER X
 BUF=BUF, (BUFFER) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

* *
* Issue CLOSE for ACCEPT socket *
* *

 MVC TYPE,MCLOSE MOVE 'CLOSE' TO MESSAGE
*
 EZASMI TYPE=CLOSE, Issue Macro X
 S=SOCDESCA, ACCEPT X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
 ERROR=ERROR Abend if Macro error
*
 MVC MSGRSLT2,BLANK35
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*

* *
* Terminate Connection to API *
* *

 MVC TYPE,MTERMAPI MOVE 'TERMAPI' TO MESSAGE
*
 POST ECB,1 FOLLOWING IS ALWAYS SYNCH
 EZASMI TYPE=TERMAPI Issue EZASMI Macro for Termapi

* Message RESULTS text
 MVC MSGRSLT2,BLANK35
*
 BAL R14,RCCHECK --> CHECK RC

* Issue console message for task termination

 MVC TYPE,MSGEND Move 'ENDED' to message
*
 MVC MSGRSLT1,MSGSUCC ...SUCCESSFUL text
 MVC MSGRSLT2,BLANK35
*
 BAL R14,WTOSUB
 LA R14,1 CONSTANT
 AH R14,APITYPE ADD
 STH R14,APITYPE STORE
 CH R14,=H'3' COMPARE
* BE LOOP --> LETS DO IT AGAIN!

* Return to Caller

 L R13,4(R13)
 RETURN (14,12),T,RC=0
WTOSUB EQU *
 LR R7,R14 COPY RETURN REG
 MVC MSGCMD(8),TYPE
 WTO TEXT=MSG WRITE MESSAGE TO OPERATOR
 BR R7 --> RETURN TO CALLER
 CNOP 2,4
* USES R6,R7,R8 RETCODE RETURNED IN R8
RCCHECK EQU *
 LR R7,R14 COPY TO REAL RETURN REG
 MVC MSGRSLT1,MSGSUCC ...SUCCESS TEXT
 L R6,RETCODE
 LTR R6,R6
 BM NOWAIT

Chapter 12. Macro application programming interface 363

 CLI SYNFLAG,0 PLAIN CASE?
 BE NOWAIT --> SKIP IT
 MVC KEY+14(8),SUBTASK
 MVC KEY+23(8),TYPE
KEY WTO 'WAIT: XXXXXXXX XXXXXXXX'
 WAIT ECB=ECB
NOWAIT EQU *
* LA R15,ECB
* ST R15,ECB
 ST R9,ECB MAKE THIS THE TOKEN AGAIN
 L R6,RETCODE CHECK FOR SUCCESSFUL CALL
 CLC TYPE,=CL8'GETHOSTI'
 BE HOSTIDRC HANDLE PRINTING HOST ID
 LTR R8,R6 SAVE A COPY
*
 BNL CONT00
FAILMSG EQU *
 MVC MSGRSLT1,MSGFAIL ...FAIL TEXT
CONT00 EQU *
*

* FORMAT THE RETCODE= -XXXXXXX ERRNO= XXXXXXX MSG RESULTS
* ***> R6 = RETCODE VALUE ON ENTRY

 MVC MSGRTCT,MSGRETC ' RETCODE= '
 MVI MSGRTCS,C'+'
 LTR R6,R6
 BNM NOTM -->
 MVI MSGRTCS,C'-' MOVE SIGN WHICH IS ALWAYS MINUS
NOTM EQU *
 MVC MSGERRT,MSGERRN ' ERRNO= '
*
 CVD R6,DWORK CONVERT IT TO DECIMAL
 UNPK MSGRTCV,DWORK+4(4) UNPACK IT
 OI MSGRTCV+6,X'F0' CORRECT THE SIGN
ERRNOFMT EQU *
 L R6,ERRNO GET ERRNO VALUE
 CVD R6,DWORK CONVERT IT TO DECIMAL
 UNPK MSGERRV,DWORK+4(4) UNPACK IT
 OI MSGERRV+6,X'F0' CORRECT THE SIGN
*
 MVC MSGRSLT2(35),MSGRTCD
*
 MVI MSGRTHX,X'40' CLEAR HEX INDICATOR
 SR R6,R6 CLEAR OUT...
 ST R6,RETCODE RETCODE AND...
 ST R6,ERRNO ERRNO
*
*
 CLI TRACE,0
 BNE NOTRACE
 LR R14,R7 GIVE HIM RETURN REG
 B WTOSUB --> DO WTO
NOTRACE EQU *
 BR R7 --> RETURN TO CALLER
*
HOSTIDRC EQU * VALID HOSTID MAY LOOK LIKE NEG. RC
 C R6,=F'-1' ONLY -1 RC INDICATES FAILURE
 BE FAILMSG ...BAD RC, USE STANDARD MSG
 LR R8,R6 ...NEXT CALL EXPECTS ADDR IN R8
 MVC MSGRSLT1,MSGSUCC ...SUCCESS TEXT
 UNPK HEXRC(9),RETCODE(5) PLUS ONE FOR FAKE SIGN
 TR HEXRC(8),HEXTAB ...CONVERT UNPK TO PRINTABLE HEX
 MVI HEXRC+8,X'40' ...SPACE OUT FAKED SIGN BYTE
 MVI MSGRTHX,C'X' ...INDICATE INFO IS HEX
 B ERRNOFMT
*
SYNFLAG DC H'0' DEFAULT TO SYN
TRACE DC H'0' DEFAULT TO TRACE
MYEXIT DC A(MYEXIT1,SUBTASK)
MYEXIT1 SAVE (14,12),T,*
 LR R2,R15
 USING MYEXIT1,R2
 LM R8,R9,0(R1) GET TWO TOKENS
 MVC EXKEY+14(8),0(R8) TELL WHO
 MVC EXKEY+23(8),TYPE TELL WHAT
EXKEY WTO 'EXIT: XXXXXXXX XXXXXXXX'
 POST ECB,1
 RETURN (14,12),T,RC=0
 DROP R2

* ABEND PROGRAM AND GET DUMP

364 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ERROR ABEND 1,DUMP

* CONSTANTS USED TO RUN PROGRAM *

EZASMGW EZASMI TYPE=GLOBAL, Storage definition for GWA X
 STORAGE=CSECT

* INITAPI macro parms *

SUBTASK DC CL8'EZASOKAS' SUBTASK PARM VALUE
MAXSOC DC AL2(50) MAXSOC PARM VALUE
APITYPE DC H'2' OR A 3
MAXSNO DC F'0' (HIGHEST SOCKET DESCRIPTOR AVAILABLE)
IDENT DC 0CL16' '
 DC CL8' ' NAME OF TCP TO WHICH CONNECTING
 DC CL8'SOC401CB' MY ADDR SPACE NAME

* SOCKET macro parms *

S DC H'0' SOCKET DESCRIPTOR FOR STREAM

* BIND MACRO PARMS *

 CNOP 0,4
NAME DC 0CL16' ' SOCKET NAME STRUCTURE
 DC AL2(2) FAMILY
PORT DC H'0'
ADDRESS DC F'0'
 DC XL8'00' RESERVED
ADDR DC AL1(14),AL1(0),AL1(0),AL1(0) Internet Address
PORTS DC H'11007'

* LISTEN PARMS *

BACKLOG DC F'5' BACKLOG

* READ MACRO PARMS *

NBYTE DC F'50' SIZE OF BUFFER
SOCDESCA DC H'0' SOCKET DESCRIPTOR FROM ACCEPT
BUF DC CL50' THIS SHOULD NEVER APPEAR!!! :-('

* WTO FRAGMENTS *

MINITAPI DC CL8'INITAPI'
MSOCKET DC CL8'SOCKET'
MBIND DC CL8'BIND'
MACCEPT DC CL8'ACCEPT'
MLISTEN DC CL8'LISTEN'
MREAD DC CL8'READ'
MWRITE DC CL8'WRITE'
MCLOSE DC CL8'CLOSE'
MTERMAPI DC CL8'TERMAPI'
MSGSTART DC CL8' STARTED'
MSGEND DC CL8' ENDED '
MSGBUFF DC CL10' BUFFER: ' ...
MSGSUCC DC CL10' SUCCESS ' Command results...
MSGFAIL DC CL10' FAIL: (' ...
MSGRETC DC CL10' RETCODE= ' ...
MSGERRN DC CL10' ERRNO= ' ...
BLANK35 DC CL35' '

* ERROR NUMBER / RETURN CODE FIELDS *

* MESSAGE AREA *

MSG DC 0F'0' MESSAGE AREA
 DC AL2(MSGE-MSGNUM) LENGTH OF MESSAGE
MSGNUM DC CL10'EZASOKAS:' 'EZASOKASXX:'
MSGCMD DC CL8' ' COMMAND ISSUED
MSGRSLT1 DC CL10' ' COMMAND RESULTS (SUCC, PASS, FAIL)
MSGRSLT2 DC CL35' ' RETURNED VALUES
MSGE EQU * End of message

* MESSAGE RESULTS AREAS (fill in and move to MSGRSLT2) *
--
MSGRTCD DC 0CL35' ' GENERAL RETURNED VALUE
MSGRTCT DC CL9' RETCODE=' ' RETCODE= '
MSGRTHX DC CL1' ' 'X' X FOR GETHOSTID
MSGRTCS DC CL1' ' '-' (NEGATIVE SIGN)

Chapter 12. Macro application programming interface 365

HEXRC EQU MSGRTCS HEX RC WILL START AT SIGN LOCATION
MSGRTCV DC CL7' ' RETURNED VALUE (RETCODE)
MSGERRT DC CL10' ERRNO=' ' ERRNO= '
MSGERRV DC CL7' ' RETURNED VALUE (ERRNO)

PARMADDR DC A(0) PARM ADDRESS SAVE AREA
DWORK DC D'0' WORK AREA
HEXTAB EQU *-240 TAB TO CONVERT TO PRINTABLE HEX
* FIRST 240 BYTES NOT REFERENCED
 DC CL16'0123456789ABCDEF'
 LTORG ,

* REG/SAVEAREA *

SOCSAVE DC 9D'0' SAVE AREA
 CNOP 0,8
MYCB EQU * MY CONTROL BLOCK
REQAREA EQU *
ECB DC A(ECB) SELF POINTER
 DC CL100'WORK AREA'
MYTIE EZASMI TYPE=TASK,STORAGE=CSECT TIE
TYPE DC CL8'TYPE'
ERRNO DC F'0'
RETCODE DC F'0'
MYNEXT DC A(MYCB) NEXT IN CHAIN FOR MULTIPLES
 CNOP 0,8
MYLEN EQU *-MYCB
MYCB2 EQU *
 ORG *+MYLEN
 CNOP 0,8
 DC CL8'&SYSDATE'
 DC CL8'&SYSTIME'
 END

Figure 67. EZASOKAS sample server program for IPv4

EZASOKAC sample client program for IPv4
The EZASOKAC program is a client module that shows you how to use the following calls provided by the
macro socket interface:

• INITAPI
• SOCKET
• CONNECT
• GETPEERNAME
• WRITE
• SHUTDOWN
• WRITE
• READ
• TERMAPI

EZASOKAC CSECT
EZASOKAC AMODE ANY
EZASOKAC RMODE ANY
 PRINT NOGEN

* *
* MODULE NAME: EZASOKAC - THIS IS A VERY SIMPLE CLIENT *
* *
* Copyright: Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5694-A01 *
* *
* (C) Copyright IBM Corp. 1977, 2003 *
* *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by *

366 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* GSA ADP Schedule Contract with IBM Corp. *
* *
* Status: CSV1R5 *
* *
* *
* LANGUAGE: ASSEMBLER *
* *
* ATTRIBUTES: NON-REUSEABLE *
* *
* REGISTER USAGE: *
* R1 = *
* R2 = *
* R3 = BASE REG 1 *
* R4 = BASE REG 2 (UNUSED) *
* R5 = FUTURE BASE? *
* R6 = TEMP *
* R7 = RETURN REG *
* R8 = *
* R9 = A(WORK AREA) *
* R10 = *
* R11 = *
* R12 = *
* R13 = SAVE AREA *
* R14 = *
* R15 = *
* *
* INPUT: ANY PARM TURNS TRACE OFF, NO PARM IS NOISY MODE *
* OUTPUT: WTO RESULTS OF EACH TEST CASE IF TRACING *
* RETURN CODE IS 0 WHETHER IT CONNECTS OR NOT! *
* *

 GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION
&TRACE SETB 1 1=TRACE ON 0=TRACE OFF
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* START OF EXECUTABLE CODE *

 USING *,R3,R4 TELL ASSEMBLER OF OTHERS
 SAVE (14,12),T,*
 LR R3,R15 COPY EP REG TO FIRST BASE
 LA R5,2048 GET R5 HALFWAY THERE
 LA R5,2048(R5) GET R5 THERE
 LA R4,0(R5,R3) GET R4 THERE
 LA R12,12 JUST FOR FUN!
 ST R1,PARMADDR SAVE ADDRESS OF PARAMETER LIST
 L R1,0(R1) GET POINTER
 LH R1,0(R1) GET LENGTH
* STC R1,TRACE USE IT AS FLAG
 L R7,=A(SOCSAVE) GET NEW SAVE AREA
 ST R7,8(R13) SAVE ADDRESS OF NEW SAVE AREA
 ST R13,4(R7) COMPLETE SAVE AREA CHAIN
 LR R13,R7 NOW SWAP THEM
 L R9,=A(MYCB) POINT TO THE CONTROL BLOCK
 USING MYCB,R9 TELL ASSEMBLER

* BUILD MESSAGE FOR CONSOLE

* INITIALIZE MESSAGE TEXT FIELDS
LOOP EQU *
 MVC MSGNUM(8),SUBTASK WHO I AM
 MVC TYPE,MSGSTART MOVE 'STARTED' TO MESSAGE
*
 MVC MSGRSLT1,MSGSUCC ...SUCCESSFUL TEXT
 MVC MSGRSLT2,BLANK35
*
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB --> DO STARTING WTO

Chapter 12. Macro application programming interface 367

* *
* Issue INITAPI to connect to interface *
* *

 MVC TYPE,MINITAPI MOVE 'INITAPI' TO MESSAGE
*
 POST ECB,1 FOLLOWING IS SYNC ONLY
 MVI SYNFLAG,0 MOVE A 1 FOR ASYNCH
 EZASMI TYPE=INITAPI, ISSUE INITAPI MACRO X
 SUBTASK=SUBTASK, SPECIFY SUBTASK IDENTIFIER X
 MAXSOC=MAXSOC, SPECIFY MAXIMUM NUMBER OF SOCKETS X
 MAXSNO=MAXSNO, (HIGHEST SOCKET NUMBER ASSIGNED) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 APITYPE=APITYPE, (SPECIFY APITYPE FIELD) X
 ERROR=ERROR Abend if error on macro
* IDENT=IDENT, TCP ADDR SPACE AND MY ADDR SPACE
*
* ASYNC=('ECB'), (SPECIFY TO USE ECBS)
* ASYNC=('EXIT',MYEXIT) (SPECIFY TO USE EXITS)
 BAL R14,RCCHECK --> CHECK RESULTS

* *
* Issue SOCKET Macro to obtain a socket descriptor *
* *** INET and STREAM *** *
* *

 MVC TYPE,MSOCKET MOVE 'SOCKET' TO MESSAGE
*
 EZASMI TYPE=SOCKET, Issue SOCKET Macro X
 AF='INET', INET or IUCV X
 SOCTYPE='STREAM', STREAM(TCP) DATAGRAM(UDP) or RAW X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RESULTS
 STH R8,S SAVE RETCODE (=SOCKET DESCRIPTOR)
 LTR R8,R8 CHECK IT
 BM DOSHUTDO --> WE ARE DONE!

* *
* ISSUE GETHOSTID CALL *
* *

 MVC TYPE,=CL8'GETHOSTI'
 POST ECB,1 FOLLOWING IS SYNC ONLY
 EZASMI TYPE=GETHOSTID,RETCODE=RETCODE,ERRNO=ERRNO
 BAL R14,RCCHECK --> CHECK RESULTS
 ST R8,ADDR

* *
* Issue CONNECT Socket *
* *

 MVC TYPE,MCONNECT MOVE 'CONNECT' TO MESSAGE
 MVC PORT(2),PORTS Load STREAM port #
*
*
 MVC ADDRESS(4),ADDR LOAD OUR INTERNET ADDRESS
*
 EZASMI TYPE=CONNECT, Issue Macro X
 S=S, STREAM X
 NAME=NAME, SOCKET NAME STRUCTURE X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RC
 LTR R8,R8 RECHECK IT
 BM DOSHUTDO --> WE ARE DONE

* *
* Issue GETPEERNAME *
* *

 MVC TYPE,MGETPEER MOVE 'GTPEERN' TO MESSAGE
*
 EZASMI TYPE=GETPEERNAME, Issue Macro X

368 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 S=S, STREAM X
 NAME=NAME, (SOCKET NAME STRUCTURE) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RC

* *
* Issue WRITE - Write data from buffer *
* *

 MVC TYPE,MWRITE MOVE 'WRITE ' TO MESSAGE
*
 EZASMI TYPE=WRITE, Issue Macro X
 S=S, STREAM SOCKET X
 NBYTE=NBYTE, SIZE OF BUFFER X
 BUF=BUF, BUFFER X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RC

* *
* Issue SHUTDOWN - HOW = 1 (end communication TO socket) *
* *

DOSHUTDO EQU *
 MVC HOW(4),=F'1'
*
 BAL R14,SHUTSUB --> SHUTDOWN
*
 BAL R14,RCCHECK --> CHECK RC

* *
* Issue READ - Read data and store in buffer *
* *

 MVC TYPE,MREAD MOVE 'READ ' TO MESSAGE
*
 EZASMI TYPE=READ, Issue Macro X
 S=S, STREAM SOCKET X
 NBYTE=NBYTE, SIZE OF BUFFER X
 BUF=BUF2, (BUFFER) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RC
 MVC MSGRSLT1,MSGBUFF TITLE
 MVC MSGRSLT2,BUF2 MOVE THE DATA
 BAL R14,WTOSUB --> PRINT IT

* *
* Issue SHUTDOWN - HOW = 0 (end communication FROM socket) *
* *

 MVC HOW(4),=F'0'
*
 BAL R14,SHUTSUB --> SHUTDOWN
*
 BAL R14,RCCHECK --> CHECK RC

* *
* Terminate Connection to API *
* *

 MVC TYPE,MTERMAPI MOVE 'TERMAPI' TO MESSAGE
*
 POST ECB,1 FOLLOWING IS SYNC ONLY
 EZASMI TYPE=TERMAPI Issue EZASMI Macro for Termapi
*
 BAL R14,RCCHECK --> CHECK RC

* Issue console message for task termination

 MVC TYPE,MSGEND Move 'ENDED' to message
*

Chapter 12. Macro application programming interface 369

 MVC MSGRSLT1,MSGSUCC ...SUCCESSFUL text
 MVC MSGRSLT2,BLANK35
 BAL R14,WTOSUB --> DO WTO
 LA R14,1 CONSTANT
 AH R14,APITYPE ADD
 STH R14,APITYPE STORE
 CH R14,=H'3' COMPARE
* BE LOOP --> LETS DO IT AGAIN!
*

* Return to Caller

 L R13,4(R13)
 RETURN (14,12),T,RC=0
WTOSUB EQU *
 LR R7,R14 SAVE RETURN REG
 MVC MSGCMD,TYPE COPY COMMAND
 WTO TEXT=MSG
 BR R7 --> RETURN
*
SHUTSUB EQU *
 LR R7,R14
 MVC TYPE,MSHUTDOW MOVE 'SHUTDOW' TO MESSAGE
*
 EZASMI TYPE=SHUTDOWN, Issue Macro X
 S=S, STREAM X
 HOW=HOW, End communication in both directions X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BR R7 --> RETURN TO CALLER

* ABEND PROGRAM AND GET DUMP TO DEBUG!
ERROR ABEND 1,DUMP
 CNOP 2,4
* USES R6,R7,R8 RETCODE RETURNED IN R8
RCCHECK EQU *
 LR R7,R14 COPY TO REAL RETURN REG
 MVC MSGRSLT1,MSGSUCC ...SUCCESS TEXT
 L R6,RETCODE
 LTR R6,R6
 BM NOWAIT
 CLI SYNFLAG,0 PLAIN CASE?
 BE NOWAIT --> SKIP IT
 MVC KEY+14(8),SUBTASK
 MVC KEY+23(8),TYPE
KEY WTO 'WAIT: XXXXXXXX XXXXXXXX'
 WAIT ECB=ECB
NOWAIT EQU *
* LA R15,ECB
* ST R15,ECB
 ST R9,ECB MAKE THIS THE TOKEN AGAIN
 L R6,RETCODE CHECK FOR SUCCESSFUL CALL
 CLC TYPE,=CL8'GETHOSTI'
 BE HOSTIDRC HANDLE PRINTING HOST ID
 LTR R8,R6 SAVE A COPY
*
 BNL CONT00
FAILMSG EQU *
 MVC MSGRSLT1,MSGFAIL ...FAIL TEXT
CONT00 EQU *
*

* FORMAT THE RETCODE= -XXXXXXX ERRNO= XXXXXXX MSG RESULTS
* ***> R6 = RETCODE VALUE ON ENTRY

 MVC MSGRTCT,MSGRETC ' RETCODE= '
 MVI MSGRTCS,C'+'
 LTR R6,R6
 BNM NOTM -->
 MVI MSGRTCS,C'-' MOVE SIGN WHICH IS ALWAYS MINUS
NOTM EQU *
 MVC MSGERRT,MSGERRN ' ERRNO= '
*
 CVD R6,DWORK CONVERT IT TO DECIMAL
 UNPK MSGRTCV,DWORK+4(4) UNPACK IT
 OI MSGRTCV+6,X'F0' CORRECT THE SIGN
*
ERRNOFMT EQU *
 L R6,ERRNO GET ERRNO VALUE

370 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 CVD R6,DWORK CONVERT IT TO DECIMAL
 UNPK MSGERRV,DWORK+4(4) UNPACK IT
 OI MSGERRV+6,X'F0' CORRECT THE SIGN
*
 MVC MSGRSLT2(35),MSGRTCD
*
 MVI MSGRTHX,X'40' CLEAR HEX INDICATOR
 SR R6,R6 CLEAR OUT...
 ST R6,RETCODE RETCODE AND...
 ST R6,ERRNO ERRNO
*
*
 CLI TRACE,0
 BNE NOTRACE
 LR R14,R7 GIVE HIM RETURN REG
 B WTOSUB --> DO WTO
NOTRACE EQU *
 BR R7 --> RETURN TO CALLER
*
HOSTIDRC EQU * VALID HOSTID MAY LOOK LIKE NEG. RC
 C R6,=F'-1' ONLY -1 RC INDICATES FAILURE
 BE FAILMSG ...BAD RC, USE STANDARD MSG
 LR R8,R6 ...NEXT CALL EXPECTS ADDR IN R8
 MVC MSGRSLT1,MSGSUCC ...SUCCESS TEXT
 UNPK HEXRC(9),RETCODE(5) PLUS ONE FOR FAKE SIGN
 TR HEXRC(8),HEXTAB ...CONVERT UNPK TO PRINTABLE HEX
 MVI HEXRC+8,X'40' ...SPACE OUT FAKED SIGN BYTE
 MVI MSGRTHX,C'X' ...INDICATE INFO IS HEX
 B ERRNOFMT
*
SYNFLAG DC H'0' DEFAULT TO SYN
TRACE DC H'0' DEFAULT TO TRACE
MYEXIT DC A(MYEXIT1,SUBTASK)
MYEXIT1 SAVE (14,12),T,*
 LR R2,R15
 USING MYEXIT1,R2
 LM R8,R9,0(R1) GET TWO TOKENS
 MVC EXKEY+14(8),0(R8) TELL WHO
 MVC EXKEY+23(8),TYPE TELL WHAT
EXKEY WTO 'EXIT: XXXXXXXX XXXXXXXX'
 POST ECB,1
 RETURN (14,12),T,RC=0
 DROP R2

* ELEMENTS USED TO RUN PROGRAM *

EZASMGW EZASMI TYPE=GLOBAL, STORAGE DEFINITION FOR GWA X
 STORAGE=CSECT

* INITAPI macro parms *

SUBTASK DC CL8'EZASOKAC' SUBTASK PARM VALUE
IDENT DC 0CL16' '
 DC CL8'TCPV32' DEFAULT TO FIRST ONE AVAILABLE
 DC CL8'EZASOKAC' MY ADDR SPACE NAME OR JOBNAME
MAXSNO DC F'0' (HIGHEST SOCKET DESCRIPTOR AVAILABLE)
MAXSOC DC AL2(50) MAXSOC PARM VALUE
APITYPE DC H'2' OR PUT A 3 HERE

* SOCKET macro parms *

S DC H'0' SOCKET DESCRIPTOR FOR STREAM

* CONNECT MACRO PARMS *

 CNOP 0,4
NAME DC 0CL16' ' SOCKET NAME STRUCTURE
 DC AL2(2) FAMILY
PORT DC H'0'
ADDRESS DC F'0'
 DC XL8'0' RESERVED
ADDR DC AL1(14),AL1(0),AL1(0),AL1(0) Internet Address
PORTS DC H'11007'
*ORTS DC H'43'

* WRITE MACRO PARMS *

NBYTE DC F'50' SIZE OF BUFFER
BUF DC CL50' THIS IS FROM EZASOKAC!' BUFFER FOR WRITE

* SHUTDOWN MACRO PARMS *

Chapter 12. Macro application programming interface 371

HOW DC F'2' END COMMUNICATION TO- AND FROM-SOCKET

* READ MACRO PARMS *

BUF2 DC CL50'BUF2' BUFFER FOR READ

MINITAPI DC CL8'INITAPI'
MSOCKET DC CL8'SOCKET'
MCONNECT DC CL8'CONNECT'
MGETPEER DC CL8'GETPEERN'
MREAD DC CL8'READ'
MWRITE DC CL8'WRITE'
MSHUTDOW DC CL8'SHUTDOWN'
MTERMAPI DC CL8'TERMAPI'
MSGSTART DC CL8' STARTED'
MSGEND DC CL8' ENDED '
MSGSUCC DC CL10' SUCCESS ' Command results...
MSGFAIL DC CL10' FAIL: (' ...
MSGRETC DC CL10' RETCODE= ' ...
MSGERRN DC CL10' ERRNO= ' ...
MSGBUFF DC CL10' BUFFER: ' ...
BLANK35 DC CL35' '

* MESSAGE AREA *

MSG DC 0F'0' MESSAGE AREA
 DC AL2(MSGE-MSGNUM) LENGTH OF MESSAGE
MSGNUM DC CL10'EZASOKAC:' 'EZASOKAC: '
MSGCMD DC CL8' ' COMMAND ISSUED
MSGRSLT1 DC CL10' ' COMMAND RESULTS (SUCC, PASS, FAIL)
MSGRSLT2 DC CL35' ' RETURNED VALUES
MSGE EQU * End of message

* MESSAGE RESULTS AREAS (fill in and move to MSGRSLT2) *
--
*
MSGRTCD DC 0CL35' ' GENERAL RETURNED VALUE
MSGRTCT DC CL9' RETCODE=' ' RETCODE= '
MSGRTHX DC CL1' ' 'X' X FOR GETHOSTID
MSGRTCS DC CL1' ' '-' (NEGATIVE SIGN)
HEXRC EQU MSGRTCS HEX RC WILL START AT SIGN LOCATION
MSGRTCV DC CL7' ' RETURNED VALUE (RETCODE)
MSGERRT DC CL10' ERRNO=' ' ERRNO= '
MSGERRV DC CL7' ' RETURNED VALUE (ERRNO)
DWORK DC D'0' WORK AREA
HEXTAB EQU *-240 TAB TO CONVERT TO PRINTABLE HEX
* FIRST 240 BYTES NOT REFERENCED
 DC CL16'0123456789ABCDEF'
PARMADDR DC A(0) PARM ADDRESS SAVE AREA
 LTORG

* REG/SAVEAREA *

SOCSAVE DC 9D'0' SAVE AREA

 CNOP 0,8
MYCB EQU * MY CONTROL BLOCK
REQAREA EQU *
ECB DC A(ECB) SELF POINTER
 DC CL100'WORK AREA'
MYTIE EZASMI TYPE=TASK,STORAGE=CSECT TIE
TYPE DC CL8'TYPE'
ERRNO DC F'0'
RETCODE DC F'0'
MYNEXT DC A(MYCB) NEXT IN CHAIN FOR MULTIPLES
 CNOP 0,8
MYLEN EQU *-MYCB
MYCB2 EQU *
 ORG *+MYLEN
 CNOP 0,8
 DC CL8'&SYSDATE'
 DC CL8'&SYSTIME'
 END

Figure 68. EZASOKAC sample client program for IPv4

372 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASO6AS sample server program for IPv6
The EZASO6AS program is a server program that shows you how to use the following calls provided by the
macro socket interface:

• ACCEPT
• BIND
• CLOSE
• GETADDRINFO
• GETHOSTNAME
• FREEADDRINFO
• INITAPI
• LISTEN
• PTON
• READ
• SOCKET
• TERMAPI
• WRITE

EZASO6AS CSECT
EZASO6AS AMODE ANY
EZASO6AS RMODE ANY
* PRINT NOGEN

* *
* MODULE NAME: EZASO6AS Sample IPV6 server program *
* *
* Copyright: Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5694-A01 *
* *
* (C) Copyright IBM Corp. 2002, 2003 *
* *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by *
* GSA ADP Schedule Contract with IBM Corp. *
* *
* Status: CSV1R5 *
* *
* *
* LANGUAGE: Assembler *
* *
* ATTRIBUTES: NON-REUSABLE *
* *
* REGISTER USAGE: *
* R1 = *
* R2 = *
* R3 = BASE REG 1 *
* R4 = BASE REG 2 (UNUSED) *
* R5 = FUTURE BASE REG? *
* R6 = TEMP *
* R7 = RETURN REG *
* R8 = *
* R9 = A(WORK AREA) *
* R10 = *
* R11 = *
* R12 = *
* R13 = SAVE AREA *
* R14 = *
* R15 = *
* *
* INPUT: NONE *
* OUTPUT: WTO results of each test case *
* *

 GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION

Chapter 12. Macro application programming interface 373

&TRACE SETB 1 1=TRACE ON 0=TRACE OFF
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* START OF EXECUTABLE CODE *

 USING *,R3,R4 TELL ASSEMBLER OF OTHERS
 SAVE (14,12),T,*
 LR R3,R15 COPY EP REG TO FIRST BASE
 LA R5,2048 GET R5 HALFWAY THERE
 LA R5,2048(R5) GET R5 THERE
 LA R4,0(R5,R3) GET R4 THERE
 LA R12,12 JUST FOR FUN!
 ST R1,PARMADDR SAVE ADDRESS OF PARAMETER LIST
 L R1,0(R1) GET POINTER
 LH R1,0(R1) GET LENGTH
* STC R1,TRACE USE IT AS FLAG
 L R7,=A(SOCSAVE) GET NEW SAVE AREA
 ST R7,8(R13) SAVE ADDRESS OF NEW SAVE AREA
 ST R13,4(R7) COMPLETE SAVE AREA CHAIN
 LR R13,R7 NOW SWAP THEM
 L R9,=A(MYCB) POINT TO THE CONTROL BLOCK
 USING MYCB,R9 TELL ASSEMBLER

* BUILD MESSAGE FOR CONSOLE

* INITIALIZE MESSAGE TEXT FIELDS
LOOP EQU *
 MVC MSGNUM(8),SUBTASK WHO I AM
 MVC TYPE,MSGSTART MOVE 'STARTED' TO MESSAGE
*
 MVC MSGRSLT1,MSGSUCC ...SUCCESSFUL TEXT
 MVC MSGRSLT2,BLANK35
*
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB --> DO STARTING WTO

* *
* Issue INITAPI to connect to interface *
* *

 POST ECB,1 NEXT IS ALWAYS SYNCH
 MVI SYNFLAG,0 MOVE A 1 FOR ASYNC
 MVC TYPE,MINITAPI MOVE 'INITAPI' TO MESSAGE
*
 EZASMI TYPE=INITAPI, Issue INITAPI Macro X
 SUBTASK=SUBTASK, SPECIFY SUBTASK IDENTIFIER X
 MAXSOC=MAXSOC, SPECIFY MAXIMUM NUMBER OF SOCKETS X
 MAXSNO=MAXSNO, (HIGHEST SOCKET NUMBER ASSIGNED) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 APITYPE=APITYPE, (SPECIFY APITYPE FIELD) X
 ERROR=ERROR ABEND IF ERROR ON MACRO
* ASYNC=('EXIT',MYEXIT), (SPECIFY AN EXIT) X
* IDENT=IDENT, TCP ADDR SPACE AND MY ADDR SPACE
* ASYNC=('ECB') (SPECIFY ECBS)
*
 BAL R14,RCCHECK --> DID IT WORK?

* *
* Issue SOCKET Macro to obtain a socket descriptor *
* *** INET and STREAM *** *
* *

 MVC TYPE,MSOCKET MOVE 'SOCKET' TO MESSAGE
*
 EZASMI TYPE=SOCKET, Issue SOCKET Macro X
 AF='INET6', INET, IUCV, INET6 X

374 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 SOCTYPE='STREAM', STREAM(TCP) DATAGRAM(UDP) or RAW X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 ERROR=ERROR Abend if Macro error
* REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*

* Get socket descriptor number

 STH R8,S SAVE RETCODE (=SOCKET DESCRIPTOR)

* *
* ISSUE PTON MACRO *
* *

 MVC PRESENTABLE_ADDR,LOOPIPV6 IP ADDRESS TO CONVERT
*
* DISPLAY THE RETURNED ADDRESS IN PRESENTABLE FORMAT
*
 MVC TYPE,MPTON MOVE 'PTON ' TO MESSAGE
*
 EZASMI TYPE=PTON, ISSUE PTON MACRO X
 AF='INET6', X
 SRCADDR=PRESENTABLE_ADDR, X
 SRCLEN=PRESENTABLE_ADDR_LEN, X
 DSTADDR=NUMERIC_ADDR, X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
 MVC ADDRESS,NUMERIC_ADDR

* *
* ISSUE GETHOSTNAME CALL *
* *

 MVC TYPE,MGHOSTN 'GETHOSTN' TO MESSAGE
 EZASMI TYPE=GETHOSTNAME, X
 NAMELEN=HOSTNAMEL, LENGTH OF HOST NAME FIELD X
 NAME=HOSTNAME, HOST NAME X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 ERROR=ERROR Abend if Macro error
* REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*
 MVC MSGRSLT1,=C'HOST NAME ' INDICATE WHAT WE'RE PROCESSING
 XC MSGRSLT2,MSGRSLT2
 MVC MSGRSLT2,HOSTNAME
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB SEND TO THE CONSOLE
 MVC NODENAME(24),HOSTNAME

* *
* ISSUE GETADDRINFO MACRO *
* *

 MVC TYPE,MGADDRI MOVE 'GETADDRINFO' TO MESSAGE
 XC ADDR_INFO(addrinfo_len),ADDR_INFO CLEAR OUT ALL HINTS
 LA R6,ai_CANONNAMEOK REQUEST THE CANONICAL NAME
 ST R6,ai_flags SAVE THE HINT FLAGS
 LA R6,ADDR_INFO POINT TO THE HINTS ADDRINFO
 ST R6,HINTS SAVE THE ADDRESS OF THE HINTS
 LA R6,0 LENGTH OF SERVICE NAME
 ST R6,SERVNAMEL SAVE THE SERVICE NAME LENGTH
*
 EZASMI TYPE=GETADDRINFO, ISSUE GETADDRINFO MACRO X
 NODE=NODENAME, NODE GETTING INFORMATION FOR X
 NODELEN=NODENAMEL, LENGTH OF NODE NAME X
 SERVICE=SERVNAME, SERVICE GETTING INFORMATION FOR X
 SERVLEN=SERVNAMEL, LENGTH OF SERVICE NAME X
 HINTS=HINTS, HINTS FOR FILTERING X
 RES=RESULT_ADDRINFO, RETURNED ADDRESS INFORMATION X
 CANNLEN=CANNAMEL, LENGTH OF CANONICAL NAME X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
*

Chapter 12. Macro application programming interface 375

 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*
* IF RETURNED SUCCESSFULLY, THEN PROCESS THE ADDRINFO STRUCTORE AND
* THEN CHECK TO SEE IF THERE IS ANOTHER TO PROCESS. CONTINUE UNTIL
* AI_NEXT IS NULL.
*
 ICM R10,B'1111',RESULT_ADDRINFO EXAMINE RETURNED ADDRINFO
 BZ NOAIS IF NOT RETURNED THEN HOST NOT FOUND?
SEEAIS DS 0H
 MVC ADDR_INFO(addrinfo_len),0(R10) LOAD ADDRINFO STRUCTURE
 XC OPNAMELEN,OPNAMELEN CLEAR NAME LENGTH OUTPUT FIELD
 XC OPCANON,OPCANON CLEAR CANONICAL NAME OUTPUT FIELD
 XC OPNAME,OPNAME CLEAR NAME OUTPUT FIELD
 XC OPNEXT,OPNEXT CLEAR NEXT ADDRINFO OUTPUT FIELD
*
 CALL EZACIC09,(RESULT_ADDRINFO, X
 OPNAMELEN, OUTPUT NAME LENGTH X
 OPCANON, OUTPUT CANONICAL NAME X
 OPNAME, OUTPUT NAME X
 OPNEXT, OUTPUT NEXT RESULT ADDRESS INFO X
 RETCODE),VL
*
* FORMAT CANONNAME.
*
 MVC MSGRSLT1,=C'CANON NAME' INDICATE WHAT WE'RE PROCESSING
 XC MSGRSLT2,MSGRSLT2
 MVC MSGRSLT2(21),=C' - NO CANON NAME '
 XC MSGRSLT2,MSGRSLT2
 MVC MSGRSLT2,OPCANON
FMTAISNC DS 0H
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB SEND TO THE CONSOLE
FMTAISNCE DS 0H
*
* IF AI_NEXT IS NULL THEN THIS IS THE LAST STRUCTURE ON THE LIST.
* TO PROCESS ALL STRUCTURES:
* 1. GET THE FIRST ONE AND PROCESS THE FIELDS RETURNED.
* 2. USE THE ADDRESS IN AI_NEXT TO GET THE NEXT ADDRESS IF NOT NULL.
* 3. PROCESS THE NEW FIELDS IN THE SUBSEQUENT STRUCTURE.
* 4. GOTO 2.
*
 ICM R10,B'1111',ai_next SEE IF NEXT ADDRESS IS NULL...
 BP SEEAIS NOPE...PARSE IT.
*

* *
* ISSUE FREEADDRINFO MACRO. MUST BE DRIVEN AFTER A *
* SUCCESSFUL GETADDRINFO; OTHERWISE, RESOLVER STORAGE WILL *
* BE CONSUMED. *
* *

 MVC TYPE,MFADDRI MOVE 'FREEADDRINFO' TO MESSAGE
*
 EZASMI TYPE=FREEADDRINFO, ISSUE FREEADDRINFO MACRO X
 ADDRINFO=RESULT_ADDRINFO, X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*
 B ENDAIS
NOAIS DS 0H
 XC MSGRSLT2,MSGRSLT2
 MVC MSGRSLT2(21),=C'Result not returned. '
 BAL R14,WTOSUB SEND TO THE CONSOLE
ENDAIS DS 0H
*

* *
* Issue BIND socket *
* *

 MVC TYPE,MBIND MOVE 'BIND' TO MESSAGE
 MVC PORT(2),PORTS Load STREAM port #
*
 EZASMI TYPE=BIND, Issue Macro X
 S=S, STREAM X
 NAME=NAME, (SOCKET NAME STRUCTURE) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 ERROR=ERROR Abend if Macro error

376 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

* *
* Issue LISTEN - Backlog = 5 *
* *

 MVC TYPE,MLISTEN MOVE 'LISTEN' TO MESSAGE
*
 EZASMI TYPE=LISTEN, Issue Macro X
 S=S, STREAM X
 BACKLOG=BACKLOG, BACKLOG X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 ERROR=ERROR Abend if Macro error
* REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

* *
* Issue ACCEPT - Block until connection from peer *
* *

 MVC TYPE,MACCEPT MOVE 'ACCEPT' TO MESSAGE
 MVC PORT(2),PORTS Load STREAM port #
*
 EZASMI TYPE=ACCEPT, Issue Macro X
 S=S, STREAM X
 NAME=NAME, (SOCKET NAME STRUCTURE) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 ERROR=ERROR Abend if Macro error
* REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
* Message RESULTS text
 STH R8,SOCDESCA SAVE RETCODE (SOCKET DESCRIPTOR)

* *
* ISSUE NTOP MACRO *
* *

 MVC NUMERIC_ADDR,ADDRESS IP ADDRESS FROM ACCEPT
*
* DISPLAY THE NUMERIC ADDRESS FIRST
*
 MVC TYPE,MNTOP MOVE 'NTOP ' TO MESSAGE
*
* TRANSLATE IT TO PRESENTABLE FORM
*
 EZASMI TYPE=NTOP, ISSUE PTON MACRO X
 AF='INET6', X
 SRCADDR=NUMERIC_ADDR, X
 DSTADDR=PRESENTABLE_ADDR, X
 DSTLEN=PRESENTABLE_ADDR_LEN, X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*
* DISPLAY THE RETURNED ADDRESS IN PRESENTABLE FORMAT
*
 MVC MSGRSLT1,=C'DSTADDR ' INDICATE WHAT WE'RE PROCESSING
 XC MSGRSLT2,MSGRSLT2
 MVC MSGRSLT2(L'PRESENTABLE_ADDR),PRESENTABLE_ADDR
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB SEND TO THE CONSOLE

* *
* Issue READ - Read data and store in buffer *
* *

 MVC TYPE,MREAD MOVE 'READ ' TO MESSAGE
*
 EZASMI TYPE=READ, Issue Macro X
 S=SOCDESCA, ACCEPT SOCKET X
 NBYTE=NBYTE, SIZE OF BUFFER X
 BUF=BUF, (BUFFER) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X

Chapter 12. Macro application programming interface 377

 ERROR=ERROR Abend if Macro error
* REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
 MVC MSGRSLT1,MSGBUFF
 MVC MSGRSLT2,BUF
 BAL R14,WTOSUB --> PRINT IT
*
*

* *
* Issue WRITE - Write data from buffer *
* *

 MVC TYPE,MWRITE MOVE 'WRITE ' TO MESSAGE
*
 EZASMI TYPE=WRITE, Issue Macro X
 S=SOCDESCA, ACCEPT Socket X
 NBYTE=NBYTE, SIZE OF BUFFER X
 BUF=BUF, (BUFFER) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 ERROR=ERROR Abend if Macro error
* REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL

* *
* Issue CLOSE for ACCEPT socket *
* *

 MVC TYPE,MCLOSE MOVE 'CLOSE' TO MESSAGE
*
 EZASMI TYPE=CLOSE, Issue Macro X
 S=SOCDESCA, ACCEPT X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 ERROR=ERROR Abend if Macro error
* REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
*
 MVC MSGRSLT2,BLANK35
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*

* *
* Terminate Connection to API *
* *

 MVC TYPE,MTERMAPI MOVE 'TERMAPI' TO MESSAGE
*
 POST ECB,1 FOLLOWING IS ALWAYS SYNCH
 EZASMI TYPE=TERMAPI Issue EZASMI Macro for Termapi

* Message RESULTS text
 MVC MSGRSLT2,BLANK35
*
 BAL R14,RCCHECK --> CHECK RC

* Issue console message for task termination

 MVC TYPE,MSGEND Move 'ENDED' to message
*
 MVC MSGRSLT1,MSGSUCC ...SUCCESSFUL text
 MVC MSGRSLT2,BLANK35
*
 BAL R14,WTOSUB
 LA R14,1 CONSTANT
 AH R14,APITYPE ADD
 STH R14,APITYPE STORE
 CH R14,=H'3' COMPARE
* BE LOOP --> LETS DO IT AGAIN!

* Return to Caller

 L R13,4(R13)
 RETURN (14,12),T,RC=0
WTOSUB EQU *
 LR R7,R14 COPY RETURN REG
 MVC MSGCMD(8),TYPE
 WTO TEXT=MSG WRITE MESSAGE TO OPERATOR
 BR R7 --> RETURN TO CALLER
 CNOP 2,4

378 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* USES R6,R7,R8 RETCODE RETURNED IN R8
RCCHECK EQU *
 LR R7,R14 COPY TO REAL RETURN REG
 MVC MSGRSLT1,MSGSUCC ...SUCCESS TEXT
 L R6,RETCODE
 LTR R6,R6
 BM NOWAIT
 CLI SYNFLAG,0 PLAIN CASE?
 BE NOWAIT --> SKIP IT
 MVC KEY+14(8),SUBTASK
 MVC KEY+23(8),TYPE
KEY WTO 'WAIT: XXXXXXXX XXXXXXXX'
 WAIT ECB=ECB
NOWAIT EQU *
* LA R15,ECB
* ST R15,ECB
 ST R9,ECB MAKE THIS THE TOKEN AGAIN
 L R6,RETCODE CHECK FOR SUCCESSFUL CALL
 CLC TYPE,=CL8'GETHOSTI'
 BE HOSTIDRC HANDLE PRINTING HOST ID
 LTR R8,R6 SAVE A COPY
*
 BNL CONT00
FAILMSG EQU *
 MVC MSGRSLT1,MSGFAIL ...FAIL TEXT
CONT00 EQU *
*

* FORMAT THE RETCODE= -XXXXXXX ERRNO= XXXXXXX MSG RESULTS
* ***> R6 = RETCODE VALUE ON ENTRY

 MVC MSGRTCT,MSGRETC ' RETCODE= '
 MVI MSGRTCS,C'+'
 LTR R6,R6
 BNM NOTM -->
 MVI MSGRTCS,C'-' MOVE SIGN WHICH IS ALWAYS MINUS
NOTM EQU *
 MVC MSGERRT,MSGERRN ' ERRNO= '
*
 CVD R6,DWORK CONVERT IT TO DECIMAL
 UNPK MSGRTCV,DWORK+4(4) UNPACK IT
 OI MSGRTCV+6,X'F0' CORRECT THE SIGN
ERRNOFMT EQU *
 L R6,ERRNO GET ERRNO VALUE
 CVD R6,DWORK CONVERT IT TO DECIMAL
 UNPK MSGERRV,DWORK+4(4) UNPACK IT
 OI MSGERRV+6,X'F0' CORRECT THE SIGN
*
 MVC MSGRSLT2(35),MSGRTCD
*
 MVI MSGRTHX,X'40' CLEAR HEX INDICATOR
 SR R6,R6 CLEAR OUT...
 ST R6,RETCODE RETCODE AND...
 ST R6,ERRNO ERRNO
*
*
 CLI TRACE,0
 BNE NOTRACE
 LR R14,R7 GIVE HIM RETURN REG
 B WTOSUB --> DO WTO
NOTRACE EQU *
 BR R7 --> RETURN TO CALLER
*
HOSTIDRC EQU * VALID HOSTID MAY LOOK LIKE NEG. RC
 C R6,=F'-1' ONLY -1 RC INDICATES FAILURE
 BE FAILMSG ...BAD RC, USE STANDARD MSG
 LR R8,R6 ...NEXT CALL EXPECTS ADDR IN R8
 MVC MSGRSLT1,MSGSUCC ...SUCCESS TEXT
 UNPK HEXRC(9),RETCODE(5) PLUS ONE FOR FAKE SIGN
 TR HEXRC(8),HEXTAB ...CONVERT UNPK TO PRINTABLE HEX
 MVI HEXRC+8,X'40' ...SPACE OUT FAKED SIGN BYTE
 MVI MSGRTHX,C'X' ...INDICATE INFO IS HEX
 B ERRNOFMT
*
SYNFLAG DC H'0' DEFAULT TO SYN
TRACE DC H'0' DEFAULT TO TRACE
MYEXIT DC A(MYEXIT1,SUBTASK)
MYEXIT1 SAVE (14,12),T,*
 LR R2,R15
 USING MYEXIT1,R2
 LM R8,R9,0(R1) GET TWO TOKENS
 MVC EXKEY+14(8),0(R8) TELL WHO

Chapter 12. Macro application programming interface 379

 MVC EXKEY+23(8),TYPE TELL WHAT
EXKEY WTO 'EXIT: XXXXXXXX XXXXXXXX'
 POST ECB,1
 RETURN (14,12),T,RC=0
 DROP R2

* ABEND PROGRAM AND GET DUMP

ERROR ABEND 1,DUMP

* CONSTANTS USED TO RUN PROGRAM *

EZASMGW EZASMI TYPE=GLOBAL, Storage definition for GWA X
 STORAGE=CSECT

* INITAPI macro parms *

SUBTASK DC CL8'EZASO6AS' SUBTASK PARM VALUE
MAXSOC DC AL2(50) MAXSOC PARM VALUE
APITYPE DC H'2' OR A 3
MAXSNO DC F'0' (HIGHEST SOCKET DESCRIPTOR AVAILABLE)
IDENT DC 0CL16' '
 DC CL8' ' NAME OF TCP TO WHICH CONNECTING
 DC CL8'SOC401CB' MY ADDR SPACE NAME

* SOCKET macro parms *

S DC H'0' SOCKET DESCRIPTOR FOR STREAM

* BIND MACRO PARMS *

 CNOP 0,4
NAME DC 0CL28' ' SOCKET IPV6 NAME STRUCTURE
 DC AL1(16) Address Length
 DC AL1(19) Family
PORT DC H'0'
FLOWINFO DC XL4'00'
ADDRESS DC XL16'FF'
 DC XL4'00' SCOPEID
ADDR DC XL16'00000000000000000000000000000001' Internet Address
PORTS DC H'11007'

* LISTEN PARMS *

BACKLOG DC F'5' BACKLOG

* READ MACRO PARMS *

NBYTE DC F'50' SIZE OF BUFFER
SOCDESCA DC H'0' SOCKET DESCRIPTOR FROM ACCEPT
BUF DC CL50' THIS SHOULD NEVER APPEAR!!! : ('

* WTO FRAGMENTS *

MNTOP DC CL8'NTOP '
MPTON DC CL8'PTON '
MFADDRI DC CL8'FADDRI '
MGADDRI DC CL8'GADDRI '
MGHOSTN DC CL8'GETHOSTN'
MGNAMEI DC CL8'GNAMEI '
MINITAPI DC CL8'INITAPI'
MSOCKET DC CL8'SOCKET'
MBIND DC CL8'BIND'
MACCEPT DC CL8'ACCEPT'
MLISTEN DC CL8'LISTEN'
MREAD DC CL8'READ'
MWRITE DC CL8'WRITE'
MCLOSE DC CL8'CLOSE'
MTERMAPI DC CL8'TERMAPI'
MSGSTART DC CL8' STARTED'
MSGEND DC CL8' ENDED '
MSGBUFF DC CL10' BUFFER: ' ...
MSGSUCC DC CL10' SUCCESS ' Command results...
MSGFAIL DC CL10' FAIL: (' ...
MSGRETC DC CL10' RETCODE= ' ...
MSGERRN DC CL10' ERRNO= ' ...
BLANK35 DC CL35' '

* ERROR NUMBER / RETURN CODE FIELDS *

* MESSAGE AREA *

380 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

MSG DC 0F'0' MESSAGE AREA
 DC AL2(MSGE-MSGNUM) LENGTH OF MESSAGE
MSGNUM DC CL10'EZASO6AS:' 'EZASO6ASXX:'
MSGCMD DC CL8' ' COMMAND ISSUED
MSGRSLT1 DC CL10' ' COMMAND RESULTS (SUCC, PASS, FAIL)
MSGRSLT2 DC CL35' ' RETURNED VALUES
MSGE EQU * End of message

* MESSAGE RESULTS AREAS (fill in and move to MSGRSLT2) *
--
MSGRTCD DC 0CL35' ' GENERAL RETURNED VALUE
MSGRTCT DC CL9' RETCODE=' ' RETCODE= '
MSGRTHX DC CL1' ' 'X' X FOR GETHOSTID
MSGRTCS DC CL1' ' '-' (NEGATIVE SIGN)
HEXRC EQU MSGRTCS HEX RC WILL START AT SIGN LOCATION
MSGRTCV DC CL7' ' RETURNED VALUE (RETCODE)
MSGERRT DC CL10' ERRNO=' ' ERRNO= '
MSGERRV DC CL7' ' RETURNED VALUE (ERRNO)

PARMADDR DC A(0) PARM ADDRESS SAVE AREA
DWORK DC D'0' WORK AREA
HEXTAB EQU *-240 TAB TO CONVERT TO PRINTABLE HEX
* FIRST 240 BYTES NOT REFERENCED
 DC CL16'0123456789ABCDEF'
 EZBREHST DSECT=NO,LIST=YES,HOSTENT=NO,ADRINFO=YES
 LTORG ,

* REG/SAVEAREA *

SOCSAVE DC 9D'0' SAVE AREA
 CNOP 0,8
MYCB EQU * MY CONTROL BLOCK
REQAREA EQU *
ECB DC A(ECB) SELF POINTER
 DC CL100'WORK AREA'
MYTIE EZASMI TYPE=TASK,STORAGE=CSECT TIE
TYPE DC CL8'TYPE'
ERRNO DC F'0'
RETCODE DC F'0'
*
REQARG DC F'1'
RETARG DS 0H
*
* FOR NTOP AND PTON
*
NUMERIC_ADDR DS CL16 IP ADDRESS IN NUMERIC FORM
PRESENTABLE_ADDR DS CL45 IP ADDRESS IN PRESENTABLE FORM
PRESENTABLE_ADDR_LEN DC AL2(L'PRESENTABLE_ADDR) LENGTH OF PRESENTABLE X
 IP ADDRESS
LOOPIPV6 DC CL45'::1' IPV6 LOOPBACK ADDRESS
*
* FOR GETHOSTNAME, GETADDRINFO, and FREEADDRINFO
*
HOSTNAME DC CL24' '
NODENAME DC CL255' ' FOR THE RETURNED HOST NAME
SERVNAME DC C' ' SERVICE BEING RESOLVED
 CNOP 0,4
HOSTNAMEL DC AL4(L'HOSTNAME) LENGTH OF THE HOST NAME
NODENAMEL DC AL4(L'NODENAME) LENGTH OF THE NODE NAME
SERVNAMEL DC F'0' LENGTH OF THE SERVICE NAME
RESULT_ADDRINFO DC F'0' RETURNED ADDRINFO
CANNAMEL DC F'0' CANNONICAL NAME LENGTH IN ADDRINFO
HINTS DC F'0' ADDRESS OF HINTS ADDRINFO
*
* For EZACIC09 processing
*
OPNAMELEN DS F SOCKET ADDRESS STRUCTURE LENGTH
OPCANON DS CL256 CANONICAL NAME
OPNAME DS CL28 SOCKET ADDRESS STRUCTURE
OPNEXT DS F NEXT RESULT ADDRESS INFO IN CHAIN
*
MYNEXT DC A(MYCB) NEXT IN CHAIN FOR MULTIPLES
 CNOP 0,8
MYLEN EQU *-MYCB
MYCB2 EQU *
 ORG *+MYLEN
 CNOP 0,8
 DC CL8'&SYSDATE'
 DC CL8'&SYSTIME'

Chapter 12. Macro application programming interface 381

 BPXYSOCK DSECT=NO,LIST=YES
 END

Figure 69. EZASO6AS sample server program for IPv6

EZASO6AC sample client program for IPv6
The EZASO6AC program is a client module that shows you how to use the following calls provided by the
macro socket interface:

• INITAPI
• SOCKET
• CONNECT
• GETPEERNAME
• GETNAMEINFO
• GLOBAL
• WRITE
• READ
• TASK
• TERMAPI
• SHUTDOWN

EZASO6AC CSECT
EZASO6AC AMODE ANY
EZASO6AC RMODE ANY
 PRINT NOGEN

* *
* MODULE NAME: EZASO6AC - THIS IS A VERY SIMPLE IPV6 CLIENT *
* *
* Copyright: Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5694-A01 *
* *
* (C) Copyright IBM Corp. 2002, 2003 *
* *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by *
* GSA ADP Schedule Contract with IBM Corp. *
* *
* Status: CSV1R5 *
* *
* *
* LANGUAGE: ASSEMBLER *
* *
* ATTRIBUTES: NON-REUSEABLE *
* *
* REGISTER USAGE: *
* R1 = *
* R2 = *
* R3 = BASE REG 1 *
* R4 = BASE REG 2 (UNUSED) *
* R5 = FUTURE BASE? *
* R6 = TEMP *
* R7 = RETURN REG *
* R8 = *
* R9 = A(WORK AREA) *
* R10 = *
* R11 = *
* R12 = *
* R13 = SAVE AREA *
* R14 = *
* R15 = *
* *
* INPUT: ANY PARM TURNS TRACE OFF, NO PARM IS NOISY MODE *
* OUTPUT: WTO RESULTS OF EACH TEST CASE IF TRACING *
* RETURN CODE IS 0 WHETHER IT CONNECTS OR NOT! *

382 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

* *

 GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION
&TRACE SETB 1 1=TRACE ON 0=TRACE OFF
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* START OF EXECUTABLE CODE *

 USING *,R3,R4 TELL ASSEMBLER OF OTHERS
 SAVE (14,12),T,*
 LR R3,R15 COPY EP REG TO FIRST BASE
 LA R5,2048 GET R5 HALFWAY THERE
 LA R5,2048(R5) GET R5 THERE
 LA R4,0(R5,R3) GET R4 THERE
 LA R12,12 JUST FOR FUN!
 ST R1,PARMADDR SAVE ADDRESS OF PARAMETER LIST
 L R1,0(R1) GET POINTER
 LH R1,0(R1) GET LENGTH
* STC R1,TRACE USE IT AS FLAG
 L R7,=A(SOCSAVE) GET NEW SAVE AREA
 ST R7,8(R13) SAVE ADDRESS OF NEW SAVE AREA
 ST R13,4(R7) COMPLETE SAVE AREA CHAIN
 LR R13,R7 NOW SWAP THEM
 L R9,=A(MYCB) POINT TO THE CONTROL BLOCK
 USING MYCB,R9 TELL ASSEMBLER

* BUILD MESSAGE FOR CONSOLE

* INITIALIZE MESSAGE TEXT FIELDS
LOOP EQU *
 MVC MSGNUM(8),SUBTASK WHO I AM
 MVC TYPE,MSGSTART MOVE 'STARTED' TO MESSAGE
*
 MVC MSGRSLT1,MSGSUCC ...SUCCESSFUL TEXT
 MVC MSGRSLT2,BLANK35
*
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB --> DO STARTING WTO

* *
* Issue INITAPI to connect to interface *
* *

 MVC TYPE,MINITAPI MOVE 'INITAPI' TO MESSAGE
*
 POST ECB,1 FOLLOWING IS SYNC ONLY
 MVI SYNFLAG,0 MOVE A 1 FOR ASYNCH
 EZASMI TYPE=INITAPI, ISSUE INITAPI MACRO X
 SUBTASK=SUBTASK, SPECIFY SUBTASK IDENTIFIER X
 MAXSOC=MAXSOC, SPECIFY MAXIMUM NUMBER OF SOCKETS X
 MAXSNO=MAXSNO, (HIGHEST SOCKET NUMBER ASSIGNED) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 APITYPE=APITYPE, (SPECIFY APITYPE FIELD) X
 ERROR=ERROR Abend if error on macro
* IDENT=IDENT, TCP ADDR SPACE AND MY ADDR SPACE
*
* ASYNC=('ECB'), (SPECIFY TO USE ECBS)
* ASYNC=('EXIT',MYEXIT) (SPECIFY TO USE EXITS)
 BAL R14,RCCHECK --> CHECK RESULTS

* *
* Issue SOCKET Macro to obtain a socket descriptor *
* *** INET and STREAM *** *
* *

 MVC TYPE,MSOCKET MOVE 'SOCKET' TO MESSAGE

Chapter 12. Macro application programming interface 383

*
 EZASMI TYPE=SOCKET, Issue SOCKET Macro X
 AF='INET6', INET, IUCV, or INET6 X
 SOCTYPE='STREAM', STREAM(TCP) DATAGRAM(UDP) or RAW X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RESULTS
 STH R8,S SAVE RETCODE (=SOCKET DESCRIPTOR)
 LTR R8,R8 CHECK IT
 BM DOSHUTDO --> WE ARE DONE!

* *
* Issue CONNECT Socket *
* *

 MVC TYPE,MCONNECT MOVE 'CONNECT' TO MESSAGE
 MVC PORT(2),PORTS Load STREAM port #
 MVC ADDRESS(16),ADDR LOAD THE INTERNET ADDRESS
*
 EZASMI TYPE=CONNECT, Issue Macro X
 S=S, STREAM X
 NAME=NAME, SOCKET NAME STRUCTURE X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RC
 LTR R8,R8 RECHECK IT
 BM DOSHUTDO --> WE ARE DONE

* *
* Issue GETPEERNAME *
* *

 MVC TYPE,MGETPEER MOVE 'GTPEERN' TO MESSAGE
*
 EZASMI TYPE=GETPEERNAME, Issue Macro X
 S=S, STREAM X
 NAME=NAME, (SOCKET NAME STRUCTURE) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RC

* *
* ISSUE GETNAMEINFO MACRO *
* *

 MVC TYPE,MGNAMEI MOVE 'GETNAMEINFO' TO MESSAGE
 LA R6,NI_NAMEREQD
 ST R6,FLAGS
*
 EZASMI TYPE=GETNAMEINFO, ISSUE GETNAMEINFO MACRO X
 NAME=NAME, X
 NAMELEN=NAMELEN, X
 HOST=HOSTNAME, X
 HOSTLEN=HOSTNAMEL, X
 SERVICE=SERVNAME, X
 SERVLEN=SERVNAMEL, X
 FLAGS=FLAGS, X
 ERRNO=ERRNO, (SPECIFY ERRNO FIELD) X
 RETCODE=RETCODE, (SPECIFY RETCODE FIELD) X
 ERROR=ERROR ABEND IF MACRO ERROR
*
 BAL R14,RCCHECK CHECK FOR SUCCESSFUL CALL
*
* DISPLAY HOSTNAME
*
 MVC MSGRSLT1,=C'HOST NAME ' INDICATE WHAT WERE PROCESSING
 XC MSGRSLT2,MSGRSLT2
 MVC MSGRSLT2,HOSTNAME LOAD UP THE DATA
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB SEND TO THE CONSOLE
*
* DISPLAY SERVNAME
*

384 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 MVC MSGRSLT1,=C'SERV NAME ' INDICATE WHAT WERE PROCESSING
 XC MSGRSLT2,MSGRSLT2
 MVC MSGRSLT2,SERVNAME LOAD UP THE DATA
 STM R14,R12,12(R13) JUST FOR DEBUGGING
 BAL R14,WTOSUB SEND TO THE CONSOLE

* *
* Issue WRITE - Write data from buffer *
* *

 MVC TYPE,MWRITE MOVE 'WRITE ' TO MESSAGE
*
 EZASMI TYPE=WRITE, Issue Macro X
 S=S, STREAM SOCKET X
 NBYTE=NBYTE, SIZE OF BUFFER X
 BUF=BUF, BUFFER X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RC

* *
* Issue SHUTDOWN - HOW = 1 (end communication TO socket) *
* *

DOSHUTDO EQU *
 MVC HOW(4),=F'1'
*
 BAL R14,SHUTSUB --> SHUTDOWN
*
 BAL R14,RCCHECK --> CHECK RC

* *
* Issue READ - Read data and store in buffer *
* *

 MVC TYPE,MREAD MOVE 'READ ' TO MESSAGE
*
 EZASMI TYPE=READ, Issue Macro X
 S=S, STREAM SOCKET X
 NBYTE=NBYTE, SIZE OF BUFFER X
 BUF=BUF2, (BUFFER) X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BAL R14,RCCHECK --> CHECK RC
 MVC MSGRSLT1,MSGBUFF TITLE
 MVC MSGRSLT2,BUF2 MOVE THE DATA
 BAL R14,WTOSUB --> PRINT IT

* *
* Issue SHUTDOWN - HOW = 0 (end communication FROM socket) *
* *

 MVC HOW(4),=F'0'
*
 BAL R14,SHUTSUB --> SHUTDOWN
*
 BAL R14,RCCHECK --> CHECK RC

* *
* Terminate Connection to API *
* *

 MVC TYPE,MTERMAPI MOVE 'TERMAPI' TO MESSAGE
*
 POST ECB,1 FOLLOWING IS SYNC ONLY
 EZASMI TYPE=TERMAPI Issue EZASMI Macro for Termapi
*
 BAL R14,RCCHECK --> CHECK RC

* Issue console message for task termination

 MVC TYPE,MSGEND Move 'ENDED' to message
*
 MVC MSGRSLT1,MSGSUCC ...SUCCESSFUL text
 MVC MSGRSLT2,BLANK35
 BAL R14,WTOSUB --> DO WTO

Chapter 12. Macro application programming interface 385

 LA R14,1 CONSTANT
 AH R14,APITYPE ADD
 STH R14,APITYPE STORE
 CH R14,=H'3' COMPARE
* BE LOOP --> LETS DO IT AGAIN!
*

* Return to Caller

 L R13,4(R13)
 RETURN (14,12),T,RC=0
WTOSUB EQU *
 LR R7,R14 SAVE RETURN REG
 MVC MSGCMD,TYPE COPY COMMAND
 WTO TEXT=MSG
 BR R7 --> RETURN
*
SHUTSUB EQU *
 LR R7,R14
 MVC TYPE,MSHUTDOW MOVE 'SHUTDOW' TO MESSAGE
*
 EZASMI TYPE=SHUTDOWN, Issue Macro X
 S=S, STREAM X
 HOW=HOW, End communication in both directions X
 ERRNO=ERRNO, (Specify ERRNO field) X
 RETCODE=RETCODE, (Specify RETCODE field) X
 REQAREA=REQAREA, FOR EXITS (AND ECBS) X
 ERROR=ERROR Abend if Macro error
*
 BR R7 --> RETURN TO CALLER

* ABEND PROGRAM AND GET DUMP TO DEBUG!
ERROR ABEND 1,DUMP
 CNOP 2,4
* USES R6,R7,R8 RETCODE RETURNED IN R8
RCCHECK EQU *
 LR R7,R14 COPY TO REAL RETURN REG
 MVC MSGRSLT1,MSGSUCC ...SUCCESS TEXT
 L R6,RETCODE
 LTR R6,R6
 BM NOWAIT
 CLI SYNFLAG,0 PLAIN CASE?
 BE NOWAIT --> SKIP IT
 MVC KEY+14(8),SUBTASK
 MVC KEY+23(8),TYPE
KEY WTO 'WAIT: XXXXXXXX XXXXXXXX'
 WAIT ECB=ECB
NOWAIT EQU *
* LA R15,ECB
* ST R15,ECB
 ST R9,ECB MAKE THIS THE TOKEN AGAIN
 L R6,RETCODE CHECK FOR SUCCESSFUL CALL
 CLC TYPE,=CL8'GETHOSTI'
 BE HOSTIDRC HANDLE PRINTING HOST ID
 LTR R8,R6 SAVE A COPY
*
 BNL CONT00
FAILMSG EQU *
 MVC MSGRSLT1,MSGFAIL ...FAIL TEXT
CONT00 EQU *
*

* FORMAT THE RETCODE= -XXXXXXX ERRNO= XXXXXXX MSG RESULTS
* ***> R6 = RETCODE VALUE ON ENTRY

 MVC MSGRTCT,MSGRETC ' RETCODE= '
 MVI MSGRTCS,C'+'
 LTR R6,R6
 BNM NOTM -->
 MVI MSGRTCS,C'-' MOVE SIGN WHICH IS ALWAYS MINUS
NOTM EQU *
 MVC MSGERRT,MSGERRN ' ERRNO= '
*
 CVD R6,DWORK CONVERT IT TO DECIMAL
 UNPK MSGRTCV,DWORK+4(4) UNPACK IT
 OI MSGRTCV+6,X'F0' CORRECT THE SIGN
*
ERRNOFMT EQU *
 L R6,ERRNO GET ERRNO VALUE
 CVD R6,DWORK CONVERT IT TO DECIMAL
 UNPK MSGERRV,DWORK+4(4) UNPACK IT
 OI MSGERRV+6,X'F0' CORRECT THE SIGN

386 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

*
 MVC MSGRSLT2(35),MSGRTCD
*
 MVI MSGRTHX,X'40' CLEAR HEX INDICATOR
 SR R6,R6 CLEAR OUT...
 ST R6,RETCODE RETCODE AND...
 ST R6,ERRNO ERRNO
*
*
 CLI TRACE,0
 BNE NOTRACE
 LR R14,R7 GIVE HIM RETURN REG
 B WTOSUB --> DO WTO
NOTRACE EQU *
 BR R7 --> RETURN TO CALLER
*
HOSTIDRC EQU * VALID HOSTID MAY LOOK LIKE NEG. RC
 C R6,=F'-1' ONLY -1 RC INDICATES FAILURE
 BE FAILMSG ...BAD RC, USE STANDARD MSG
 LR R8,R6 ...NEXT CALL EXPECTS ADDR IN R8
 MVC MSGRSLT1,MSGSUCC ...SUCCESS TEXT
 UNPK HEXRC(9),RETCODE(5) PLUS ONE FOR FAKE SIGN
 TR HEXRC(8),HEXTAB ...CONVERT UNPK TO PRINTABLE HEX
 MVI HEXRC+8,X'40' ...SPACE OUT FAKED SIGN BYTE
 MVI MSGRTHX,C'X' ...INDICATE INFO IS HEX
 B ERRNOFMT
*
SYNFLAG DC H'0' DEFAULT TO SYN
TRACE DC H'0' DEFAULT TO TRACE
MYEXIT DC A(MYEXIT1,SUBTASK)
MYEXIT1 SAVE (14,12),T,*
 LR R2,R15
 USING MYEXIT1,R2
 LM R8,R9,0(R1) GET TWO TOKENS
 MVC EXKEY+14(8),0(R8) TELL WHO
 MVC EXKEY+23(8),TYPE TELL WHAT
EXKEY WTO 'EXIT: XXXXXXXX XXXXXXXX'
 POST ECB,1
 RETURN (14,12),T,RC=0
 DROP R2

* ELEMENTS USED TO RUN PROGRAM *

EZASMGW EZASMI TYPE=GLOBAL, STORAGE DEFINITION FOR GWA X
 STORAGE=CSECT

* INITAPI macro parms *

SUBTASK DC CL8'EZASO6AC' SUBTASK PARM VALUE
IDENT DC 0CL16' '
 DC CL8'TCPV32' DEFAULT TO FIRST ONE AVAILABLE
 DC CL8'EZASO6AC' MY ADDR SPACE NAME OR JOBNAME
MAXSNO DC F'0' (HIGHEST SOCKET DESCRIPTOR AVAILABLE)
MAXSOC DC AL2(50) MAXSOC PARM VALUE
APITYPE DC H'2' OR PUT A 3 HERE

* SOCKET macro parms *

S DC H'0' SOCKET DESCRIPTOR FOR STREAM

* CONNECT MACRO PARMS *

 CNOP 0,4
NAME DC 0CL28' ' SOCKET IPV6 NAME STRUCTURE
 DC AL1(16) Address Length
 DC AL1(19) Family
PORT DC H'0'
FLOWINFO DC XL4'00'
ADDRESS DC XL16'FF'
 DC XL4'00' SCOPEID
ADDR DC XL16'00000000000000000000000000000001' Internet Address
PORTS DC H'11007'

* WRITE MACRO PARMS *

NBYTE DC F'50' SIZE OF BUFFER
BUF DC CL50' THIS IS FROM EZASO6AC!' BUFFER FOR WRITE

* SHUTDOWN MACRO PARMS *

HOW DC F'2' END COMMUNICATION TO- AND FROM-SOCKET

Chapter 12. Macro application programming interface 387

* READ MACRO PARMS *

BUF2 DC CL50'BUF2' BUFFER FOR READ

MNTOP DC CL8'NTOP '
MPTON DC CL8'PTON '
MFADDRI DC CL8'FADDRI '
MGADDRI DC CL8'GADDRI '
MGNAMEI DC CL8'GNAMEI '
MINITAPI DC CL8'INITAPI'
MSOCKET DC CL8'SOCKET'
MCONNECT DC CL8'CONNECT'
MGETPEER DC CL8'GETPEERN'
MREAD DC CL8'READ'
MWRITE DC CL8'WRITE'
MSHUTDOW DC CL8'SHUTDOWN'
MTERMAPI DC CL8'TERMAPI'
MSGSTART DC CL8' STARTED'
MSGEND DC CL8' ENDED '
MSGSUCC DC CL10' SUCCESS ' Command results...
MSGFAIL DC CL10' FAIL:-(' ...
MSGRETC DC CL10' RETCODE= ' ...
MSGERRN DC CL10' ERRNO= ' ...
MSGBUFF DC CL10' BUFFER: ' ...
BLANK35 DC CL35' '

* MESSAGE AREA *

MSG DC 0F'0' MESSAGE AREA
 DC AL2(MSGE-MSGNUM) LENGTH OF MESSAGE
MSGNUM DC CL10'EZASO6AC:' 'EZASO6AC: '
MSGCMD DC CL8' ' COMMAND ISSUED
MSGRSLT1 DC CL10' ' COMMAND RESULTS (SUCC, PASS, FAIL)
MSGRSLT2 DC CL35' ' RETURNED VALUES
MSGE EQU * End of message

* MESSAGE RESULTS AREAS (fill in and move to MSGRSLT2) *
--
*
MSGRTCD DC 0CL35' ' GENERAL RETURNED VALUE
MSGRTCT DC CL9' RETCODE=' ' RETCODE= '
MSGRTHX DC CL1' ' 'X' X FOR GETHOSTID
MSGRTCS DC CL1' ' '-' (NEGATIVE SIGN)
HEXRC EQU MSGRTCS HEX RC WILL START AT SIGN LOCATION
MSGRTCV DC CL7' ' RETURNED VALUE (RETCODE)
MSGERRT DC CL10' ERRNO=' ' ERRNO= '
MSGERRV DC CL7' ' RETURNED VALUE (ERRNO)
DWORK DC D'0' WORK AREA
HEXTAB EQU *-240 TAB TO CONVERT TO PRINTABLE HEX
* FIRST 240 BYTES NOT REFERENCED
 DC CL16'0123456789ABCDEF'
PARMADDR DC A(0) PARM ADDRESS SAVE AREA
 EZBREHST DSECT=NO,LIST=YES,HOSTENT=NO,ADRINFO=YES
 LTORG

* REG/SAVEAREA *

SOCSAVE DC 9D'0' SAVE AREA

 CNOP 0,8
MYCB EQU * MY CONTROL BLOCK
REQAREA EQU *
ECB DC A(ECB) SELF POINTER
 DC CL100'WORK AREA'
MYTIE EZASMI TYPE=TASK,STORAGE=CSECT TIE
TYPE DC CL8'TYPE'
ERRNO DC F'0'
RETCODE DC F'0'
*
HOSTNAME DS CL255 HOST NAME FOR GETNAMEINFO
SERVNAME DS CL32 SERVICE NAME FOR GETNAMEINFO
 CNOP 0,4
HOSTNAMEL DC AL4(L'HOSTNAME) LENGTH OF HOST NAME
SERVNAMEL DC AL4(L'SERVNAME) LENGTH OF SERVICE NAME
NAMELEN DC AL4(L'NAME) LENGTH OF NAME
FLAGS DC F'0' GETNAMEINFO FLAGS
*
MYNEXT DC A(MYCB) NEXT IN CHAIN FOR MULTIPLES
 CNOP 0,8
MYLEN EQU *-MYCB
MYCB2 EQU *

388 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 ORG *+MYLEN
 CNOP 0,8
 DC CL8'&SYSDATE'
 DC CL8'&SYSTIME'
 END

Figure 70. EZASO6AC sample client program for IPv6

Chapter 12. Macro application programming interface 389

390 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 13. CALL instruction application
programming interface

This information describes the CALL instruction API for IPv4 or IPv6 socket applications. The following
topics are included:

• “CALL instruction API environmental restrictions and programming requirements” on page 391
• “CALL instruction API output register information” on page 392
• “CALL instruction API compatibility considerations” on page 392
• “CALL instruction application programming interface (API)” on page 393
• “Understanding COBOL, Assembler, and PL/I call formats” on page 393
• “Converting parameter descriptions” on page 394
• “Diagnosing problems in applications using the CALL instruction API” on page 394
• “CALL instruction API error messages and return codes” on page 395
• “Code CALL instructions” on page 395
• “Using data translation programs for socket call interface” on page 524
• Call interface sample programs

CALL instruction API environmental restrictions and programming
requirements

The following restrictions apply to both the Macro Socket API and the Callable Socket API:

Function Restriction

SRB mode These APIs can only be invoked in TCB mode (task mode).

Cross-memory mode These APIs can only be invoked in a non-cross-memory
environment (PASN=SASN=HASN).

Functional Recovery Routine (FRR) Do not invoke these APIs with an FRR set. This causes
system recovery routines to be bypassed and severely
damage the system.

Locks No locks should be held when issuing these calls.

INITAPI and TERMAPI socket commands The INITAPI and TERMAPI socket commands must be issued
under the same task.

Storage Storage acquired for the purpose of containing data returned
from a socket call must be obtained in the same key as the
application program status word (PSW) at the time of the
socket call.

Nested socket API calls You cannot issue nested API calls within the same task. That
is, if a request block (RB) issues a socket API call and is
interrupted by an interrupt request block (IRB) in an STIMER
exit, any additional socket API calls that the IRB attempts to
issue are detected and flagged as errors.

© Copyright IBM Corp. 2000, 2020 391

Function Restriction

Addressability mode (Amode)
considerations

The EZASOKET API can be invoked while the caller is in
either 31-bit or 24-bit Amode. However, if the application is
running in 24-bit addressability mode at the time of the call,
all addresses of parameters passed by the application must
be addressable in 31-bit Amode. This implies that even if the
addresses being passed reside in storage below the 16 MB
line (and therefore addressable by 24-bit Amode programs)
the high-order byte of these addresses needs to be 0.

Use of z/OS UNIX System Services Address spaces using the EZASOKET API should not use any
z/OS UNIX System Services socket API facilities such as z/OS
UNIX Assembler Callable Services or Language Environment
for z/OS C/C++. Doing so can yield unpredictable results.

CALL instruction API output register information
When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Contains the entry point address EZASOKET

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-14

Unchanged
15

Used as a work register by the system.

If a caller depends on register contents to remain the same before and after issuing a service, the caller
must save the contents of a register before issuing the service and must restore them after the system
returns control.

CALL instruction API compatibility considerations
Unless noted in z/OS Communications Server: New Function Summary, an application program compiled
and link edited on a release of z/OS Communications Server IP can be used on higher level releases. That
is, the API is upward compatible.

Application programs that are compiled and link edited on a release of z/OS Communications Server IP
cannot be used on older releases. That is, the API is not downward compatible.

392 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

CALL instruction application programming interface (API)
This information describes the CALL instruction API for TCP/IP application programs written in the
COBOL, PL/I, or System/370 Assembler language. The format and parameters are described for each
socket call.

Notes:

• Unless your program is running in a CICS environment, reentrant code and multithread applications are
not directly supported by this interface. Each task or thread needs to invoke its own copy of EZASOKET.

• Modules that use EZASOKET must be non-reusable (NREUS) or serially reusable (REUS). If the module
can be invoked again after its original task ends, the application needs to perform the TERMAPI call at
the end of its function. Otherwise, unpredictable results are produced.

• For a PL/I program, include the following statement before your first call instruction.

 DCL EZASOKET ENTRY OPTIONS(ASM,INTER) EXT;

• If you use the CALL instruction from code that will run as a part of a CICS transaction, see the z/OS
Communications Server: IP CICS Sockets Guide for additional considerations.

• The Sockets Extended module (EZASOKET) is located in the hlq.SEZATCP(EZASOKET) load module and
should be resolved from there when it is processed by the binder. You can use the linkage editor MAP
parameter to produce the module map report to verify where EZASOKET is resolved.

Understanding COBOL, Assembler, and PL/I call formats
This API is invoked by calling the EZASOKET program and performs the same functions as the C language
calls. The parameters look different because of the differences in the programming languages.

COBOL language call format
The following syntax shows the EZASOKET call format for COBOL language programs:

CALL ‘EZASOKET’ USING SOC-FUNCTION parm1, parm2, .. ERRNO,RETCODE.

SOC-FUNCTION
A 16-byte character field, left-justified and padded on the right with blanks. Set to the name of the
call. SOC-FUNCTION is case specific. It must be in uppercase.

parmn
A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is used in most, but not all, of
the calls. It corresponds to the value returned by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET call. This value corresponds to
the normal return value of a C function.

Assembler language call format
The following syntax shows the EZASOKET call format for assembler language programs.

CALL EZASOKET,(SOC-FUNCTION, parm1, parm2, .. ERRNO,RETCODE),VL

PL/I language call format
The following syntax shows the EZASOKET call format for PL/I language programs:

Chapter 13. CALL instruction application programming interface 393

CALL EZASOKET (SOC-FUNCTION parm1, parm2, ... ERRNO,RETCODE);

SOC-FUNCTION
A 16-byte character field, left-justified and padded on the right with blanks. Set to the name of the
call.

parmn
A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is used in most, but not all, of
the calls. It corresponds to the value returned by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET call. This value corresponds to
the normal return value of a C function.

Converting parameter descriptions
The parameter descriptions in this information are written using the VS COBOL II PIC language syntax and
conventions, but you should use the syntax and conventions that are appropriate for the language you
want to use.

Figure 71 on page 394 shows examples of storage definition statements for COBOL, PL/I, and assembler
language programs.

VS COBOL II PIC

 PIC S9(4) BINARY HALFWORD BINARY VALUE
 PIC S9(8) BINARY FULLWORD BINARY VALUE
 PIC X(n) CHARACTER FIELD OF N BYTES

COBOL PIC

 PIC S9(4) COMP HALFWORD BINARY VALUE
 PIC S9(4) BINARY HALFWORD BINARY VALUE
 PIC S9(8) COMP FULLWORD BINARY VALUE
 PIC S9(8) BINARY FULLWORD BINARY VALUE
 PIC X(n) CHARACTER FIELD OF N BYTES

PL/I DECLARE STATEMENT

 DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE
 DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE
 DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

 DS H HALFWORD BINARY VALUE
 DS F FULLWORD BINARY VALUE
 DS CLn CHARACTER FIELD OF n BYTES

Figure 71. Storage definition statement examples

Diagnosing problems in applications using the CALL instruction
API

TCP/IP provides a trace facility that can be helpful in diagnosing problems in applications using the CALL
instruction API. The trace is implemented using the TCP/IP Component Trace (CTRACE) SOCKAPI trace
option. The SOCKAPI trace option allows all Call instruction socket API calls issued by an application to
be traced in the TCP/IP CTRACE. The SOCKAPI trace records include information such as the type of
socket call, input, and output parameters and return codes. This trace can be helpful in isolating failing
socket API calls and in determining the nature of the error or the history of socket API calls that may be
the cause of an error. For more information about the SOCKAPI trace option, see z/OS Communications
Server: IP Diagnosis Guide.

394 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

CALL instruction API error messages and return codes
For information about error messages, see z/OS Communications Server: IP Messages Volume 1 (EZA).

For information about error codes that are returned by TCP/IP, see Appendix B, “Socket call error return
codes,” on page 745.

Code CALL instructions
This information contains the description, syntax, parameters , and other related information for each call
instruction included in this API.

ACCEPT
A server issues the ACCEPT call to accept a connection request from a client. The call points to a socket
that was previously created with a SOCKET call and marked by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections.
2. Creates a new socket with the same properties as s, and returns its descriptor in RETCODE. The

original sockets remain available to the calling program to accept more connection requests.
3. The address of the client is returned in NAME for use by subsequent server calls.

Notes:

1. The blocking or nonblocking mode of a socket affects the operation of certain commands. The default
is blocking; nonblocking mode can be established by use of the FCNTL and IOCTL calls. When a socket
is in blocking mode, an I/O call waits for the completion of certain events. For example, a READ call will
block until the buffer contains input data. When an I/O call is issued:

• If the socket is blocking, program processing is suspended until the event completes.
• If the socket is nonblocking, program processing continues.

2. If the queue has no pending connection requests, ACCEPT blocks the socket unless the socket is in
nonblocking mode. The socket can be set to nonblocking by calling FCNTL or IOCTL.

3. When multiple socket calls are issued, a SELECT call can be issued prior to the ACCEPT to ensure that
a connection request is pending. Using this technique ensures that subsequent ACCEPT calls will not
block.

4. TCP/IP does not provide a function for screening clients. As a result, it is up to the application program
to control which connection requests it accepts, but it can close a connection immediately after
discovering the identity of the client.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Chapter 13. CALL instruction application programming interface 395

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 72 on page 396 shows an example of ACCEPT call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'ACCEPT'.
 01 S PIC 9(4) BINARY.
 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).
 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC X(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 72. ACCEPT call instructions example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing ACCEPT. Left-justify the field and pad it on the right with blanks.
S

A halfword binary number specifying the descriptor of a socket that was previously created with a
SOCKET call. In a concurrent server, this is the socket upon which the server listens.

Parameter values returned to the application
NAME

An IPv4 socket address structure that contains the client’s socket address.
FAMILY

A halfword binary field specifying the IPv4 addressing family. The call returns the value decimal 2
for AF_INET.

PORT
A halfword binary field that is set to the client’s port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 IP address, in network byte order, of the
client’s host machine.

RESERVED
Specifies 8 bytes of binary zeros. This field is required, but not used.

An IPv6 socket address structure that contains the client’s socket address.
FAMILY

A halfword binary field specifying the IPv6 addressing family. For TCP/IP the value is decimal 19,
indicating AF_INET6.

PORT
A halfword binary field that is set to the client’s port number.

396 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address, in network-byte-order, of the
client’s host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket number.

If the RETCODE value is negative, check the ERRNO field for an error number.

Value
Description

> 0
Successful call.

-1
Check ERRNO for an error code.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes the process of creating a
new socket.

The BIND socket command can specify the port or let the system choose the port. A listener program
should always bind to the same well-known port so that clients know the socket address to use when
issuing a CONNECT, SENDTO, or SENDMSG request.

In addition to the port, the application also specifies an IP address on the BIND socket command. Most
applications typically specify a value of 0 for the IP address, which allows these applications to accept
new TCP connections or receive UDP datagrams that arrive over any of the network interfaces of the local
host. This enables client applications to contact the application using any of the IP addresses associated
with the local host.

Alternatively, an application can indicate that it is interested in receiving new TCP connections or UDP
datagrams that are targeted towards only a specific IP address associated with the local host. This can be
accomplished by specifying the IP address in the appropriate field of the socket address structure passed
on the NAME parameter.

Tip: Even if an application specifies the value 0 for the IP address on the BIND, the system administrator
can override that value by specifying the BIND parameter on the PORT reservation statement in the
TCP/IP profile. The effect of this override is similar to the effect of the application specifying an explicit IP
address on the BIND macro. For more information, see z/OS Communications Server: IP Configuration
Reference.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 13. CALL instruction application programming interface 397

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 73 on page 398 shows an example of BIND call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 73. BIND call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing BIND. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number specifying the socket descriptor for the socket to be bound.

NAME

See Chapter 3, “Designing an iterative server program,” on page 23 for more information.

Specifies the IPv4 socket address structure for the socket that is to be bound.

FAMILY
A halfword binary field specifying the IPv4 addressing family. The value is always set to decimal 2,
indicating AF_INET.

PORT
A halfword binary field that is set to the port number to which you want the socket to be bound.

398 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Note: To determine the assigned port number, call the GETSOCKNAME command after calling the
BIND command.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 IP address (network byte order) of the socket
to be bound.

RESERVED
Specifies an 8-byte character field that is required but not used.

Specifies the IPv6 socket address structure for the socket that is to be bound.
FAMILY

A halfword binary field specifying the IPv6 addressing family. For TCP/IP the value is decimal 19,
indicating AF_INET6.

PORT
A halfword binary field that is set to the port number to which you want the socket to be bound.

Note: To determine the assigned port number, call the GETSOCKNAME command after calling the
BIND command.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address (network byte order) of the socket
to be bound.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and may be specified for any address types and scopes.
For a link scope IPv6-ADDRESS, SCOPE-ID may specify a link index which identifies a set of
interfaces. For all other address scopes, SCOPE-ID must be set to 0.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

BIND2ADDRSEL
The BIND2ADDRSEL call binds a socket to the local IP address that would be selected by the stack to
communicate with the input destination IP address.

Use the BIND2ADDRSEL call when the application must verify that the local IP address assigned by the
stack meets its address selection criteria as specified by the IPV6_ADDR_PREFERENCES socket option
before the stack sends any packets to the remote host. In a TCP or UDP application, the BIND2ADDRSEL
call usually follows the SETSOCKOPT call with option IPV6_ADDR_PREFERENCES and precedes any
communication with a remote host.

Chapter 13. CALL instruction application programming interface 399

Result: The stack attempts to select a local IP address according to your application preferences.
However, a successful BIND2ADDRSEL call does not guarantee that all of your source IP address
selection preferences were met.

Guidelines:

• Use the SETSOCKOPT call to set the IPV6_ADDR_PREFERENCES option to indicate your selection
preferences of source IP address before binding the socket and before allowing an implicit bind of the
socket to occur.

Result: If a socket has not been explicitly bound to a local IP address with a BIND or BIND2ADDRSEL
call when a CONNECT, SENDTO, or SENDMSG call is issued, an implicit bind occurs. The stack chooses
the local IP address used for outbound packets.

Requirement: When your application is using stream sockets, and must prevent the stack from sending
any packets whatsoever (such as SYN) to the remote host before it can verify that the local IP address
meets the values specified for the IPV6_ADDR_PREFERENCES option, do not allow the CONNECT call to
implicitly bind the socket to a local IP address. Instead, bind the socket with the BIND2ADDRSEL call
and test the local IP address assigned with the INET6_IS_SRCADDR call. If the assigned local IP
address is satisfactory, you can then use the CONNECT call to establish communication with the remote
host.

• After you successfully issue the BIND2ADDRSEL call, use the GETSOCKNAME call to obtain the local IP
address that is bound to the socket. When the local IP address is obtained, use the INET6_IS_SRCADDR
call to verify that the local IP address meets your address selection criteria.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 74 on page 401 shows an example of BIND2ADDRSEL call instructions.

400 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND2ADDRSEL'.
 01 S PIC 9(4) BINARY.
 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 74. BIND2ADDRSEL call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing BIND2ADDRSEL. The field is left-justified and padded to the right
with blanks.

S
A halfword binary number specifying the socket descriptor for the socket that is to be bound.

Requirement: The socket must be an AF_INET6 socket. The type can be SOCK_STREAM or
SOCK_DGRAM.

NAME
Specifies the IPv6 socket address structure of the remote host that the socket will communicate with.
The IPv6 socket structure must specify the following fields:
FAMILY

A halfword binary field specifying the IPv6 addressing family. This field must be set to the decimal
value 19, indicating AF_INET6.

PORT
A halfword binary field. This field is ignored by BIND2ADDRSEL processing.

Tip: To determine the assigned port number, issue the GETSOCKNAME call after the
BIND2ADDRSEL call completes.

FLOWINFO
A fullword binary field. This field is ignored by BIND2ADDRSEL processing.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address (network byte order) of the remote
host that the socket will communicate with.

Rule: Specify an IPv4 address by using its IPv4-mapped IPv6 format.

SCOPE-ID
A fullword binary field that identifies a set of appropriate interfaces for the scope of the address
that is specified in the IPv6-ADDRESS field. The value 0 indicates that the SCOPE-ID field does not
identify the set of interfaces to be used.

Requirement: The SCOPE-ID value must be nonzero if the address is a link-local address. For all
other address scopes, SCOPE-ID must be set to 0.

Chapter 13. CALL instruction application programming interface 401

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

CLOSE
The CLOSE call performs the following functions:

• The CLOSE call shuts down a socket and frees all resources allocated to it. If the socket refers to an
open TCP connection, the connection is closed.

• The CLOSE call is also issued by a concurrent server after it gives a socket to a child server program.
After issuing the GIVESOCKET and receiving notification that the client child has successfully issued a
TAKESOCKET, the concurrent server issues the close command to complete the passing of ownership.
In high-performance, transaction-based systems the timeout associated with the CLOSE call can cause
performance problems. In such systems you should consider the use of a SHUTDOWN call before you
issue the CLOSE call. See “SHUTDOWN” on page 515 for more information.

Notes:

1. If a stream socket is closed while input or output data is queued, the TCP connection is reset and
data transmission may be incomplete. The SETSOCKOPT call can be used to set a linger condition, in
which TCP/IP will continue to attempt to complete data transmission for a specified period of time
after the CLOSE call is issued. See SO-LINGER in the description of “SETSOCKOPT” on page 499.

2. A concurrent server differs from an iterative server. An iterative server provides services for one
client at a time; a concurrent server receives connection requests from multiple clients and creates
child servers that actually serve the clients. When a child server is created, the concurrent server
obtains a new socket, passes the new socket to the child server, and then dissociates itself from the
connection. The CICS Listener is an example of a concurrent server.

3. After an unsuccessful socket call, a close should be issued and a new socket should be opened. An
attempt to use the same socket with another call results in a nonzero return code.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

402 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 75 on page 403 shows an example of CLOSE call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'CLOSE'.
 01 S PIC 9(4) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S ERRNO RETCODE.

Figure 75. CLOSE call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte field containing CLOSE. Left-justify the field and pad it on the right with blanks.
S

A halfword binary field containing the descriptor of the socket to be closed.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

CONNECT
The CONNECT call is issued by a client to establish a connection between a local socket and a remote
socket.

Stream sockets
For stream sockets, the CONNECT call is issued by a client to establish connection with a server. The call
performs two tasks:

• It completes the binding process for a stream socket if a BIND call has not been previously issued.
• It attempts to make a connection to a remote socket. This connection is necessary before data can be

transferred.

UDP sockets
For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it allows you to send
messages without specifying the destination.

Chapter 13. CALL instruction application programming interface 403

The call sequence issued by the client and server for stream sockets is:

1. The server issues BIND and LISTEN to create a passive open socket.
2. The client issues CONNECT to request the connection.
3. The server accepts the connection on the passive open socket, creating a new connected socket.

The blocking mode of the CONNECT call conditions its operation.

• If the socket is in blocking mode, the CONNECT call blocks the calling program until the connection is
established, or until an error is received.

• If the socket is in nonblocking mode, the return code indicates whether the connection request was
successful.

– A 0 RETCODE indicates that the connection was completed.
– A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates that the connection is not

completed, but since the socket is nonblocking, the CONNECT call returns normally.

The caller must test the completion of the connection setup by calling SELECT and testing for the ability
to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more information, see “SELECT” on
page 483.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 76 on page 405 shows an example of CONNECT call instructions.

404 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'CONNECT'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 76. CONNECT call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte field containing CONNECT. Left-justify the field and pad it on the right with blanks.
S

A halfword binary number specifying the socket descriptor of the socket that is to be used to establish
a connection.

NAME

An IPv4 socket address structure that contains the IPv4 socket address of the target to which the
local, client socket is to be connected.

FAMILY
A halfword binary field specifying the IPv4 addressing family. The value must be decimal 2 for
AF_INET.

PORT
A halfword binary field that is set to the server’s port number in network byte order. For example,
if the port number is 5000 in decimal, it is stored as X'1388' in hex.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 IP address of the server’s host machine in
network byte order. For example, if the IP address is 129.4.5.12 in dotted decimal notation, it
would be represented as X'8104050C' in hex.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is not used.

An IPv6 socket address structure that contains the IPv6 socket address of the target to which the
local, client socket is to be connected.

FAMILY
A halfword binary field specifying the IPv6 addressing family. For TCP/IP the value is decimal 19
for AF_INET6.

Chapter 13. CALL instruction application programming interface 405

PORT
A halfword binary field that is set to the server’s port number in network byte order. For example,
if the port number is 5000 in decimal, it is stored as X'1388' in hex.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address of the server’s host machine in
network byte order. For example, if the IPv6 IP address is 12ab:0:0:cd30:123:4567:89ab:cedf in
colon hex notation, it is set to X'12AB00000000CD300123456789ABCDEF'.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and may be specified for any address types and scopes.
For a link scope IPv6-ADDRESS, SCOPE-ID may specify a link index which identifies a set of
interfaces. For all other address scopes, SCOPE-ID must be set to 0.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

FCNTL
The blocking mode of a socket can either be queried or set to nonblocking using the FNDELAY flag
described in the FCNTL call. You can query or set the FNDELAY flag even though it is not defined in your
program.

See “IOCTL” on page 457 for another way to control a socket’s blocking mode.

Values for commands that are supported by the z/OS UNIX Systems Services fcntl callable service will
also be accepted. See z/OS UNIX System Services Programming: Assembler Callable Services Reference
for more information.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

406 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 77 on page 407 shows an example of FCNTL call instructions.

 WORKING-STORAGE SECTION
 01 SOC-FUNCTION PIC X(16) VALUE IS 'FCNTL'.
 01 S PIC 9(4) BINARY.
 01 COMMAND PIC 9(8) BINARY.
 01 REQARG PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION
 CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND REQARG
 ERRNO RETCODE.

Figure 77. FCNTL call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing FCNTL. The field is left-justified and padded on the right with
blanks.

S
A halfword binary number specifying the socket descriptor for the socket that you want to unblock or
query.

COMMAND
A fullword binary number with the following values:
Value

Description
3

Query the blocking mode of the socket.
4

Set the mode to blocking or nonblocking for the socket.
REQARG

A fullword binary field containing a mask that TCP/IP uses to set the FNDELAY flag.

• If COMMAND is set to 3 ('query') the REQARG field should be set to 0.
• If COMMAND is set to 4 ('set')

– Set REQARG to 4 to turn the FNDELAY flag on. This places the socket in nonblocking mode.
– Set REQARG to 0 to turn the FNDELAY flag off. This places the socket in blocking mode.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:

• If COMMAND was set to 3 (query), a bit string is returned.

Chapter 13. CALL instruction application programming interface 407

– If RETCODE contains X'00000004', the socket is nonblocking. (The FNDELAY flag is on.)
– If RETCODE contains X'00000000', the socket is blocking. (The FNDELAY flag is off.)

• If COMMAND was set to 4 (set), a successful call is indicated by 0 in this field. In both cases, a
RETCODE of -1 indicates an error (check the ERRNO field for the error number).

FREEADDRINFO
The FREEADDRINFO call frees all the address information structures returned by GETADDRINFO in the
RES parameter.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 78 on page 408 shows an example of FREEADDRINFO call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'FREEADDRINFO'.
 01 ADDRINFO PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION ADDRINFO
 ERRNO RETCODE.

Figure 78. FREEADDRINFO call instruction example

Parameter values set by the application
Keyword

Description
SOC-FUNCTION

A 16-byte character field containing FREEADDRINFO. The field is left-justified and padded on the right
with blanks.

ADDRINFO
Input parameter. The address of a set of address information structures returned by the
GETADDRINFO RES argument.

Parameter values returned to the application
Keyword

Description

408 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
–1

Check ERRNO for an error code.

GETADDRINFO
The GETADDRINFO call translates either the name of a service location (for example, a host name), a
service name, or both, and returns a set of socket addresses and associated information to be used in
creating a socket with which to address the specified service or sending a datagram to the specified
service.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 79 on page 410 shows an example of GETADDRINFO call instructions.

Chapter 13. CALL instruction application programming interface 409

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETADDRINFO'.
 01 NODE PIC X(255).
 01 NODELEN PIC 9(8) BINARY.
 01 SERVICE PIC X(32).
 01 SERVLEN PIC 9(8) BINARY.
 01 AI-PASSIVE PIC 9(8) BINARY VALUE 1.
 01 AI-CANONNAMEOK PIC 9(8) BINARY VALUE 2.
 01 AI-NUMERICHOST PIC 9(8) BINARY VALUE 4.
 01 AI-NUMERICSERV PIC 9(8) BINARY VALUE 8.
 01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
 01 AI-ALL PIC 9(8) BINARY VALUE 32.
 01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.
 01 AI-EXTFLAGS PIC 9(8) BINARY VALUE 128.
 01 HINTS USAGE IS POINTER.
 01 RES USAGE IS POINTER.
 01 CANNLEN PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 LINKAGE SECTION.
 01 HINTS-ADDRINFO.
 03 FLAGS PIC 9(8) BINARY.
 03 AF PIC 9(8) BINARY.
 03 SOCTYPE PIC 9(8) BINARY.
 03 PROTO PIC 9(8) BINARY.
 03 FILLER PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 FILLER PIC X(4).
 03 FILLER PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 FILLER PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 FILLER PIC 9(8) BINARY.
 03 EFLAGS PIC 9(8) BINARY.
 01 RES-ADDRINFO.
 03 FLAGS PIC 9(8) BINARY.
 03 AF PIC 9(8) BINARY.
 03 SOCTYPE PIC 9(8) BINARY.
 03 PROTO PIC 9(8) BINARY.
 03 NAMELEN PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 FILLER PIC X(4).
 03 CANONNAME USAGE IS POINTER.
 03 FILLER PIC X(4).
 03 NAME USAGE IS POINTER.
 03 FILLER PIC X(4).
 03 NEXT USAGE IS POINTER.
 03 FILLER PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 MOVE 'www.hostname.com' TO NODE.
 MOVE 16 TO HOSTLEN.
 MOVE 'TELNET' TO SERVICE.
 MOVE 6 TO SERVLEN.
 SET HINTS TO ADDRESS OF HINTS-ADDRINFO.
 CALL 'EZASOKET' USING SOC-FUNCTION NODE NODELEN SERVICE SERVLEN HINTS
 RES CANNLEN ERRNO RETCODE.

Figure 79. GETADDRINFO call instruction example

Parameter values set by the application
Keyword

Description
SOC-FUNCTION

A 16-byte character field containing GETADDRINFO. The field is left-justified and padded on the right
with blanks.

NODE
An input parameter. Storage up to 255 bytes long that contains the host name being queried. If the
AI-NUMERICHOST flag is specified in the storage pointed to by the HINTS field, then NODE should
contain the queried host's IP address in presentation form. This is an optional field but if specified you

410 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

must also code NODELEN. The NODE name being queried will consist of up to NODELEN or up to the
first binary 0.

You can append scope information to the host name, using the format node%scope information. The
combined information must be 255 bytes or less. For more information, see z/OS Communications
Server: IPv6 Network and Application Design Guide.

NODELEN
An input parameter. A fullword binary field set to the length of the host name specified in the NODE
field and should not include extraneous blanks. This is an optional field but if specified you must also
code NODE.

SERVICE
An input parameter. Storage up to 32 bytes long that contains the service name being queried. If the
AI-NUMERICSERV flag is specified in the storage pointed to by the HINTS field, then SERVICE should
contain the queried port number in presentation form. This is an optional field but if specified you
must also code SERVLEN. The SERVICE name being queried will consist of up to SERVLEN or up to the
first binary 0.

SERVLEN
An input parameter. A fullword binary field set to the length of the service name specified in the
SERVICE field and should not include extraneous blanks. This is an optional field but if specified you
must also code SERVICE.

HINTS
An input parameter. If the HINTS argument is specified, it contains the address of an addrinfo
structure containing input values that may direct the operation by providing options and limiting the
returned information to a specific socket type, address family, or protocol. If the HINTS argument is
not specified, then the information returned will be as if it referred to a structure containing the value
0 for the FLAGS, SOCTYPE and PROTO fields, and AF_UNSPEC for the AF field. Include the EZBREHST
resolver macro so that your assembler program will contain the assembler mappings for the
ADDR_INFO structure. The EZBREHST assembler macro is stored in the SYS1.MACLIB library. The
macro defines the resolver hostent (host entry), address information (addrinfo) mappings, and
services return codes. Copy definitions from the EZACOBOL sample module to your COBOL program
for mapping the ADDRINFO structure. The EZACOBOL sample module is stored in the hlq.SEZAINST
library. Copy definitions from the CBLOCK sample module to your PL/I program for mapping the
ADDRINFO structure. The CBLOCK sample module is stored in hlq.SEZAINST library.

This is an optional field.

The address information structure has the following fields:
Field

Description
FLAGS

A fullword binary field. Must have the value of 0 or the bitwise OR of one or more of the following
values:
AI-PASSIVE (X'00000001') or the decimal value 1.

• Specifies how to specify the NAME pointed to by the returned RES.
• If this flag is specified, then the returned address information will be suitable for use in

binding a socket for accepting incoming connections for the specified service (for example,
the BIND call). In this case, if the NODE argument is not specified, then the IP address
portion of the socket address structure pointed to by the returned RES will be set to
INADDR_ANY for an IPv4 address or to the IPv6 unspecified address (in6addr_any) for an
IPv6 address.

• If this flag is not set, the returned address information will be suitable for the CONNECT call
(for a connection-mode protocol) or for a CONNECT, SENDTO, or SENDMSG call (for a
connectionless protocol). In this case, if the NODE argument is not specified, then the IP
address portion of the socket address structure pointed to by the returned RES will be set to

Chapter 13. CALL instruction application programming interface 411

the default loopback address for an IPv4 address (127.0.0.1) or the default loopback
address for an IPv6 address (::1).

• This flag is ignored if the NODE argument is specified.

AI-CANONNAMEOK (X'00000002') or the decimal value 2.

• If this flag is specified and the NODE argument is specified, then the GETADDRINFO call
attempts to determine the canonical name corresponding to the NODE argument.

AI-NUMERICHOST (X'00000004') or the decimal value 4.

• If this flag is specified then the NODE argument must be a numeric host address in
presentation form. Otherwise, an error of host not found [EAI_NONAME] is returned.

AI-NUMERICSERV (X'00000008') or the decimal value 8.

• If this flag is specified, the SERVICE argument must be a numeric port in presentation form.
Otherwise, an error [EAI_NONAME] is returned.

AI-V4MAPPED (X'00000010') or the decimal value 16.

• If this flag is specified along with the AF field with the value of AF_INET6 or a value of
AF_UNSPEC when IPv6 is supported, the caller will accept IPv4-mapped IPv6 addresses.

– If the AF field is AF_INET6, a query for IPv4 addresses is made if the AI-ALL flag is
specified or if no IPv6 addresses are found. Any IPv4 addresses that are found are
returned as IPv4-mapped IPv6 addresses.

– If the AF field is AF_UNSPEC, queries are made for both IPv6 and IPv4 addresses. If IPv4
addresses are found and IPv6 is supported, the IPv4 addresses are returned as IPv4-
mapped IPv6 addresses.

• Otherwise, this flag is ignored.

AI-ALL (X'00000020') or the decimal value 32.

• When the AF field has a value of AF_INET6 and AI-ALL is set, the AI-V4MAPPED flag must
also be set to indicate that the caller will accept all addresses: IPv6 and IPv4-mapped IPv6
addresses.

• If the AF field has a value of AF_UNSPEC, AI-ALL is accepted, but has no impact on the
processing. No matter if AI-ALL is specified or not, the caller accepts both IPv6 and IPv4
addresses. A query is first made for IPv6 addresses and if successful, the IPv6 addresses
are returned. Another query is then made for IPv4 addresses:

– If the AI-V4MAPPED flag is also specified and the system supports IPv6, the IPv4
addresses are returned as IPv4-mapped IPv6 addresses.

– If the AI-V4MAPPED flag is not specified or the system does not support IPv6, the IPv4
addresses are returned as IPv4 addresses.

• Otherwise, this flag is ignored.

AI-ADDRCONFIG (X'00000040') or the decimal value 64.
If this flag is specified, then a query on the name in NODE will occur if the Resolver determines
whether either of the following conditions is true:

• If the system is IPv6 enabled and has at least one IPv6 interface, then the Resolver will
make a query for IPv6 (AAAA or A6 DNS) records.

• If the system is IPv4 enabled and has at least one IPv4 interface, then the Resolver will
make a query for IPv4 (A DNS) records.

The loopback address is not considered in this case as a valid interface.

AI-EXTFLAGS (X'00000080') or the decimal value 128.
Specifies this flag to request the extended form of the getaddrinfo function. The extended
form allows additional hints to be passed to the resolver for determining the order of
destination addresses that are returned. If this flag is specified, the EFLAGS field is required.

412 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Tip: To perform the binary OR'ing of the flags above in a COBOL program, simply add the
necessary COBOL statements as in the example below. Note that the value of the FLAGS field after
the COBOL ADD is a decimal 80 or a X'00000050', which is the sum of OR'ing AI-V4MAPPED and
AI-ADDRCONFIG or X'00000010' and X'00000040':

 01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
 01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.

 ADD AI-V4MAPPED TO FLAGS.
 ADD AI-ADDRCONFG TO FLAGS.

AF
A fullword binary field. Used to limit the returned information to a specific address family. The
value of AF_UNSPEC means that the caller will accept any protocol family. The value of a decimal 0
indicates AF_UNSPEC. The value of a decimal 2 indicates AF_INET, and the value of a decimal 19
indicates AF_INET6.

SOCTYPE

A fullword binary field. Used to limit the returned information to a specific socket type. A value of 0
means that the caller will accept any socket type. If a specific socket type is not given (for
example, a value of 0) then information on all supported socket types will be returned.

The following table shows the acceptable socket types:

Type name Decimal value Description

SOCK_STREAM 1 for stream socket

SOCK_DGRAM 2 for datagram socket

SOCK_RAW 3 for raw-protocol interface

Anything else will fail with return code EAI_SOCTYPE. Note that although SOCK_RAW will be
accepted, it will be valid only when SERVICE is numeric (for example, SERVICE=23). A lookup for a
SERVICE name will never occur in the appropriate services file (for example, hlq.ETC.SERVICES)
using any protocol value other than SOCK_STREAM or SOCK_DGRAM.

If PROTO is not 0 and SOCTYPE is 0, then the only acceptable input values for PROTO are
IPPROTO_TCP and IPPROTO_UDP. Otherwise, the GETADDRINFO call will be failed with return
code of EAI_BADFLAGS.

If SOCTYPE and PROTO are both specified as 0, then GETADDRINFO will proceed as follows:

• If SERVICE is null, or if SERVICE is numeric, then any returned addrinfos will default to a
specification of SOCTYPE as SOCK_STREAM.

• If SERVICE is specified as a service name (for example, SERVICE=FTP), the GETADDRINFO call
will search the appropriate services file (for example, hlq.ETC.SERVICES) twice. The first search
will use SOCK_STREAM as the protocol, and the second search will use SOCK_DGRAM as the
protocol. No default socket type is provided in this case.

If both SOCTYPE and PROTO are specified as nonzero, then they should be compatible, regardless
of the value specified by SERVICE. In this context, compatible can have one of the following
meanings:

• SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
• SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
• SOCTYPE is specified as SOCK_RAW, in which case PROTO can be anything

PROTO
A fullword binary field. Used to limit the returned information to a specific protocol. A value of 0
means that the caller will accept any protocol.

The following table shows the acceptable protocols:

Chapter 13. CALL instruction application programming interface 413

Protocol name Decimal value Description

IPPROTO_TCP 6 TCP

IPPROTO_UDP 17 user datagram

If SOCTYPE is 0 and PROTO is nonzero, the only acceptable input values for PROTO are
IPPROTO_TCP and IPPROTO_UDP. Otherwise, the GETADDRINFO call will be failed with return
code of EAI_BADFLAGS.

If PROTO and SOCTYPE are both specified as 0, then GETADDRINFO will proceed as follows:

• If SERVICE is null, or if SERVICE is numeric, then any returned addrinfos will default to a
specification of SOCTYPE as SOCK_STREAM.

• If SERVICE is specified as a service name (for example, SERVICE=FTP), the GETADDRINFO will
search the appropriate services file (for example, hlq.ETC.SERVICE) twice. The first search will
use SOCK_STREAM as the protocol, and the second search will use SOCK_DGRAM as the
protocol. No default socket type is provided in this case.

If both PROTO and SOCTYPE are specified as nonzero, they should be compatible, regardless of
the value specified by SERVICE. In this context, compatible can have one of the following
meanings:

• SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
• SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
• SOCTYPE=SOCK_RAW, in which case PROTO can be anything

If the lookup for the value specified in SERVICE fails [for example, the service name does not
appear in an appropriate service file (such as, hlq.ETC.SERVICES) using the input protocol], then
the GETADDRINFO call will be failed with return code of EAI_SERVICE.

NAMELEN
A fullword binary field followed by 8 padding bytes. On input, this field must be 0.

CANONNAME
A fullword binary field followed by 4 padding bytes. On input, this field must be 0.

NAME
A fullword binary field followed by 4 padding bytes. On input, this field must be 0.

NEXT
A fullword binary field. On input, this field must be 0.

EFLAGS
A fullword binary field that specifies the source IPv6 address selection preferences. This field is
required if the value AI-EXTFLAGS is specified in the FLAGS field.

This field must contain the value 0 or the bitwise OR of one or more of the following values:
IPV6_PREFER_SRC_HOME (X'00000001') or the decimal value 1

Indicates that home source IPv6 addresses are preferred over care-of source IPv6 addresses.
IPV6_PREFER_SRC_COA (X'00000002') or the decimal value 2

Indicates that care-of source IPv6 addresses are preferred over home source IPv6 addresses.
IPV6_PREFER_SRC_TMP (X'00000004') or the decimal value 4

Indicates that temporary source IPv6 addresses are preferred over public source IPv6 addresses.
IPV6_PREFER_SRC_PUBLIC (X'00000008') or the decimal value 8

Indicates that public source IPv6 addresses are preferred over temporary source IPv6 addresses.
IPV6_PREFER_SRC_CGA (X'00000010') or the decimal value 16

Indicates that cryptographically generated source IPv6 addresses are preferred over non-
cryptographically generated source IPv6 addresses.

414 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IPV6_PREFER_SRC_NONCGA (X'00000020') or the decimal value 32
Indicates that non-cryptographically generated source IPv6 addresses are preferred over
cryptographically generated source IPv6 addresses.

Guidelines:

• If contradictory EFLAGS (for example, IPV6_PREFER_SRC_TMP and IPV6_PREFER_SRC_PUBLIC) or
invalid EFLAGS (for example, X'00000040' or the decimal value 64) are specified, then the
GETADDRINFO call fails with RETCODE -1 and ERRNO EAI_BADEXTFLAGS (decimal value 11).

• The COBOL constants for EFLAGS use hyphens instead of underscores.

RES

Initially a fullword binary field. On a successful return, this field contains a pointer to a chain of one or
more address information structures. The structures are allocated in the key of the calling application.
The structures that are returned on a GETADDRINFO call are serially reusable storage for the z/OS
UNIX process. They can be used or referenced between process threads, but should not be used or
referenced between processes. When you finish using the structures, explicitly release their storage
by specifying the returned pointer on a FREEADDRINFO call. Include the EZBREHST resolver macro so
that your assembler program contains the assembler mappings for the ADDR_INFO structure. The
EZBREHST assembler macro is stored in the SYS1.MACLIB library. Copy definitions from the
EZACOBOL sample module to your COBOL program for mapping the ADDRINFO structure. The
EZACOBOL sample module is stored in the hlq.SEZAINST library. Copy definitions from the CBLOCK
sample module to your PL/I program for mapping the ADDRINFO structure. The CBLOCK sample
module is stored in the hlq.SEZAINST library.

The address information structure contains the following fields:

Field
Description

FLAGS
A fullword binary field that is not used as output.

AF
A fullword binary field. The value returned in this field may be used as the AF argument on the
SOCKET call to create a socket suitable for use with the returned address NAME.

SOCTYPE
A fullword binary field. The value returned in this field may be used as the SOCTYPE argument on
the SOCKET call to create a socket suitable for use with the returned address NAME.

PROTO
A fullword binary field. The value returned in this field may be used as the PROTO argument on the
SOCKET call to create a socket suitable for use with the returned address ADDR.

NAMELEN
A fullword binary field followed by 8 padding bytes. The length of the NAME socket address
structure.

CANONNAME
A fullword binary field followed by 4 padding bytes. The canonical name for the value specified by
NODE. If the NODE argument is specified, and if the AI-CANONNAMEOK flag was specified by the
HINTS argument, then the CANONNAME field in the first returned address information structure
will contain the address of storage containing the canonical name corresponding to the input
NODE argument. If the canonical name is not available, then the CANONNAME field will refer to
the NODE argument or a string with the same contents. The CANNLEN field contains the length of
the returned canonical name.

NAME
A fullword binary field followed by 4 padding bytes. The address of the returned socket address
structure. The value returned in this field can be used as the arguments for the CONNECT, BIND,
or BIND2ADDRSEL call with such a socket, according to the AI-PASSIVE flag.

Chapter 13. CALL instruction application programming interface 415

NEXT
A fullword binary field. Contains the address of the next address information structure on the list,
or 0's if it is the last structure on the list.

EFLAGS
A fullword binary field that is not used as output.

CANNLEN
Initially an input parameter. A fullword binary field used to contain the length of the canonical name
returned by the RES CANONNAME field. This is an optional field.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

The ADDRINFO structure uses indirect addressing to return a variable number of NAMES. If you are
coding in PL/I or assembler language, this structure can be processed in a relatively straight-forward
manner. If you are coding in COBOL, this structure may be difficult to interpret. You can use the
subroutine EZACIC09 to simplify interpretation of the information returned by the GETADDRINFO calls.

GETCLIENTID
GETCLIENTID call returns the identifier by which the calling application is known to the TCP/IP address
space in the calling program. The CLIENT parameter is used in the GIVESOCKET and TAKESOCKET calls.
See “GIVESOCKET” on page 450 for a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server, the identifier of the
caller (not necessarily the client) is returned.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

416 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Figure 80 on page 417 shows an example of GETCLIENTID call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETCLIENTID'.
 01 CLIENT.
 03 DOMAIN PIC 9(8) BINARY.
 03 NAME PIC X(8).
 03 TASK PIC X(8).
 03 RESERVED PIC X(20).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION CLIENT ERRNO RETCODE.

Figure 80. GETCLIENTID call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETCLIENTID. The field is left-justified and padded to the right
with blanks.

Parameter values returned to the application
CLIENT

A client-ID structure that describes the application that issued the call.
DOMAIN

This is a fullword binary number specifying the domain of the client. On input this is an optional
parameter for AF_INET, and required parameter for AF_INET6 to specify the domain of the client.
For TCP/IP the value is a decimal 2, indicating AF_INET, or a decimal 19, indicating AF_INET6. On
output, this is the returned domain of the client.

NAME
An 8-byte character field set to the caller’s address space name.

TASK
An 8-byte field set to the task identifier of the caller.

RESERVED
Specifies 20-byte character reserved field. This field is required, but not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETHOSTBYADDR
The GETHOSTBYADDR call returns the domain name and alias name of a host whose IPv4 IP address is
specified in the call. A given TCP/IP host can have multiple alias names and multiple host IPv4 IP
addresses. The address resolution attempted depends on how the resolver is configured and if any local

Chapter 13. CALL instruction application programming interface 417

host tables exist. See z/OS Communications Server: IP Configuration Guide for information about
configuring the resolver and how local host tables can be used.

The following requirements apply to this call:

Authorization: Supervisor state or problem state. The PSW key must match the key
in which the MVS application task was attached

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 81 on page 418 shows an example of GETHOSTBYADDR call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYADDR'.
 01 HOSTADDR PIC 9(8) BINARY.
 01 HOSTENT PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

Figure 81. GETHOSTBYADDR call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTBYADDR. The field is left-justified and padded on the
right with blanks.

HOSTADDR
A fullword binary field set to the IP address (specified in network byte order) of the host whose name
is being sought. See Appendix B, “Socket call error return codes,” on page 745 for information about
ERRNO return codes.

Parameter values returned to the application
HOSTENT

A fullword containing the address of the HOSTENT structure.
RETCODE

A fullword binary field that returns one of the following values:
Value

Description

418 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

0
Successful call.

-1
Check ERRNO for an error code.

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 82 on page 419.

Figure 82. HOSTENT structure that is returned by the GETHOSTBYADDR call

GETHOSTBYADDR returns the HOSTENT structure shown in figure Figure 82 on page 419. The HOSTENT
structure is a tasks's serially reusable storage area. It should not be used or referenced between MVS
tasks. The storage is freed when the task terminates. The assembler mapping of the structure is defined
in macro EZBREHST, which is installed in the data set specified on your SMP/E DDDEF for MACLIB. The
EZBREHST assembler macro is stored in the SYS1.MACLIB library. The macro defines the resolver hostent
(host entry), address information (addrinfo) mappings, and services return codes. This structure contains:

• The address of the host name that is returned by the call. The name length is variable and is ended by
X'00'.

• The address of a list of addresses that point to the alias names returned by the call. This list is ended by
the pointer X'00000000'. Each alias name is a variable length field ended by X'00'.

• The value returned in the FAMILY field is always 2 for AF_INET.
• The length of the host IP address returned in the HOSTADDR_LEN field is always 4 for AF_INET.
• The address of a list of addresses that point to the host IP addresses returned by the call. The list is

ended by the pointer X'00000000'. If the call cannot be resolved, the HOSTENT structure contains the
ERRNO 10214.

Chapter 13. CALL instruction application programming interface 419

The HOSTENT structure uses indirect addressing to return a variable number of alias names and IP
addresses. If you are coding in PL/I or assembler language, this structure can be processed in a relatively
straight-forward manner. If you are coding in COBOL, this structure may be difficult to interpret. You can
use the subroutine EZACIC08 to simplify interpretation of the information returned by the
GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about EZACIC08, see “EZACIC08 ”
on page 529.

GETHOSTBYNAME
The GETHOSTBYNAME call returns the alias name and the IPv4 IP address of a host whose domain name
is specified in the call. A given TCP/IP host can have multiple alias names and multiple host IPv4 IP
addresses.

The name resolution attempted depends on how the resolver is configured and if any local host tables
exist. See z/OS Communications Server: IP Configuration Guide for information about configuring the
resolver and how local host tables can be used.

The following requirements apply to this call:

Authorization: Supervisor state or problem state. The PSW key must match the key
in which the MVS application task was attached.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 83 on page 420 shows an example of GETHOSTBYNAME call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYNAME'.
 01 NAMELEN PIC 9(8) BINARY.
 01 NAME PIC X(255).
 01 HOSTENT PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME
 HOSTENT RETCODE.

Figure 83. GETHOSTBYNAME call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTBYNAME. The field is left-justified and padded on the
right with blanks.

420 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

NAMELEN
A value set to the length of the host name. The maximum length is 255.

NAME
A character string, up to 255 characters, set to a host name. Any trailing blanks will be removed from
the specified name prior to trying to resolve it to an IP address. This call returns the address of the
HOSTENT structure for this name.

Parameter values returned to the application
HOSTENT

A fullword binary field that contains the address of the HOSTENT structure.
RETCODE

A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

An error occurred.

Figure 84. HOSTENT structure returned by the GETHOSTYBYNAME call

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 84 on page 421. The HOSTENT
structure is a tasks's serially reusable storage area. It should not be used or referenced between MVS

Chapter 13. CALL instruction application programming interface 421

tasks. The storage is freed when the task terminates. The assembler mapping of the structure is defined
in macro EZBREHST, which is installed in the data set specified on your SMP/E DDDEF for MACLIB. The
EZBREHST assembler macro is stored in the SYS1.MACLIB library. The macro defines the resolver hostent
(host entry), address information (addrinfo) mappings, and services return codes. This structure contains:

• The address of the host name that is returned by the call. The name length is variable and is ended by
X'00'.

• The address of a list of addresses that point to the alias names returned by the call. This list is ended by
the pointer X'00000000'. Each alias name is a variable length field ended by X'00'.

• The value returned in the FAMILY field is always 2 for AF_INET.
• The length of the host IP address returned in the HOSTADDR_LEN field is always 4 for AF_INET.
• The address of a list of addresses that point to the host IP addresses returned by the call. The list is

ended by the pointer X'00000000'. If the call cannot be resolved, the HOSTENT structure contains the
ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of alias names and IP
addresses. If you are coding in PL/I or assembler language, this structure can be processed in a relatively
straight-forward manner. If you are coding in COBOL, this structure may be difficult to interpret. You can
use the subroutine EZACIC08 to simplify interpretation of the information returned by the
GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about EZACIC08, see “EZACIC08 ”
on page 529.

GETHOSTID
The GETHOSTID call returns the 32-bit IP address for the current host.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 85 on page 422 shows an example of GETHOSTID call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTID'.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION RETCODE.

Figure 85. GETHOSTID call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

422 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTID. The field is left-justified and padded on the right
with blanks.

RETCODE
Returns a fullword binary field containing the 32-bit IP address of the host. There is no ERRNO
parameter for this call.

GETHOSTNAME
The GETHOSTNAME call returns the domain name of the local host.

Note: The host name returned is the host name the TCPIP stack learned at startup from the TCPIP.DATA
file that was found.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 86 on page 423 shows an example of GETHOSTNAME call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTNAME'.
 01 NAMELEN PIC 9(8) BINARY.
 01 NAME PIC X(24).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME
 ERRNO RETCODE.

Figure 86. GETHOSTNAME call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTNAME. The field is left-justified and padded on the right
with blanks.

NAMELEN
A fullword binary field set to the length of the NAME field. The minimum length of the NAME field is 1
character. The maximum length of the NAME field is 255 characters.

Chapter 13. CALL instruction application programming interface 423

Parameter values returned to the application
NAME

Indicates the receiving field for the host name. If the host name is shorter than the NAMELEN value,
the NAME field is filled with binary zeros after the host name. If the host name is longer than the
NAMELEN value, the name is truncated.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETIBMOPT
The GETIBMOPT call returns the number of TCP/IP images installed on a given MVS system and their
status, versions, and names. With this information, the caller can dynamically choose the TCP/IP image
with which to connect by using the INITAPI call. The GETIBMOPT call is optional. If you do not use the
GETIBMOPT call, follow the standard method to determine the connecting TCP/IP image:

• Connect to the TCP/IP specified by TCPIPJOBNAME in the active TCPIP.DATA file.
• Locate TCPIP.DATA using the search order described in the z/OS Communications Server: IP
Configuration Reference.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 87 on page 425 shows an example of GETIBMOPT call instructions.

424 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETIBMOPT'.
 01 COMMAND PIC 9(8) BINARY VALUE IS 1.
 01 BUF.
 03 NUM-IMAGES PIC 9(8) COMP.
 03 TCP-IMAGE OCCURS 8 TIMES.
 05 TCP-IMAGE-STATUS PIC 9(4) BINARY.
 05 TCP-IMAGE-VERSION PIC 9(4) BINARY.
 05 TCP-IMAGE-NAME PIC X(8)
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL 'EZASOKET' USING SOC-FUNCTION COMMAND BUF ERRNO RETCODE.

Figure 87. GETIBMOPT call instruction example

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETIBMOPT. The field is left-justified and padded on the right
with blanks.

COMMAND
A value or the address of a fullword binary number specifying the command to be processed. The only
valid value is 1.

Parameter values returned to the application
BUF

A 100-byte buffer into which each active TCP/IP image status, version, and name are placed.

On successful return, these buffer entries contain the status, names, and versions of up to eight active
TCP/IP images. The following layout shows the BUF field upon completion of the call.

The NUM_IMAGES field indicates how many entries of TCP_IMAGE are included in the total BUF field. If
the NUM_IMAGES returned is 0, there are no TCP/IP images present.

The status field can have a combination of the following information:
Status field

Meaning
X'8xxx'

Active
X'4xxx'

Terminating
X'2xxx'

Down
X'1xxx'

Stopped or stopping

Note: In the above status fields, xxx is reserved for IBM use and can contain any value.

When the status field is returned with a combination of Down and Stopped, TCP/IP abended. Stopped,
when returned alone, indicates that TCP/IP was stopped.

The following table shows the examples that are returned on version field:

Version Field

TCP/IP z/OS Communications Server V1R13 X'061D'

TCP/IP z/OS Communications Server V2R1 X'0621'

Chapter 13. CALL instruction application programming interface 425

The name field is the PROC name, left-justified, and padded with blanks.

NUM_IMAGES

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

Status

(2 bytes)

Version

(2 bytes)

Name

(8 bytes)

(4 bytes)

Figure 88. Example of name field

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field with the following values:
Value

Description
-1

Call returned error. See ERRNO field.
0

Successful call.

GETNAMEINFO
The GETNAMEINFO call returns the node name and service location of a socket address that is specified
in the call. On successful completion, GETNAMEINFO returns the node and service named, if requested,
in the buffers provided.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

426 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETNAMEINFO'.
 01 NAMELEN PIC 9(8) BINARY.
 01 HOST PIC X(255).
 01 HOSTLEN PIC 9(8) BINARY.
 01 SERVICE PIC X(32).
 01 SERVLEN PIC 9(8) BINARY.
 01 FLAGS PIC 9(8) BINARY VALUE 0.
 01 NI-NOFQDN PIC 9(8) BINARY VALUE 1.
 01 NI-NUMERICHOST PIC 9(8) BINARY VALUE 2.
 01 NI-NAMEREQD PIC 9(8) BINARY VALUE 4.
 01 NI-NUMERICSERVER PIC 9(8) BINARY VALUE 8.
 01 NI-DGRAM PIC 9(8) BINARY VALUE 16.
 01 NI-NUMERICSCOPE PIC 9(8) BINARY VALUE 32.

 * IPv4 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 MOVE 28 TO NAMELEN.
 MOVE 255 TO HOSTLEN.
 MOVE 32 TO SERVLEN.
 MOVE NI-NAMEREQD TO FLAGS.
 CALL 'EZASOKET' USING SOC-FUNCTION NAME NAMELEN HOST
 HOSTLEN SERVICE SERVLEN FLAGS ERRNO RETCODE.

Figure 89. GETNAMEINFO call instruction example

Parameter values set by the application
Keyword

Description
SOC-FUNCTION

A 16-byte character field containing GETNAMEINFO. The field is left-justified and padded on the right
with blanks.

NAME

An input parameter. A socket address structure to be translated which has the following fields:

The IPv4 socket address structure must specify the following fields:

Field
Description

Chapter 13. CALL instruction application programming interface 427

FAMILY
A halfword binary number specifying the IPv4 addressing family. For TCP/IP the value is a decimal
2, indicating AF_INET.

PORT
A halfword binary number specifying the port number.

IP-ADDRESS
A fullword binary number specifying the 32-bit IPv4 IP address.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure specifies the following fields:

Field
Description

FAMILY
A halfword binary field specifying the IPv6 addressing family. For TCP/IP the value is a decimal 19,
indicating AF_INET6.

PORT
A halfword binary number specifying the port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16-byte binary field specifying the 128-bit IPv6 IP address, in network byte order.

SCOPE-ID
A fullword binary field that identifies a set of interfaces as appropriate for the scope of the address
carried in the IPv6-ADDRESS field. For a link-local scope IPv6-ADDRESS, SCOPE-ID contains the
interface index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined and is
ignored by the resolver.

NAMELEN
An input parameter. A fullword binary field. The length of the socket address structure pointed to by
the NAME argument.

HOST
On input, storage capable of holding the returned resolved host name, which may be up to 255 bytes
long, for the input socket address. If inadequate storage is specified to contain the resolved host
name, then the resolver will return the host name up to the storage specified and truncation may
occur. If the host's name cannot be located, the numeric form of the host's address is returned
instead of its name. However, if the NI_NAMEREQD option is specified and no host name is located
then an error is returned. This is an optional field, but if you specify it, you also must code HOSTLEN.
One or both of the following groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.

If the IPv6-ADDRESS value is a link-local address, and the SCOPE-ID interface index is nonzero, scope
information is appended to the resolved host name using the format host%scope information. The
scope information can be either the numeric form of the SCOPE-ID interface index or the interface
name associated with the SCOPE-ID interface index. Use the NI_NUMERICSCOPE option to select
which form should be returned. The combined host name and scope information will still be at most
255 bytes long. For more information about scope information and GETNAMEINFO processing, see
z/OS Communications Server: IPv6 Network and Application Design Guide.

HOSTLEN
An output parameter. A fullword binary field that contains the length of the host storage used to
contain the returned resolved host name. The HOSTLEN value must be equal to or greater than the

428 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

length of the longest host name, or host name and scope information combination, to be returned.
The GETNAMEINFO call returns the host name, or host name and scope information combination, up
to the length specified by the HOSTLEN value. On output, the HOSTLEN value contains the length of
the returned resolved host name or host name and scope information combination. If HOSTLEN is 0
on input, then the resolved host name is not returned. This is an optional field but if specified you
must also code the HOST value. One or both of the following groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
SERVICE

On input, storage capable of holding the returned resolved service name, which may be up to 32 bytes
long, for the input socket address. If inadequate storage is specified to contain the resolved service
name, then the resolver will return the service name up to the storage specified and truncation may
occur. If the service name cannot be located, or if NI_NUMERICSERV was specified in the FLAGS
operand, then the numeric form of the service address is returned instead of its name. This is an
optional field, but if you specify it, you also must code the SERVLEN value. One or both of the following
groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
SERVLEN

An output parameter. A fullword binary field. The length of the SERVICE storage used to contain the
returned resolved service name. SERVLEN must be equal to or greater than the length of the longest
service name to be returned. GETNAMEINFO will return the service name up to the length specified by
SERVLEN. On output, SERVLEN will contain the length of the returned resolved service name. If
SERVLEN is 0 on input, then the service name information will not be returned. This is an optional
field, but if you specify it, you also must code the SERVICE value. One or both of the following groups
of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
FLAGS

An input parameter. A fullword binary field. This is an optional field. The FLAGS field must contain
either a binary value or decimal value, depending on the programming language used:

Flag name Binary value Decimal value Description

'NI_NOFQDN' X'00000001' 1 Return the NAME portion of the fully qualified
domain name.

'NI_NUMERICHOST' X'00000002' 2 Only return the numeric form of host's
address.

'NI_NAMEREQD' X'00000004' 4 Return an error if the host's name cannot be
located.

'NI_NUMERICSERV' X'00000008' 8 Only return the numeric form of the service
address.

'NI_DGRAM' X'00000010' 16 Indicates that the service is a datagram
service. The default behavior is to assume
that the service is a stream service.

'NI_NUMERICSCOPE' X'00000020' 32 Only return the numeric form of the scope
information, when applicable

Chapter 13. CALL instruction application programming interface 429

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local socket is connected.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 90 on page 431 shows an example of GETPEERNAME call instructions.

430 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETPEERNAME'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 90. GETPEERNAME call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETPEERNAME. The field is left-justified and padded on the right
with blanks.

S
A halfword binary number set to the socket descriptor of the local socket connected to the remote
peer whose address is required.

Parameter Values Returned to the Application
NAME

An IPv4 socket address structure to contain the peer name. The structure that is returned is the
socket address structure for the remote socket connected to the local socket specified in field S.
FAMILY

A halfword binary field containing the connection peer’s IPv4 addressing family. The call always
returns the value decimal 2, indicating AF_INET.

PORT
A halfword binary field set to the connection peer’s port number.

IP-ADDRESS
A fullword binary field set to the 32-bit IPv4 IP address of the connection peer’s host machine.

RESERVED
Specifies an 8-byte reserved field. This field is required, but not used.

An IPv6 socket address structure to contain the peer name. The structure that is returned is the
socket address structure for the remote socket that is connected to the local socket specified in field
S.
FAMILY

A halfword binary field containing the connection peer’s IPv6 addressing family. The call always
returns the value decimal 19, indicating AF_INET6.

Chapter 13. CALL instruction application programming interface 431

PORT
A halfword binary field set to the connection peer’s port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 IP address of the connection peer's host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETSOCKNAME
The GETSOCKNAME call returns the address currently bound to a specified socket. If the socket is not
currently bound to an address, the call returns with the FAMILY field set, and the rest of the structure set
to 0.

Since a stream socket is not assigned a name until after a successful call to either BIND, CONNECT, or
ACCEPT, the GETSOCKNAME call can be used after an implicit bind to discover which port was assigned to
the socket.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 91 on page 433 shows an example of GETSOCKNAME call instructions.

432 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKNAME'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 91. GETSOCKNAME call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETSOCKNAME. The field is left-justified and padded on the right
with blanks.

S
A halfword binary number set to the descriptor of a local socket whose address is required.

Parameter values returned to the application
NAME

Specifies the IPv4 socket address structure returned by the call.
FAMILY

A halfword binary field containing the IPv4 addressing family. The call always returns the value
decimal 2, indicating AF_INET.

PORT
A halfword binary field set to the port number bound to this socket. If the socket is not bound, 0 is
returned.

IP-ADDRESS
A fullword binary field set to the 32-bit IP address of the local host machine.

RESERVED
Specifies 8 bytes of binary zeros. This field is required but not used.

NAME
Specifies the IPv6 socket address structure returned by the call.
FAMILY

A halfword binary field containing the IPv6 addressing family. The call always returns the value
decimal 19, indicating AF_INET6.

PORT
A halfword binary field set to the port number bound to this socket. If the socket is not bound, 0 is
returned.

Chapter 13. CALL instruction application programming interface 433

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16 byte binary field set to the 128-bit IPv6 IP address in network byte order, of the local host
machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETSOCKOPT
The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

Several options are associated with each socket. These options are described below. You must specify the
option to be queried when you issue the GETSOCKOPT call.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 92 on page 435 shows an example of GETSOCKOPT call instructions.

434 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKOPT'.
 01 S PIC 9(4) BINARY.
 01 OPTNAME PIC 9(8) BINARY.

 01 OPTVAL PIC 9(8) BINARY.
 If OPNAME = SO-LINGER then
 01 OPTVAL PIC X(16).

 01 OPTLEN PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME
 OPTVAL OPTLEN ERRNO RETCODE.

Figure 92. GETSOCKOPT call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETSOCKOPT. The field is left-justified and padded on the right
with blanks.

S
A halfword binary number specifying the socket descriptor for the socket requiring options.

OPTNAME
Set OPTNAME to the required option before you issue GETSOCKOPT. See the following table for a list
of the options and their unique requirements.

See Appendix D, “GETSOCKOPT/SETSOCKOPT command values,” on page 769 for the numeric values
of OPTNAME.

Note: COBOL programs cannot contain field names with the underbar character. Fields representing
the option name should contain dashes instead.

OPTLEN
Input parameter. A fullword binary field containing the length of the data returned in OPTVAL. See the
following table for determining on what to base the value of OPTLEN.

Parameter values returned to the application
OPTVAL

For the GETSOCKOPT API, OPTVAL will be an output parameter. See the following table for a list of
the options and their unique requirements.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

Chapter 13. CALL instruction application programming interface 435

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_ADD_MEMBERSHIP

Use this option to enable an application to
join a multicast group on a specific
interface. An interface has to be specified
with this option. Only applications that
want to receive multicast datagrams need
to join multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a 4-
byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_ADD_SOURCE_MEMBERSHIP

Use this option to enable an application to
join a source multicast group on a specific
interface and a specific source address.
You must specify an interface and a
source address with this option.
Applications that want to receive
multicast datagrams need to join source
multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_BLOCK_SOURCE

Use this option to enable an application to
block multicast packets that have a
source address that matches the given
IPv4 source address. You must specify an
interface and a source address with this
option. The specified multicast group
must have been joined previously.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

436 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_DROP_MEMBERSHIP

Use this option to enable an application to
exit a multicast group or to exit all sources
for a multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a 4-
byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_DROP_SOURCE_MEMBERSHIP

Use this option to enable an application to
exit a source multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the IPv4
interface address used for sending
outbound multicast datagrams from the
socket application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be
transmitted only on one interface at a
time.

A 4-byte binary field containing
an IPv4 interface address.

A 4-byte binary field containing
an IPv4 interface address.

IP_MULTICAST_LOOP

Use this option to control or determine
whether a copy of multicast datagrams is
looped back for multicast datagrams sent
to a group to which the sending host itself
belongs. The default is to loop the
datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will contain a 1.

If disabled, will contain a 0.

Chapter 13. CALL instruction application programming interface 437

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast
datagrams. The default value is '01'x
meaning that multicast is available only to
the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

IP_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given IPv4 multicast group. You must
specify an interface and a source address
with this option.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

438 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_ADDR_PREFERENCES

Use this option to query or set IPv6
address preferences of a socket. The
default source address selection
algorithm considers these preferences
when it selects an IP address that is
appropriate to communicate with a given
destination address.

This is an AF_INET6-only socket option.

Result: These flags are only preferences.
The stack could assign a source IP
address that does not conform to the
IPV6_ADDR_PREFERENCES flags that you
specify.

Guideline: Use the INET6_IS_SRCADDR
function to test whether the source IP
address matches one or more
IPV6_ADDR_PREFERENCES flags.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

Some of these flags are
contradictory. Combining
contradictory flags, such as
IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA,
results in error code EINVAL.

See IPV6_ADDR_PREFERENCES
and Mapping of GAI_HINTS/
GAI_ADDRINFO EFLAGS in
SEZAINST(CBLOCK) for the PL/I
example of the OPTNAME and
flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_ NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

See IPV6_ADDR_
PREFERENCES and Mapping of
GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Chapter 13. CALL instruction application programming interface 439

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_JOIN_GROUP

Use this option to control the reception of
multicast packets and specify that the
socket join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK) for
the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of
multicast packets and specify that the
socket leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK) for
the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: An application must be
APF authorized to enable it to
set the hop limit value above the
system defined hop limit value.
CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of multicast hops.

440 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_MULTICAST_IF

Use this option to set or obtain the index
of the IPv6 interface used for sending
outbound multicast datagrams from the
socket application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine
whether a multicast datagram is looped
back on the outgoing interface by the IP
layer for local delivery when datagrams
are sent to a group to which the sending
host itself belongs. The default is to loop
multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop
limit used for outgoing unicast IPv6
packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: APF authorized
applications are permitted to set
a hop limit that exceeds the
system configured default. CICS
applications cannot execute as
APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of unicast hops.

IPV6_V6ONLY

Use this option to set or determine
whether the socket is restricted to send
and receive only IPv6 packets. The
default is to not restrict the sending and
receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

Chapter 13. CALL instruction application programming interface 441

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_BLOCK_SOURCE

Use this option to enable an application to
block multicast packets that have a
source address that matches the given
source address. You must specify an
interface index and a source address with
this option. The specified multicast group
must have been joined previously.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_JOIN_GROUP

Use this option to enable an application to
join a multicast group on a specific
interface. You must specify an interface
index. Applications that want to receive
multicast datagrams must join multicast
groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_JOIN_SOURCE_GROUP

Use this option to enable an application to
join a source multicast group on a specific
interface and a source address. You must
specify an interface index and the source
address. Applications that want to receive
multicast datagrams only from specific
source addresses need to join source
multicast groups.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

442 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_LEAVE_GROUP

Use this option to enable an application to
exit a multicast group or exit all sources
for a given multicast groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to
exit a source multicast group.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given multicast group. You must specify
an interface index and a source address
with this option.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

Chapter 13. CALL instruction application programming interface 443

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to
ASCII. When SO_ASCII is not set, data is
not translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_BROADCAST

Use this option to set or determine
whether a program can send broadcast
messages over the socket to destinations
that can receive datagram messages. The
default is disabled.

Note: This option has no meaning for
stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the
status of the debug option. The default is
disabled. The debug option controls the
recording of debug information.

Notes:

1. This is a REXX-only socket option.
2. This option has meaning only for

stream sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set,
data is not translated to or from EBCDIC.
This option is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_ERROR

Use this option to request pending errors
on the socket or to check for
asynchronous errors on connected
datagram sockets or for other errors that
are not explicitly returned by one of the
socket calls. The error status is clear
afterwards.

N/A A 4-byte binary field containing
the most recent ERRNO for the
socket.

444 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_KEEPALIVE

Use this option to set or determine
whether the keep alive mechanism
periodically sends a packet on an
otherwise idle connection for a stream
socket.

The default is disabled.

When activated, the keep alive
mechanism periodically sends a packet on
an otherwise idle connection. If the
remote TCP does not respond to the
packet or to retransmissions of the
packet, the connection is terminated with
the error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine
how TCP/IP processes data that has not
been transmitted when a CLOSE is issued
for the socket. The default is disabled.

Notes:

1. This option has meaning only for
stream sockets.

2. If you set a zero linger time, the
connection cannot close in an orderly
manner, but stops, resulting in a RESET
segment being sent to the connection
partner. Also, if the aborting socket is
in nonblocking mode, the close call is
treated as though no linger option had
been set.

When SO_LINGER is set and CLOSE is
called, the calling program is blocked until
the data is successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and
TCP/IP continues to attempt to send data
for a specified time. This usually allows
sufficient time to complete the data
transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP waits only the amount of time
specified in OPTVAL for SO_LINGER.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable
this option. Set LINGER to the
number of seconds that TCP/IP
lingers after the CLOSE is issued.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a 0
indicates disabled. LINGER
indicates the number of seconds
that TCP/IP will try to send data
after the CLOSE is issued.

Chapter 13. CALL instruction application programming interface 445

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_OOBINLINE

Use this option to control or determine
whether out-of-band data is received.

Note: This option has meaning only for
stream sockets.

When this option is set, out-of-band data
is placed in the normal data input queue
as it is received and is available to a RECV
or a RECVFROM even if the OOB flag is not
set in the RECV or the RECVFROM.

When this option is disabled, out-of-band
data is placed in the priority data input
queue as it is received and is available to
a RECV or a RECVFROM only when the
OOB flag is set in the RECV or the
RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

• TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
Socket

• UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
Socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP
receive buffer.

If disabled, contains a 0.

446 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_RCVTIMEO

Use this option to control or determine
the maximum length of time that a
receive-type function can wait before it
completes.

If a receive-type function has blocked for
the maximum length of time that was
specified without receiving data, control is
returned with an errno set to
EWOULDBLOCK. The default value for this
option is 0, which indicates that a receive-
type function does not time out.

When the MSG_WAITALL flag (stream
sockets only) is specified, the timeout
takes precedence. The receive-type
function can return the partial count. See
the explanation of that operation's
MSG_WAITALL flag parameter.

The following receive-type functions are
supported:

• READ
• READV
• RECV
• RECVFROM
• RECVMSG

This option requires a TIMEVAL
structure, which is defined in
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds can be a value in the
range 0 - 2 678 400 (equal to 31
days), and the microseconds can
be a value in the range 0 -
 1 000 000 (equal to 1 second).
Although TIMEVAL value can be
specified using microsecond
granularity, the internal TCP/IP
timers that are used to
implement this function have a
granularity of approximately 100
milliseconds.

This option stores a TIMEVAL
structure that is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2 678 400 (equal
to 31 days). The number of
microseconds value that is
returned is in the range 0 -
 1 000 000.

Chapter 13. CALL instruction application programming interface 447

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_REUSEADDR

Use this option to control or determine
whether local addresses are reused. The
default is disabled. This alters the normal
algorithm used with BIND. The normal
BIND algorithm allows each Internet
address and port combination to be
bound only once. If the address and port
have been already bound, then a
subsequent BIND will fail and result error
will be EADDRINUSE.

When this option is enabled, the following
situations are supported:

• A server can BIND the same port
multiple times as long as every
invocation uses a different local IP
address and the wildcard address
INADDR_ANY is used only one time per
port.

• A server with active client connections
can be restarted and can bind to its port
without having to close all of the client
connections.

• For datagram sockets, multicasting is
supported so multiple bind() calls can
be made to the same class D address
and port number.

• If you require multiple servers to BIND
to the same port and listen on
INADDR_ANY, see the SHAREPORT
option on the PORT statement in
TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
send buffer. The size of the TCP/IP send
buffer is protocol specific and is based on
the following conditions:

• The TCPSENDBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
socket

• The UDPSENDBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP send
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP send
buffer.

If disabled, contains a 0.

448 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_SNDTIMEO

Use this option to control or determine
the maximum length of time that a send-
type function can remain blocked before it
completes.

If a send-type function has blocked for
this length of time, it returns with a partial
count or, if no data is sent, with an errno
set to EWOULDBLOCK. The default value
for this is 0, which indicates that a send-
type function does not time out.

For a SETSOCKOPT, the following send-
type functions are supported:

• SEND
• SENDMSG
• SENDTO
• WRITE
• WRITEV

This option requires a TIMEVAL
structure, which is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds value is in the range 0 -
 2 678 400 (equal to 31 days),
and the microseconds value is in
the range 0 - 1 000 000 (equal
to 1 second). Although the
TIMEVAL value can be specified
using microsecond granularity,
the internal TCP/IP timers that
are used to implement this
function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
SYS1.MACLIB(BPXYRLIM). The
TIMEVAL structure contains the
number of seconds and
microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2 678 400 (equal
to 31 days). The microseconds
value that is returned is in the
range 0 - 1 000 000.

SO_TYPE

Use this option to return the socket type.

N/A A 4-byte binary field indicating
the socket type:

X'1' indicates SOCK_STREAM.

X'2' indicates SOCK_DGRAM.

X'3' indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine
whether a socket-specific timeout value
(in seconds) is to be used in place of a
configuration-specific value whenever
keep alive timing is active for that socket.

When activated, the socket-specified
timer value remains in effect until
respecified by SETSOCKOPT or until the
socket is closed. For more information
about the socket option parameters, see
TCP_KeepAlive socket option inz/OS
Communications Server: IP Programmer's
Guide and Reference.

Tip: The site administrator can enable the
global keep-alive mechanism by
specifying the INTERVAL parameter on
the TCPCONFIG statement in the TCP/IP
stack profile data set, TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to a value in the
range of 1 – 2 147 460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the specific
timer value (in seconds) that is
in effect for the given socket.

If disabled, contains a 0
indicating keep alive timing is
not active.

Chapter 13. CALL instruction application programming interface 449

Table 18. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

TCP_NODELAY

Use this option to set or determine
whether data sent over the socket is
subject to the Nagle algorithm (RFC 896).

Under most circumstances, TCP sends
data when it is presented. When this
option is enabled, TCP will wait to send
small amounts of data until the
acknowledgment for the previous data
sent is received. When this option is
disabled, TCP will send small amounts of
data even before the acknowledgment for
the previous data sent is received.

Note: Use the following format to set
TCP_NODELAY OPTNAME value for
COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP
 VALUE 2147483649.
01 TCP-NODELAY-REDEF REDEFINES
 TCP-NODELAY-VAL.
 05 FILLER PIC 9(6) BINARY.
 05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.

If enabled, contains a 0.

If disabled, contains a 1.

GIVESOCKET
The GIVESOCKET call is used to pass a socket from one process to another.

UNIX-based platforms use a command called FORK to create a new child process that has the same
descriptors as the parent process. You can use this new child process in the same way that you used the
parent process.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in the following sequence:

1. A process issues a GETCLIENTID call to get the job name of its region and its MVS subtask identifier.
This information is used in a GIVESOCKET call.

2. The process issues a GIVESOCKET call to prepare a socket for use by a child process.
3. The child process issues a TAKESOCKET call to get the socket. The socket now belongs to the child

process, and can be used by TCP/IP to communicate with another process.

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE. The child process must use
this new socket descriptor for all calls that use this socket. The socket descriptor that was passed to
the TAKESOCKET call must not be used.

4. After issuing the GIVESOCKET command, the parent process issues a SELECT command that waits for
the child to get the socket.

5. When the child gets the socket, the parent receives an exception condition that releases the SELECT
command.

6. The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

Sockets that have been given, but not taken for a period of four days, will be closed and will no longer be
available for taking. If a select for the socket is outstanding, it will be posted.

450 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 93 on page 451 shows an example of GIVESOCKET call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GIVESOCKET'.
 01 S PIC 9(4) BINARY.
 01 CLIENT.
 03 DOMAIN PIC 9(8) BINARY.
 03 NAME PIC X(8).
 03 TASK PIC X(8).
 03 RESERVED PIC X(20).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

Figure 93. GIVESOCKET call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GIVESOCKET. The field is left-justified and padded on the right
with blanks.

S
A halfword binary number set to the socket descriptor of the socket to be given.

CLIENT
A structure containing the identifier of the application to which the socket should be given.
DOMAIN

A fullword binary number that must be set to decimal 2, indicating AF_INET, or decimal 19
indicating AF_INET6.

Note: A socket given by GIVESOCKET can only be taken by a TAKESOCKET with the same DOMAIN
(AF_INET or AF_INET6).

NAME
Specifies an eight-character field, left-justified, padded to the right with blanks, that can be set to
the name of the MVS address space that will contain the application that is going to take the
socket.

Chapter 13. CALL instruction application programming interface 451

• If the socket-taking application is in the same address space as the socket-giving application (as
in CICS), NAME can be specified. The socket-giving application can determine its own address
space name by issuing the GETCLIENTID call.

• If the socket-taking application is in a different MVS address space (as in IMS), this field should
be set to blanks. When this is done, any MVS address space that requests the socket can have it.

TASK
Specifies an 8-byte field that can be set to blanks, or to the identifier of the socket-taking MVS
subtask. If this field is set to blanks, any subtask in the address space specified in the NAME field
can take the socket.

• As used by IMS and CICS, the field should be set to blanks.
• If TASK identifier is non-blank, the socket-receiving task should already be in execution when

the GIVESOCKET is issued.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

INET6_IS_SRCADDR
The INET6_IS_SRCADDR call verifies whether the input IP address matches an IP address in the node
that conforms to all IPV6_ADDR_PREFERENCES flags specified in the call. You can use this call with IPv6
addresses or with IPv4-mapped IPv6 addresses.

You can use this call to test local IP addresses to verify whether these addresses have the characteristics
that are required by your application.

See RFC 5014 IPv6 Socket API for Source Address Selection for more information about the
INET6_IS_SRCADDR call. See Appendix G, “Related protocol specifications,” on page 781 for information
about accessing RFCs.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

452 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 94 on page 453 shows an example of INET6_IS_SRCADDR call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'INET6_IS_SRCADDR'.
 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 FLAGS PIC 9(8) BINARY
 88 IPV6-PREFER-SRC-HOME PIC 9(8) BINARY VALUE 1.
 88 IPV6-PREFER-SRC-COA PIC 9(8) BINARY VALUE 2.
 88 IPV6-PREFER-SRC-TMP PIC 9(8) BINARY VALUE 4.
 88 IPV6-PREFER-SRC-PUBLIC PIC 9(8) BINARY VALUE 8.
 88 IPV6-PREFER-SRC-CGA PIC 9(8) BINARY VALUE 16.
 88 IPV6-PREFER-SRC-NONCGA PIC 9(8) BINARY VALUE 32.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION NAME FLAGS ERRNO RETCODE.

Figure 94. INET6_IS_SRCADDR call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing INET6_IS_SRCADDR.
NAME

Specifies the AF_INET6 socket address structure for the address that is to be tested.

Requirement: You must specify an AF_INET6 address. You can specify an IPv6 address, or an IPv4-
mapped IPv6 address.

The IPv6 socket address structure specifies the following fields:
FAMILY

A halfword binary field that specifies the IPv6 addressing family. For TCP/IP the value is the
decimal value 19, indicating AF_INET6.

PORT
A halfword binary field. This field is ignored by INET6_IS_SRCADDR processing.

FLOWINFO
A fullword binary field that specifies the traffic class and flow label. This field is ignored by
INET6_IS_SRCADDR processing.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address (network byte order) of the IP
address to be tested.

Rule: Specify an IPv4 address by using its IPv4-mapped IPv6 address format.

Chapter 13. CALL instruction application programming interface 453

SCOPE-ID
A fullword binary field that identifies a set of appropriate interfaces for the scope of the address
that is specified in the IP-ADDRESS field. The value 0 indicates that the SCOPE-ID field does not
identify the set of interfaces to be used.

Requirements:

• If the IP address is a link-local address, this field must be set to a nonzero value.
• If the IP address is not a link-local address, this field must be set to 0.

FLAGS
A fullword binary field that contains one or more valid IPV6_ADDR_PREFERENCES flags.

Flag name Binary value
Decimal
value Description

IPV6_PREFER_SRC_HOME X'00000001' 1 Test whether the input IP
address is a home address.1

IPV6_PREFER_SRC_COA X'00000002' 2 Test whether the input IP
address is a care-of address.2

IPV6_PREFER_SRC_TMP X'00000004' 4 Test whether the input IP
address is a temporary address.

IPV6_PREFER_SRC_PUBLIC X'00000008' 8 Test whether the input IP
address is a public address.

IPV6_PREFER_SRC_CGA X'00000010' 16 Test whether the input IP
address is cryptographically
generated.2

IPV6_PREFER_SRC_NONCGA X'00000020' 32 Test whether the input IP
address is not cryptographically
generated.1

Notes:

1. Any valid IP address that is known to the stack satisfies this flag.
2. z/OS Communications Server does not support this type of address. The call always returns

FALSE if this flag is specified with a valid IP address that is known to the stack.

Tips:

• The SEZAINST(EZACOBOL) and SEZAINST(CBLOCK) samples contain mappings for these flags. For
assembler programs, the flags are defined in the system maclib member BPXYSOCK.

• Some of these flags are contradictory, for example:

– The flag IPV6_PREFER_SRC_HOME contradicts the flag IPV6_PREFER_SRC_COA.
– The flag IPV6_PREFER_SRC_CGA contradicts the flag IPV6_PREFER_SRC_NONCGA.
– The flag IPV6_PREFER_SRC_TMP contradicts the flags IPV6_PREFER_SRC_PUBLIC.

Result: If you specify contradictory flags in the call, the result is FALSE.

Parameter values returned to the application
ERRNO

A fullword binary field. If the RETCODE value is negative, the field contains an error number. See
Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:

454 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Value
Description

0
FALSE

The call was successful and the result is FALSE. The input AF_INET6 address corresponds to an IP
address on the node, but does not conform to one or more IPV6_ADDR_PREFERENCES flags that
are specified in the call.

1
TRUE

The call was successful and the result is TRUE. The input AF_INET6 address corresponds to an IP
address on the node and conforms to all IPV6_ADDR_PREFERENCES flags that are specified in
the call.

-1
Check ERRNO for an error code.

INITAPI
The INITAPI call connects an application to the TCP/IP interface. Almost all sockets programs that are
written in COBOL, PL/I, or assembler language must issue the INITAPI socket command before they issue
other socket commands.

The exceptions to this rule are the following calls, which, when issued first, will generate a default
INITAPI call.

• GETCLIENTID
• GETHOSTID
• GETHOSTNAME
• GETIBMOPT
• SELECT
• SELECTEX
• SOCKET
• TAKESOCKET

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 95 on page 456 shows an example of INITAPI call instructions.

Chapter 13. CALL instruction application programming interface 455

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'INITAPI'.
 01 MAXSOC PIC 9(4) BINARY.
 01 IDENT.
 02 TCPNAME PIC X(8).
 02 ADSNAME PIC X(8).
 01 SUBTASK PIC X(8).
 01 MAXSNO PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC IDENT SUBTASK
 MAXSNO ERRNO RETCODE.

Figure 95. INITAPI call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing INITAPI. The field is left-justified and padded on the right with
blanks.

MAXSOC
A halfword binary field set to the maximum number of sockets this application will ever have open at
one time. The maximum number is 65535 and the minimum number is 50. This value is used to
determine the amount of memory that is allocated for socket control blocks and buffers. If less than
50 are requested, MAXSOC defaults to 50.

IDENT
A structure containing the identities of the TCP/IP address space and the calling program’s address
space. Specify IDENT on the INITAPI call from an address space.
TCPNAME

An 8-byte character field that should be set to the MVS job name of the TCP/IP address space with
which you are connecting.

ADSNAME
An 8-byte character field set to the identity of the calling program's address space. It is the name
of the CICS startup job. For explicit-mode IMS server programs, use the TIMSrvAddrSpc field
passed in the TIM. If ADSNAME is not specified, the system derives a value from the MVS control
block structure.

SUBTASK
Indicates an 8-byte field that contains a unique subtask identifier, which is used to distinguish
between multiple subtasks within a single address space. Use your own job name as part of your
subtask name. This ensures that, if you issue more than one INITAPI command from the same
address space, each SUBTASK parameter is unique.

Restriction: EZASOKET calls outside of the CICS environment are not reentrant. If EZASOKET is to be
used by a multithread or multitask application, a separate copy needs to be loaded for each thread or
task. See z/OS Communications Server: IP CICS Sockets Guide for information about use in the CICS
environment.

Parameter values returned to the application
MAXSNO

A fullword binary field that contains the highest socket number assigned to this application. The
lowest socket number is 0. If you have 50 sockets, they are numbered from 0 to 49. If MAXSNO is not
specified, the value for MAXSNO is 49.

456 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

IOCTL
The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL socket command, you must load a value that represents the characteristic that
you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are passed to and returned from
IOCTL. The length of REQARG and RETARG is determined by the value that you specify in COMMAND. See
Table 19 on page 464 for information about REQARG and RETARG.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 96 on page 458 shows an example of IOCTL call instructions.

Chapter 13. CALL instruction application programming interface 457

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE 'IOCTL'.
 01 S PIC 9(4) BINARY.
 01 COMMAND PIC 9(8) BINARY.

 01 IFREQ.
 03 NAME PIC X(16).
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 01 IFREQOUT.
 03 NAME PIC X(16).
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 01 GRP-IOCTL-TABLE.
 02 IOCTL-ENTRY OCCURS 100 TIMES.
 03 NAME PIC X(16).
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 ADDRESS PIC 9(8) BINARY.
 03 NULLS PIC X(8).

 01 IOCTL-REQARG USAGE IS POINTER.
 01 IOCTL-RETARG USAGE IS POINTER.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND REQARG
 RETARG ERRNO RETCODE.

Figure 96. IOCTL call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing IOCTL. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number set to the descriptor of the socket to be controlled.

COMMAND
To control an operating characteristic, set this field to one of the following symbolic names. A value in
a bit mask is associated with each symbolic name. By specifying one of these names, you are turning
on a bit in a mask which communicates the requested operating characteristic to TCP/IP.
FIONBIO

Sets or clears blocking status.
FIONREAD

Returns the number of immediately readable bytes for the socket.
SIOCATMARK

Determines whether the current location in the data input is pointing to out-of-band data.
SIOCGHOMEIF6

Requests all IPv6 home interfaces.

Note: To request OSM interfaces, the application must have READ authorization to the
EZB.OSM.sysname.tcpname resource.

458 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

When the SIOCGHOMEIF6 IOCTL is issued, the REGARQ must contain a Network Configuration
Header. The NETCONFHDR is defined in the SYS1.MACLIB(BPXYIOC6) for assembler language.
The following fields are input fields and must be filled out:
NchEyeCatcher

Contains eye catcher '6NCH'
NchIoctl

Contains the command code
NchBufferLength

Buffer length large enough to contain all the IPv6 interface records. Each interface record is
length of HOME-IF-ADDRESS. If buffer is not large enough, then errno will be set to ERANGE
and the NchNumEntryRet will be set to number of interfaces. Based on NchNumEntryRet and
size of HOME-IF-ADDRESS, calculate the necessary storage to contain the entire list.

NchBufferPtr
This is a pointer to an array of HOME-IF structures returned on a successful call. The size will
depend on the number of qualifying interfaces returned.

NchNumEntryRet
If return code is 0 this will be set to number of HOME-IF-ADDRESS returned. If errno is
ERANGE, then will be set to number of qualifying interfaces. No interfaces are returned.
Recalculate The NchBufferLength based on this value times the size of HOME-IF-ADDRESS.

REQARG and RETARG
Point to the arguments that are passed between the calling program and IOCTL. The length of
the argument is determined by the COMMAND request. REQARG is an input parameter and is
used to pass arguments to IOCTL. RETARG is an output parameter and is used for arguments
returned by IOCTL. For the lengths and meanings of REQARG and RETARG for each COMMAND
type, see Table 19 on page 464.

Working-Storage Section.
 01 SIOCGHOMEIF6-VAL pic s9(10) binary value 3222599176.
 01 SIOCGHOMEIF6-REDEF REDEFINES SIOCGHOMEIF6-VAL.
 05 FILLER PIC 9(6) COMP.
 05 SIOCGHOMEIF6 PIC 9(8) COMP.
 01 IOCTL-RETARG USAGE IS POINTER.
 01 NET-CONF-HDR.
 05 NCH-EYE-CATCHER PIC X(4) VALUE '6NCH'.
 05 NCH-IOCTL PIC 9(8) BINARY.
 05 NCH-BUFFER-LENTH PIC 9(8) BINARY.
 05 NCH-BUFFER-PTR USAGE IS POINTER.
 05 NCH-NUM-ENTRY-RET PIC 9(8) BINARY.
 01 HOME-IF.
 03 HOME-IF-ADDRESS.
 05 FILLER PIC 9(16) BINARY.

Linkage Section.

 01 L1.
 03 NetConfHdr.
 05 NchEyeCatcher pic x(4).
 05 NchIoctl pic 9(8) binary.
 05 NchBufferLength pic 9(8) binary.
 05 NchBufferPtr usage is pointer.
 05 NchNumEntryRet pic 9(8) binary.
 * Allocate storage based on your need.
 03 Allocated-Storage pic x(nn).

 Procedure Division using L1.
 move '6NCH' to NchEyeCatcher.
 set NchBufferPtr to address of Allocated-Storage.
 * Set NchBufferLength to the length of your allocated storage.
 move nn to NchBufferLength.
 move SIOCGHOMEIF6 to NchIoctl.
 Call 'EZASOKET' using soket-ioctl socket-descriptor
 SIOCGHOMEIF6
 NETCONFHDR NETCONFHDR
 errno retcode.

Figure 97. COBOL language example for SIOCGHOMEIF6

Chapter 13. CALL instruction application programming interface 459

SIOCGIFADDR
Requests the IPv4 network interface address for a given interface name. For assembler, see the
IOCN_IFNAME field in the SYS1.MACLIB(BPXYIOCC) API. For COBOL, see the IFR-NAME field in
the SEZAINST(EZACOBOL) API. For PL/I, see the IFR_NAME field in the SEZAINST(CBLOCK) API.

SIOCGIFBRDADDR
Requests the IPv4 network interface broadcast address for a given interface name. For assembler,
see the IOCN_IFNAME field in the SYS1.MACLIB(BPXYIOCC) API. For COBOL, see the IFR-NAME
field in the SEZAINST(EZACOBOL) API. For PL/I, see the IFR_NAME field in the
SEZAINST(CBLOCK) API.

SIOCGIFCONF
Requests the IPv4 network interface configuration. The configuration is a variable number of 32-
byte structures. For assembler, see the IOCN_IFREQ field in the SYS1.MACLIB(BPXYIOCC) API for
the structure format. For COBOL, see the IFREQ field in the SEZAINST(EZACOBOL) API for the
structure format. For PL/I, see the IFREQ field in the SEZAINST(CBLOCK) API for the structure
format.

• When IOCTL is issued, REQARG must contain the length of the array to be returned. To
determine the length of REQARG, multiply the structure length (array element) by the number of
interfaces requested. The maximum number of array elements that TCP/IP can return is 100.

• When IOCTL is issued, RETARG must be set to the beginning of the storage area that you have
defined in your program for the array to be returned.

SIOCGIFDSTADDR
Requests the network interface destination address for a given interface name. For assembler, see
the IOCN_IFNAME field in the SYS1.MACLIB(BPXYIOCC) API. For COBOL, see the IFR-NAME field
in the SEZAINST(EZACOBOL) API. For PL/I, see the IFR_NAME field in the SEZAINST(CBLOCK)
API.

SIOCGIFMTU
Requests the IPv4 network interface MTU (maximum transmission unit) for a given interface
name. For assembler, see the IOCN_IFNAME field in the SYS1.MACLIB(BPXYIOCC) API. For
COBOL, see the IFR-NAME field in the SEZAINST(EZACOBOL) API. For PL/I, see the IFR_NAME
field in the SEZAINST(CBLOCK) API.

SIOCGIFNAMEINDEX
Requests all interface names and interface indexes including local loopback but excluding VIPAs.
Information is returned for both IPv4 and IPv6 interfaces whether they are active or inactive. For
IPv6 interfaces, information is only returned for an interface if it has at least one available IP
address.

Note: To request OSM interfaces, the application must have READ authorization to the
EZB.OSM.sysname.tcpname resource.

The configuration consists of IF_NAMEINDEX structure, which is defined in
SYS1.MACLIB(BPX1IOCC) for the assembler language.

• When the SIOCGIFNAMEINDEX IOCTL is issued, the first word in REQARG must contain the
length (in bytes) to contain an IF-NAME-INDEX structure to return the interfaces. The formula to
compute this length is as follows:

1. Determine the number of interfaces expected to be returned upon successful completion of
this command.

2. Multiply the number of interfaces by the array element (size of IF-NIINDEX, IF-NINAME, and
IF-NIEXT) to get the size of the array element.

3. Add the size of the IF-NITOTALIF and IF-NIENTRIES to the size of the array to get the total
number of bytes needed to accommodate the name and index information returned.

• When IOCTL is issued, RETARG must be set to the address of the beginning of the area in your
program's storage that is reserved for the IF-NAMEINDEX structure that is to be returned by
IOCTL.

460 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• The command 'SIOCGIFNAMEINDEX' returns a variable number of all the qualifying network
interfaces.

 WORKING-STORAGE SECTION.
 01 SIOCGIFNAMEINDEX-VAL pic 9(10) binary value 1073804803.
 01 SIOCGIFNAMEINDEX-REDEF REDEFINES SIOCGIFNAMEINDEX-VAL.
 05 FILLER PIC 9(6) COMP.
 05 SIOCGIFNAMEINDEX PIC 9(8) COMP.
 01 reqarg pic 9(8) binary.
 01 reqarg-header-only pic 9(8) binary.
 01 IF-NIHEADER.
 05 IF-NITOTALIF PIC 9(8) BINARY.
 05 IF-NIENTRIES PIC 9(8) BINARY.
 01 IF-NAME-INDEX-ENTRY.
 05 IF-NIINDEX PIC 9(8) BINARY.
 05 IF-NINAME PIC X(16).
 05 IF-NINAMETERM PIC X(1).
 05 IF-NIRESV1 PIC X(3).
 01 OUTPUT-STORAGE PIC X(500).
 Procedure Division.
 move 8 to reqarg-header-only.
 Call 'EZASOKET' using soket-ioctl socket-descriptor
 SIOCGIFNAMEINDEX
 REQARG-HEADER-ONLY IF-NIHEADER
 errno retcode.
 move 500 to reqarg.
 Call 'EZASOKET' using soket-ioctl socket-descriptor
 SIOCGIFNAMEINDEX
 REQARG OUTPUT-STORAGE
 errno retcode.

Figure 98. COBOL language example for SIOCGIFNAMEINDEX

SIOCGIPMSFILTER
Requests a list of the IPv4 source addresses that comprise the source filter, with the current mode
on a given interface and a multicast group for a socket. The source filter can include or exclude the
set of source address, depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).
When the SIOCGIPMSFILTER IOCTL is issued, the REQARG parameter must contain a
IP_MSFILTER structure, which is defined in SYS1.MACLIB(BPXYIOCC) for assembler language, in
SEZAINST(CBLOCK) for PL/I, and in SEZAINST(EZACOBOL) for COBOL. The IP_MSFILTER must
include an interface address (input), a multicast address (input), filter mode (output), the number
of source addresses in the following array (input and output), and an array of source addresses
(output). On input, the number of source addresses is the number of source addresses that will fit
in the input array. On output, the number of source addresses contains the total number of source
filters in the output array. If the application does not know the size of the source list prior to
processing, it can make a reasonable guess (for example, 0), and if when the call completes the
number of source addresses is a greater value, the IOCTL can be repeated with a buffer that is
large enough. That is, on output, the number of source addresses is always updated to be the total
number of sources in the filter, but the array holds as many source addresses as will fit, up to the
minimum of the array size passed in as the input number.

Calculate the size of IF_MSFILTER value as follows:

1. Determine the number of expected source addresses.
2. Multiply the number of source addresses by the array element (size of the IMSF_SrcEntry

value) to determine the size of all array elements.
3. Add the size of all array elements to the size of the IMSF_Header value to determine the total

number of bytes needed to accommodate the source addresses information that is returned.

SIOCGMSFILTER
Requests a list of the IPv4 or IPv6 source addresses that comprise the source filter, with the
current mode on a given interface index and a multicast group for a socket. The source filter can
include or exclude the set of source address, depending on the filter mode (MCAST_INCLUDE or
MCAST_EXCLUDE). When the SIOCGMSFILTER IOCTL is issued, the REQARG parameter must
contain a GROUP_FILTER structure, which is defined in SYS1.MACLIB(BPXYIOCC) for assembler ,
in SEZAINST(CBLOCK) for PL/I, and in SEZAINST(EZACOBOL) for COBOL. The GROUP_FILTER
option must include an interface index (input), a socket address structure of the multicast address

Chapter 13. CALL instruction application programming interface 461

(input), filter mode (output), the number of source addresses in the following array (output), and
an array of the socket address structure of source addresses (input and output). On input, the
number of source addresses is the number of source addresses that will fit in the input array. On
output, the number of source addresses contains the total number of source filters in the output
array. If the application does not know the size of the source list prior to processing, it can make a
reasonable guess (for example, 0), and if when the call completes the number of source addresses
is a greater value, the IOCTL can be repeated with a buffer that is large enough. That is, on output,
the number of source addresses is always updated to be the total number of sources in the filter,
but the array holds as many source addresses as will fit, up to the minimum of the array size
passed in as the input number.

Calculate the size of the GROUP_FILTER value as follows:

1. Determine the number of source addresses expected.
2. Multiply the number of source addresses by the array element (size of the GF_SrcEntry value)

to determine the size of all array elements.
3. Add the size of all array elements to the size of the GF_Header value to determine the total

number of bytes needed to accommodate the source addresses information returned.

SIOCGPARTNERINFO
Provides an interface for an application to retrieve security information about its partner. When
you issue the SIOCGPARTNERINFO IOCTL, the REQARG parameter must contain a PartnerInfo
structure. The PartnerInfo structure is defined in members within SEZANMAC; EZBPINF1 defines
the PL/I layout, EZBPINFA defines the assembler layout, and EZBPINFB defines the COBOL
layout. For more information about using the SIOCGPARTNERINFO IOCTL, see z/OS
Communications Server: IP Programmer's Guide and Reference.

SIOCSAPPLDATA
The SIOCSAPPLDATA IOCTL enables an application to set 40 bytes of user-specified application
data against a socket endpoint. You can also use this application data to identify socket endpoints
in interfaces such as Netstat, SMF, or network management applications. When the
SIOCSAPPLDATA IOCTL is issued, the REQARG parameter must contain a SetApplData structure
as defined by the EZBYAPPL macro. See the CBLOCK and the EZACOBOL samples for the
equivalent SetApplData and SetADcontainer structure definitions for PL/I and COBOL
programming environments. See z/OS Communications Server: IP Programmer's Guide and
Reference for more information about programming the SIOCSAPPLDATA IOCTL.

SetAD_buffer: The user-defined application data is 40 bytes of data that identifies the endpoint
with the application. You can obtain this application data from the following sources:

• Netstat reports. The information is displayed in the ALL/-A report. If you use the APPLDATA
modifier, then the information also is displayed on the ALLConn/-a and COnn/-c reports.

• The SMF 119 TCP connection termination record. See TCP connection termination record
(subtype 2) in z/OS Communications Server: IP Programmer's Guide and Reference for more
information.

• Network management interfaces. See Network management interfaces in z/OS Communications
Server: IP Programmer's Guide and Reference for more information.

Consider the following guidelines:

• The application must document the content, format and meaning of the ApplData strings that it
associates with the sockets that it owns.

• The application should uniquely identify itself with printable EBCDIC characters at the beginning
of the string. Strings beginning with 3-character IBM product identifiers, such as TCP/IP's EZA or
EZB, are reserved for IBM use. IBM product identifiers begin with a letter in the range A-I.

• Use printable EBCDIC characters for the entire string to enable searching with Netstat filters.

Tip: Separate application data elements with a blank for easier reading.

462 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SIOCSIPMSFILTER
Sets a list of the IPv4 source addresses that comprise the source filter, with the current mode on a
given interface and a multicast group for a socket. The source filter can include or exclude the set
of source address, depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE). When
the SIOCSIPMSFILTER IOCTL is issued, the REQARG parameter must contain a IP_MSFILTER
structure, which is defined in SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for
PL/I and in SEZAINST(EZACOBOL) for COBOL. The IP_MSFILTER option must include an interface
address, a multicast address, filter mode, the number of source addresses in the following array,
and an array of source addresses.

Calculate the size of the IF_MSFILTER value as follows:

1. Determine the number of expected source addresses.
2. Multiply the number of source addresses by the array element (size of the IMSF_SrcEntry

value) to determine the size of all array elements.
3. Add the size of all array elements to the size of the IMSF_Header value to determine the total

number of bytes needed to accommodate the source addresses information that is returned.

SIOCSMSFILTER
Sets a list of the IPv4 or IPv6 source addresses that comprise the source filter, along with the
current mode on a given interface index and a multicast group for a socket. The source filter can
include or exclude the set of source address, depending on the filter mode (INCLUDE or
EXCLUDE). When the SIOCSMSFILTER IOCTL is issued, the REQARG parameter must contain a
GROUP_FILTER structure which is defined in SYS1.MACLIB(BPXYIOCC) for assembler, in
SEZAINST(CBLOCK) for PL/I, and in SEZAINST(EZACOBOL) for COBOL. The GROUP_FILTER option
must include an interface index, a socket address structure of the multicast address, filter mode,
the number of source addresses in the following array, and an array of the socket address
structure of source addresses.

Calculate the size of GROUP_FILTER as follows:

1. Determine the number of source addresses expected.
2. Multiply the number of source addresses by the array element (size of the GF_SrcEntry value)

to get the size of all array elements.
3. Add the size of all array elements to the size of the GF_Header value to get the total number of

bytes needed to accommodate the source addresses information returned.

SIOCSPARTNERINFO
The SIOCSPARTNERINFO IOCTL sets an indicator to retrieve the partner security credentials
during connection setup and saves the information, enabling an application to issue a
SIOCGPARTNERINFO IOCTL without suspending the application, or at least minimizing the time it
takes to retrieve the information. The SIOCSPARTNERINFO IOCTL must be issued prior to the
SIOCGPARTNERINFO IOCTL. When you issue the SIOCSPARTNERINFO IOCTL, the REQARG
parameter must contain a constant value, PI_REQTYPE_SET_PARTNERDATA. This constant is
defined in members within SEZANMAC; EZBPINF1 defines the PL/I layout, EZBPINFA defines the
assembler layout, and EZBPINFB defines the COBOL layout. For more information about using the
SIOCSPARTNERINFO IOCTL, see z/OS Communications Server: IP Programmer's Guide and
Reference.

SIOCTTLSCTL
Controls Application Transparent Transport Layer Security (AT-TLS) for the connection. REQARG
and RETARG must contain a TTLS_IOCTL structure. If a partner certificate is requested, the
TTLS_IOCTL must include a pointer to additional buffer space and the length of that buffer.
Information is returned in the TTLS_IOCTL structure. If a partner certificate is requested and one
is available, it is returned in the additional buffer space. The TTLS_IOCTL structure is defined in
members within SEZANMAC. EZBZTLS1 defines the PL/I layout, EZBZTLSP defines the assembler
layout, and EZBZTLSB defines the COBOL layout. For more usage details, see the Application
Transparent TLS (AT-TLS) information in z/OS Communications Server: IP Programmer's Guide
and Reference.

Chapter 13. CALL instruction application programming interface 463

Restriction: Use of this ioctl for functions other than query requires that the AT-TLS policy
mapped to the connection be defined with the ApplicationControlled parameter set to On.

REQARG and RETARG
Points to arguments that are passed between the calling program and IOCTL. The length of the
argument is determined by the COMMAND request. REQARG is an input parameter or an output
parameter and is used to pass and receive arguments to and from IOCTL. RETARG is an output
parameter and receives arguments from IOCTL. The REQARG and RETARG parameters are described
in Table 19 on page 464.

Table 19. IOCTL call arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO

X'8004A77E'

4 Set socket mode to: X'00'=blocking,
X'01'=nonblocking.

0 Not used.

FIONREAD

X'4004A77F'

0 Not used. 4 Number of characters available for read.

SIOCATMARK

X'4004A707'

0 Not used. 4 X'00'= not at OOB data

X'01'= at OOB data.

SIOCGHOMEIF6

X'C014F608'

20 NetConfHdr See Figure 97 on page 459 NetConfHdr.

SIOCGIFADDR

X'C020A70D'

32 First 16 bytes -
 interface name.
Last 16 bytes -
not used.

32 Network interface address. For assembler,
see the IOCN_SADDRIF field in the
SYS1.MACLIB(BPXYIOCC) API. For COBOL,
see the IFR-ADDR field in the
SEZAINST(EZACOBOL) API. For PL/I, see
the IFR_ADDR field in the
SEZAINST(CBLOCK) API.

SIOCGIFBRDADDR

X'C020A712'

32 First 16 bytes -
interface name.
Last 16 bytes -
not used.

32 Network interface address. For assembler,
see the IOCN_SADDRIFBROADCAST field
in the SYS1.MACLIB(BPXYIOCC) API. For
COBOL, see the IFR-BROADADDR field in
the SEZAINST(EZACOBOL) API. For PL/I,
see the IFR_BROADADDR field in the
SEZAINST(CBLOCK) API.

SIOCGIFCONF

X'C008A714'

8 Size of RETARG. See note1.

SIOCGIFDSTADDR

X'C020A70F'

32 First 16 bytes -
interface name.
Last 16 bytes -
not used.

32 Destination interface address. For
assembler, see the IOCN_SADDRIFDEST
field in the SYS1.MACLIB(BPXYIOCC) API.
For COBOL, see the IFR-DSTADDR field in
the SEZAINST(EZACOBOL) API. For PL/I,
see the IFR_DSTADDR field in the
SEZAINST(CBLOCK) API.

SIOCGIFMTU

X'C020A726'

32 First 16 bytes -
interface name.
Last 16 bytes -
not used.

32 IPv4 interface MTU (maximum
transmission unit). For assembler, see the
IOCN_MTUSIZE field in the
SYS1.MACLIB(BPXYIOCC) API. For COBOL,
see the IFR-MTU field in the
SEZAINST(EZACOBOL) API. For PL/I, see
the IFR_MTU field in the
SEZAINST(CBLOCK) API.

SIOCGIFNAMEINDEX

X'4000F603'

4 First 4 bytes size of return buffer. See Figure 98 on page 461 IF-
NAMEINDEX .

SIOCGIPMSFILTER

X'C000A724'

– See IP_MSFILTER structure in macro
BPXYIOCC. See note 2.

0 Not used

464 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 19. IOCTL call arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG

SIOCGMSFILTER

X'C000F610'

– See GROUP_FILTER structure in macro
BPXYIOCC. See note 3

0 Not used

SIOCGPARTNERINFO

X'C000F612'

– For the PartnerInfo structure layout, see
SEZANMAC(EZBPINFA) for assembler,
SEZANMAC(EZBPINF1) for PL/I, and
SEZANMAC(EZBPINFB) for COBOL. See
note 4.

0 Not used

SIOCSAPPLDATA

X'8018D90C'

– See SETAPPLDATA structure in macro
EZBYAPPL

0 Not used

SIOCSIPMSFILTER

X'8000A725'

– See IP_MSFILTER structure in macro
BPXYIOCC. See note 2.

0 Not used

SIOCSMSFILTER

X'8000F611'

– See GROUP_FILTER structure in macro
BPXYIOCC. See note 3

0 Not used

SIOCSPARTNERINFO

X'8004F613'

4 See PI_REQTYPE_SET_PARTNERDATA in
SEZANMAC(EZBPINFA) for assembler,
SEZANMAC(EZBPINF1) for PL/I, and
SEZANMAC(EZBPINFB) for COBOL.

0 Not used

SIOCTTLSCTL

X'C038D90B'

56 For IOCTL structure layout, see
SEZANMAC(EZBZTLS1) for PL/I,
SEZANMAC(EZBZTLSP) for assembler, and
SEZANMAC(EZBZTLSB) for COBOL.

56 For IOCTL structure layout, see
SEZANMAC(EZBZTLS1) for PL/I,
SEZANMAC(EZBZTLSP) for assembler, and
SEZANMAC(EZBZTLSB) for COBOL.

Notes:

1. When you call IOCTL with the SIOCGIFCONF command set, REQARG should contain the length in bytes of RETARG. Each interface is
assigned a 32-byte array element and REQARG should be set to the number of interfaces times 32. TCP/IP Services can return up to
100 array elements.

2. The size of the IP_MSFILTER structure must be equal to or greater than the size of the IMSF_Header value.
3. The size of the GROUP_FILTER structure must be equal to or greater than the size of GF_Header value.
4. The size of the PartnerInfo structure must be equal to or greater than the PI_FIXED_SIZE value.

Parameter values returned to the application
RETARG

Returns an array whose size is based on the value in COMMAND. See Table 19 on page 464 for
information about REQARG and RETARG.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

The COMMAND SIOGIFCONF returns a variable number of network interface configurations. Figure 99 on
page 466 contains an example of a COBOL II routine that can be used to work with such a structure.

Note: This call can be programmed only in languages that support address pointers. Figure 99 on page
466 shows a COBOL II example for SIOCGIFCONF.

Chapter 13. CALL instruction application programming interface 465

 WORKING-STORAGE SECTION.
 77 REQARG PIC 9(8) COMP.
 77 COUNT PIC 9(8) COMP VALUE max number of interfaces.
 LINKAGE SECTION.
 01 RETARG.
 05 IOCTL-TABLE OCCURS 1 TO max TIMES DEPENDING ON COUNT.
 10 NAME PIC X(16).
 10 FAMILY PIC 9(4) BINARY.
 10 PORT PIC 9(4) BINARY.
 10 ADDR PIC 9(8) BINARY.
 10 NULLS PIC X(8).
 PROCEDURE DIVISION.
 MULTIPLY COUNT BY 32 GIVING REQARQ.
 CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND
 REQARG RETARG ERRNO RETCODE.

Figure 99. COBOL II example for SIOCGIFCONF

LISTEN
The LISTEN call:

• Completes the bind, if BIND has not already been called for the socket.
• Creates a connection-request queue of a specified length for incoming connection requests.

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from clients. When a
connection request is received, a new socket is created by a subsequent ACCEPT call, and the original
socket continues to listen for additional connection requests. The LISTEN call converts an active socket to
a passive socket and conditions it to accept connection requests from clients. If a socket becomes
passive, it cannot initiate connection requests.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 100 on page 466 shows an example of LISTEN call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'LISTEN'.
 01 S PIC 9(4) BINARY.
 01 BACKLOG PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

Figure 100. LISTEN call instruction example

466 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing LISTEN. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor.

BACKLOG
A fullword binary number set to the number of communication requests to be queued.

Rule: The BACKLOG value specified on the LISTEN call is limited to the value configured by the
SOMAXCONN statement in the stack's TCPIP PROFILE (default=10); no error is returned if a larger
backlog is requested. SOMAXCONN might need to be updated if a larger backlog is desired. see z/OS
Communications Server: IP Configuration Reference for details.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

NTOP
The NTOP call converts an IP address from its numeric binary form into a standard text presentation form.
On successful completion, NTOP returns the converted IP address in the buffer provided.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Chapter 13. CALL instruction application programming interface 467

Figure 101 on page 468 shows an example of NTOP call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-ACCEPT-FUNCTION PIC X(16) VALUE IS 'ACCEPT'.
 01 SOC-NTOP-FUNCTION PIC X(16) VALUE IS 'NTOP'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 NTOP-FAMILY PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 01 PRESENTABLE-ADDRESS PIC X(45).
 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY.

 PROCEDURE DIVISION.

 CALL 'EZASOKET' USING SOC-ACCEPT-FUNCTION S NAME
 ERRNO RETCODE.
 CALL 'EZASOKET' USING SOC-NTOP-FUNCTION NTOP-FAMILY IP-ADDRESS
 PRESENTABLE-ADDRESS
 PRESENTABLE-ADDRESS-LEN ERRNO RETURN-CODE.

Figure 101. NTOP call instruction example

Parameter values set by the application
Keyword

Description
FAMILY

The addressing family for the IP address being converted. The value of decimal 2 must be specified
for AF_INET and 19 for AF_INET6.

IP-ADDRESS
A field containing the numeric binary form of the IPv4 or IPv6 address being converted. For an IPv4
address this field must be a fullword and for an IPv6 address this field must be 16 bytes. The address
must be in network byte order.

Parameter values returned to the application
Keyword

Description
PRESENTABLE-ADDRESS

A field used to receive the standard text presentation form of the IPv4 or IPv6 address being
converted. For IPv4 the address will be in dotted-decimal format and for IPv6 the address will be in
colon-hex format. The size of the IPv4 address will be a maximum of 15 bytes and the size of the
converted IPv6 address will be a maximum of 45 bytes. Consult the value returned in PRESENTABLE-
ADDRESS-LEN for the actual length of the value in PRESENTABLE-ADDRESS.

PRESENTABLE-ADDRESS-LEN
Initially, an input parameter. The address of a binary halfword field that is used to specify the length of
DSTADDR field on input and upon a successful return will contain the length of converted IP address.

468 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
–1

Check ERRNO for an error code.

PTON
The PTON call converts an IP address in its standard text presentation form to its numeric binary form. On
successful completion, PTON returns the converted IP address in the buffer provided.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 102 on page 470 shows an example of PTON call instructions.

Chapter 13. CALL instruction application programming interface 469

 WORKING-STORAGE SECTION.
 01 SOC-BIND-FUNCTION PIC X(16) VALUE IS 'BIND'.
 01 SOC-PTON-FUNCTION PIC X(16) VALUE IS 'PTON'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 AF-INET PIC 9(8) BINARY VALUE 2.
 01 AF-INET6 PIC 9(8) BINARY VALUE 19.

 * IPv4 address.
 01 PRESENTABLE-ADDRESS PIC X(45).
 01 PRESENTABLE-ADDRESS-IPV4 REDEFINES PRESENTABLE-ADDRESS.
 05 PRESENTABLE-IPV4-ADDRESS PIC X(15) VALUE '192.26.5.19'.
 05 FILLER PIC X(30).
 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 11.

 * IPv6 address.
 01 PRESENTABLE-ADDRESS PIC X(45)
 VALUE '12f9:0:0:c30:123:457:9cb:1112'.
 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 29.

 * IPv4-mapped IPv6 address.
 01 PRESENTABLE-ADDRESS PIC X(45)
 VALUE '12f9:0:0:c30:123:457:192.26.5.19'.
 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 32.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 * IPv4 address.
 CALL 'EZASOKET' USING SOC-PTON-FUNCTION AF-INET PRESENTABLE-ADDRESS
 PRESENTABLE-ADDRESS-LEN IP-ADDRESS ERRNO RETURN-CODE.
 * IPv6 address.
 CALL 'EZASOKET' USING SOC-PTON-FUNCTION AF-INET6 PRESENTABLE-ADDRESS
 PRESENTABLE-ADDRESS-LEN IP-ADDRESS ERRNO RETURN-CODE.
 CALL 'EZASOKET' USING SOC-BIND-FUNCTION S NAME ERRNO RETURN-CODE.

Figure 102. PTON call instruction example

Parameter values set by the application
Keyword

Description
FAMILY

The addressing family for the IP address being converted. The value of decimal 2 must be specified
for AF_INET and 19 for AF_INET6.

PRESENTABLE-ADDRESS
A field containing the standard text presentation form of the IPv4 or IPv6 address being converted.
For IPv4 the address will be in dotted-decimal format and for IPv6 the address will be in colon-hex
format.

PRESENTABLE-ADDRESS-LEN
Input parameter. The address of a binary halfword field that must contain the length of the IP address
to be converted.

470 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameter values returned to the application
Keyword

Description
IP-ADDRESS

A field containing the numeric binary form of the IPv4 or IPv6 address being converted. For an IPv4
address this field must be a fullword and for an IPv6 address this field must be 16 bytes. The address
must be in network byte order.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
–1

Check ERRNO for an error code.

READ
The READ call reads the data on socket s. This is the conventional TCP/IP read data operation. If a
datagram packet is too long to fit in the supplied buffer, datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket and program A sends 1000 bytes,
each call to this function can return any number of bytes, up to the entire 1000 bytes. The number of
bytes returned will be contained in RETCODE. Therefore, programs using stream sockets should place this
call in a loop that repeats until all data has been received.

Note: See “EZACIC05 ” on page 526 for a subroutine that will translate ASCII input data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 103 on page 472 shows an example of READ call instructions.

Chapter 13. CALL instruction application programming interface 471

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'READ'.
 01 S PIC 9(4) BINARY.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NBYTE BUF
 ERRNO RETCODE.

Figure 103. READ call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing READ. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket that is going to read the data.

NBYTE
A fullword binary number set to the size of BUF. READ does not return more than the number of bytes
of data in NBYTE even if more data is available.

Parameter values returned to the application
BUF

On input, a buffer to be filled by completion of the call. The length of BUF must be at least as long as
the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.

READV
The READV function reads data on a socket and stores it in a set of buffers. If a datagram packet is too
long to fit in the supplied buffers, datagram sockets discard extra bytes.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

472 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 104 on page 473 shows an example of READV call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE 'READV'.
 01 S PIC 9(4) BINARY.
 01 IOVCNT PIC 9(8) BINARY.

 01 IOV.
 03 BUFFER-ENTRY OCCURS N TIMES.
 05 BUFFER-POINTER USAGE IS POINTER.
 05 RESERVED PIC X(4).
 05 BUFFER_LENGTH PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 SET BUFFER-POINTER(1) TO ADDRESS OF BUFFER1.
 SET BUFFER-LENGTH(1) TO LENGTH OF BUFFER1.
 SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.
 SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.
 " " " " "
 " " " " "
 SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.
 SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.
 Call 'EZASOCKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 104. READV call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing READV. The field is left-justified and padded to the right with
blanks.

S
A value or the address of a halfword binary number specifying the descriptor of the socket into which
the data is to be read.

IOV
An array of tripleword structures with the number of structures equal to the value in IOVCNT and the
format of the structures as follows:
Fullword 1

Pointer to the address of a data buffer, which is completed on completion of the call
Fullword 2

Reserved
Fullword 3

The length of the data buffer referenced in fullword one

Chapter 13. CALL instruction application programming interface 473

IOVCNT
A fullword binary field specifying the number of data buffers provided for this call.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.

RECV
The RECV call, like READ, receives data on a socket with descriptor S. RECV applies only to connected
sockets. If a datagram packet is too long to fit in the supplied buffers, datagram sockets discard extra
bytes.

For additional control of the incoming data, RECV can:

• Peek at the incoming message without having it removed from the buffer
• Read out-of-band data

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket and program A sends 1000 bytes,
each call to this function can return any number of bytes, up to the entire 1000 bytes. The number of
bytes returned will be contained in RETCODE. Therefore, programs using stream sockets should place
RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV blocks the caller until data
arrives. If data is not available and the socket is in nonblocking mode, RECV returns a -1 and sets ERRNO
to 35 (EWOULDBLOCK). See “FCNTL” on page 406 or “IOCTL” on page 457 for a description of how to set
nonblocking mode.

For raw sockets, RECV adds a 20-byte header.

Note: See “EZACIC05 ” on page 526 for a subroutine that will translate ASCII input data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

474 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 105 on page 475 shows an example of RECV call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'RECV'.
 01 S PIC 9(4) BINARY.
 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 PEEK VALUE IS 2.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE BUF
 ERRNO RETCODE.

Figure 105. RECV call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing RECV. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket to receive the data.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG X'00000000' Read data.

MSG-OOB X'00000001' Receive out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band data
can be read if the SO-OOBINLINE option is set for
the socket.

MSG-PEEK X'00000002' Peek at the data, but do not destroy data. If the
peek flag is set, the next receive operation reads
the same data.

MSG-WAITALL X'00000040' Requests that the function block until the full
amount of data that was requested can be
returned (stream sockets only). The function
might return a smaller amount of data if the
connection is closed, if an error is pending, or if
the SO_RCVTIMEO field is set and the timer has
expired for the socket.

NBYTE
A value or the address of a fullword binary number set to the size of BUF. RECV does not receive more
than the number of bytes of data in NBYTE even if more data is available.

Chapter 13. CALL instruction application programming interface 475

Parameter values returned to the application
BUF

The input buffer to receive the data.
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

The socket is closed.
>0

A positive return code indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.

RECVFROM
The RECVFROM call receives data on a socket with descriptor S and stores it in a buffer. The RECVFROM
call applies to both connected and unconnected sockets. The socket address is returned in the NAME
structure. If a datagram packet is too long to fit in the supplied buffers, datagram sockets discard extra
bytes.

For datagram protocols, RECVFROM returns the source address associated with each incoming datagram.
For connection-oriented protocols like TCP, GETPEERNAME returns the address associated with the other
end of the connection.

If NAME is nonzero, the call returns the address of the sender. The NBYTE parameter should be set to the
size of the buffer.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket and program A sends 1000 bytes,
each call to this function can return any number of bytes, up to the entire 1000 bytes. The number of
bytes returned will be contained in RETCODE. Therefore, programs using stream sockets should place
RECVFROM in a loop that repeats until all data has been received.

For raw sockets, RECVFROM adds a 20-byte header.

If data is not available for the socket, and the socket is in blocking mode, RECVFROM blocks the caller
until data arrives. If data is not available and the socket is in nonblocking mode, RECVFROM returns a -1
and sets ERRNO to 35 (EWOULDBLOCK). See “FCNTL” on page 406 or “IOCTL” on page 457 for a
description of how to set nonblocking mode.

Note: See “EZACIC05 ” on page 526 for a subroutine that will translate ASCII input data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

476 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 106 on page 477 shows an example of RECVFROM call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVFROM'.
 01 S PIC 9(4) BINARY.
 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 PEEK VALUE IS 2.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).

 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS
 NBYTE BUF NAME ERRNO RETCODE.

Figure 106. RECVFROM call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing RECVFROM. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket to receive the data.

FLAGS
A fullword binary field containing flag values as follows:

Literal Value Binary Value Description

NO-FLAG X'00000000' Read data.

Chapter 13. CALL instruction application programming interface 477

Literal Value Binary Value Description

MSG-OOB X'00000001' Receive out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band data
can be read if the SO-OOBINLINE option is set for
the socket.

MSG-PEEK X'00000002' Peek at the data, but do not destroy data. If the
peek flag is set, the next receive operation reads
the same data.

MSG-WAITALL X'00000040' Requests that the function block until the
requested amount of data can be returned
(stream sockets only). The function might return
a smaller amount of data if the connection is
closed, if an error is pending, or if the
SO_RCVTIMEO field is set and the timer has
expired for the socket.

NBYTE
A fullword binary number specifying the length of the input buffer.

Parameter values returned to the application
BUF

Defines an input buffer to receive the input data.
NAME

An IPv4 socket address structure containing the address of the socket that sent the data. The
structure is as follows:
FAMILY

A halfword binary number specifying the IPv4 addressing family. The value is always decimal 2,
indicating AF_INET.

PORT
A halfword binary number specifying the port number of the sending socket.

IP-ADDRESS
A fullword binary number specifying the 32-bit IPv4 IP address of the sending socket.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

An IPv6 socket address structure containing the address of the socket that sent the data. The
structure is as follows:
Field

Description
FAMILY

A halfword binary number specifying the IPv6 addressing family. The value is decimal 19,
indicating AF_INET6.

PORT
A halfword binary number specifying the port number of the sending socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 IP address of the sending socket.

478 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

The socket is closed.
>0

A positive return code indicates the number of bytes of data transferred by the read call.
-1

Check ERRNO for an error code.

RECVMSG
The RECVMSG call receives messages on a socket with descriptor S and stores them in an array of
message headers. If a datagram packet is too long to fit in the supplied buffers, datagram sockets discard
extra bytes.

For datagram protocols, RECVMSG returns the source address associated with each incoming datagram.
For connection-oriented protocols like TCP, GETPEERNAME returns the address associated with the other
end of the connection.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 107 on page 480 shows an example of RECVMSG call instructions.

WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVMSG'.
 01 S PIC 9(4) BINARY.
 01 MSG-HDR.
 03 MSG-NAME USAGE IS POINTER.
 03 MSG-NAME-LEN PIC 9(8) COMP.
 03 IOV USAGE IS POINTER.
 03 IOVCNT USAGE IS POINTER.
 03 MSG-ACCRIGHTS USAGE IS POINTER.
 03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

Chapter 13. CALL instruction application programming interface 479

 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 PEEK VALUE IS 2.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 LINKAGE SECTION.
 01 L1.
 03 RECVMSG-IOVECTOR.
 05 IOV1A USAGE IS POINTER.
 05 IOV1AL PIC 9(8) COMP.
 05 IOV1L PIC 9(8) COMP.
 05 IOV2A USAGE IS POINTER.
 05 IOV2AL PIC 9(8) COMP.
 05 IOV2L PIC 9(8) COMP.
 05 IOV3A USAGE IS POINTER.
 05 IOV3AL PIC 9(8) COMP.
 05 IOV3L PIC 9(8) COMP.

 03 RECVMSG-BUFFER1 PIC X(16).
 03 RECVMSG-BUFFER2 PIC X(16).
 03 RECVMSG-BUFFER3 PIC X(16).
 03 RECVMSG-BUFNO PIC 9(8) COMP.

 * IPv4 socket address structure.
 03 NAME.
 05 FAMILY PIC 9(4) BINARY.
 05 PORT PIC 9(4) BINARY.
 05 IP-ADDRESS PIC 9(8) BINARY.
 05 RESERVED PIC X(8).

 * IPv6 socket address structure.
 03 NAME.
 05 FAMILY PIC 9(4) BINARY.
 05 PORT PIC 9(4) BINARY.
 53 FLOWINFO PIC 9(8) BINARY.
 05 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 05 SCOPE-ID PIC 9(8) BINARY.

 PROCEDURE DIVISION USING L1.

 SET MSG-NAME TO ADDRESS OF NAME.
 MOVE LENGTH OF NAME TO MSG-NAME-LEN.
 SET IOV TO ADDRESS OF RECVMSG-IOVECTOR.
 MOVE 3 TO RECVMSG-BUFNO.
 SET IOVCNT TO ADDRESS OF RECVMSG-BUFNO.
 SET IOV1A TO ADDRESS OF RECVMSG-BUFFER1.
 MOVE 0 TO IOV1AL.
 MOVE LENGTH OF RECVMSG-BUFFER1 TO IOV1L.
 SET IOV2A TO ADDRESS OF RECVMSG-BUFFER2.
 MOVE 0 TO IOV2AL.
 MOVE LENGTH OF RECVMSG-BUFFER2 TO IOV2L.
 SET IOV3A TO ADDRESS OF RECVMSG-BUFFER3.
 MOVE 0 TO IOV3AL.
 MOVE LENGTH OF RECVMSG-BUFFER3 TO IOV3L.
 SET MSG-ACCRIGHTS TO NULLS.
 SET MSG-ACCRIGHTS-LEN TO NULLS.
 MOVE 0 TO FLAGS.
 MOVE SPACES TO RECVMSG-BUFFER1.
 MOVE SPACES TO RECVMSG-BUFFER2.
 MOVE SPACES TO RECVMSG-BUFFER3.

 CALL 'EZASOKET' USING SOC-FUNCTION S MSG-HDR FLAGS ERRNO RETCODE.

Figure 107. RECVMSG call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

480 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameter values set by the application
S

A value or the address of a halfword binary number specifying the socket descriptor.
MSG

On input, a pointer to a message header into which the message is received upon completion of the
call.
Field

Description
NAME

On input, a pointer to a buffer where the sender address is stored upon completion of the call. The
storage being pointed to should be for an IPv4 socket address or an IPv6 socket address. The
IPv4 socket address structure contains the following fields:
Field

Description
FAMILY

Output parameter. A halfword binary number specifying the IPv4 addressing family. The value
for IPv4 socket descriptor (S parameter) is decimal 2, indicating AF_INET.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

IP-ADDRESS
Output parameter. A fullword binary number specifying the 32-bit IPv4 IP address of the
sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure contains the following fields:
Field

Description
FAMILY

Output parameter. A halfword binary number specifying the IPv6 addressing family. The value
for IPv6 socket descriptor (S parameter) is decimal 19, indicating AF_INET6.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP–ADDRESS
Output parameter. A 16 byte binary field specifying the 128–bit IPv6 IP address, in network
byte order, of the sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is
undefined.

NAME-LEN
On input, a pointer to the size of the NAME.

IOV
On input, a pointer to an array of tripleword structures with the number of structures equal to the
value in IOVCNT and the format of the structures as follows:

Chapter 13. CALL instruction application programming interface 481

Fullword 1
A pointer to the address of a data buffer. This data buffer must be in the home address space.

Fullword 2
Reserved. This storage will be cleared.

Fullword 3
A pointer to the length of the data buffer referenced in fullword 1.

In COBOL, the IOV structure must be defined separately in the Linkage section, as shown in the
example.

IOVCNT
On input, a pointer to a fullword binary field specifying the number of data buffers provided for this
call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is ignored.

ACCRLEN
On input, a pointer to the length of the access rights received. This field is ignored.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG X'00000000' Read data.

MSG-OOB X'00000001' Receive out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band data
can be read if the SO-OOBINLINE option is set for
the socket.

MSG-PEEK X'00000002' Peek at the data, but do not destroy data. If the
peek flag is set, the next receive operation reads
the same data.

MSG-WAITALL X'00000040' Requests that the function block until the
requested amount of data can be returned
(stream sockets only). The function might return
a smaller amount of data if the connection is
closed, if an error is pending, or if the
SO_RCVTIMEO field is set and the timer has
expired for the socket.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field with the following values:
Value

Description
<0

Call returned error. See ERRNO field.
0

Connection partner has closed connection.
>0

Number of bytes read.

482 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SELECT
In a process where multiple I/O operations can occur it is necessary for the program to be able to wait on
one or several of the operations to complete.For example, consider a program that issues a READ to
multiple sockets whose blocking mode is set. Because the socket would block on a READ call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this problem, but would
require polling each socket repeatedly until data became available. The SELECT call allows you to test
several sockets and to execute a subsequent I/O call only when one of the tested sockets is ready,
thereby ensuring that the I/O call will not block.

To use the SELECT call as a timer in your program, take one of the following actions:

• Set the read, write, and exception arrays to zeros.
• Specify MAXSOC <= 0.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Defining which sockets to test
The SELECT call monitors for read operations, write operations, and exception operations:

• When a socket is ready to read, one of the following situations has occurred:

– A buffer for the specified sockets contains input data. If input data is available for a given socket, a
read operation on that socket will not block.

– A connection has been requested on that socket.
• When a socket is ready to write, TCP/IP can accommodate additional output data. If TCP/IP can accept

additional output for a given socket, a write operation on that socket will not block.
• When an exception condition has occurred on a specified socket it is an indication that a TAKESOCKET

has occurred for that socket.
• A timeout occurs on the SELECT call. The timeout period can be specified when the SELECT call is

issued.

Each socket descriptor is represented by a bit in a bit string. The length of this bit-mask array is
dependent on the value of the MAXSOC parameter and must be a multiple of 4 bytes.

See “Selecting requests in a concurrent server program” on page 37 for more information.

Note: To simplify string processing in COBOL, you can use the program EZACIC06 to convert each bit in
the string to a character. For more information, see “EZACIC06 ” on page 527.

Chapter 13. CALL instruction application programming interface 483

Read operations
Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or RECVMSG calls. A socket is ready
to be read when data has been received for it or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits in RSNDMSK to one
before issuing the SELECT call. When the SELECT call returns, the corresponding bits in the RRETMSK
indicate sockets are ready for reading.

Write operations
A socket is selected for writing (ready to be written) when:

• TCP/IP can accept additional outgoing data.
• The socket is marked nonblocking and a previous CONNECT did not complete immediately. In this case,

CONNECT returned an ERRNO with a value of 36 (EINPROGRESS). This socket will be selected for write
when the CONNECT completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent exceeds the amount of data
TCP/IP can accept. To avoid this, you can precede the write operation with a SELECT call to ensure that
the socket is ready for writing. When a socket is selected for WRITE, the program can determine the
amount of TCP/IP buffer space available by issuing the GETSOCKOPT call with the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits representing those
sockets to 1 before issuing the SELECT call. When the SELECT call returns, the corresponding bits in the
WRETMSK indicate sockets are ready for writing.

Exception operations
For each socket to be tested, the SELECT call can check for an existing exception condition. Two exception
conditions are supported:

• The calling program (concurrent server) has issued a GIVESOCKET command and the target child server
has successfully issued the TAKESOCKET call. When this condition is selected, the calling program
(concurrent server) should issue CLOSE to dissociate itself from the socket.

• A socket has received out-of-band data. On this condition, a READ will return the out-of-band data
ahead of program data.

To test whether any of several sockets have an exception condition, set the ESNDMSK bits representing
those sockets to 1. When the SELECT call returns, the corresponding bits in the ERETMSK indicate
sockets with exception conditions.

MAXSOC parameter
The SELECT call must test each bit in each string before returning results. For efficiency, the MAXSOC
parameter can be used to specify the largest socket descriptor number that needs to be tested for any
event type. The SELECT call tests only bits that are in the range 0 through the MAXSOC value minus 1.

Example: If MAXSOC is set to 50, the range would be 0 through 49.

TIMEOUT parameter
If the time specified in the TIMEOUT parameter elapses before any event is detected, the SELECT call
returns, and the RETCODE is set to 0.

Figure 108 on page 485 shows an example of SELECT call instructions.

484 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.
 01 MAXSOC PIC 9(8) BINARY.
 01 TIMEOUT.
 03 TIMEOUT-SECONDS PIC 9(8) BINARY.
 03 TIMEOUT-MICROSEC PIC 9(8) BINARY.
 01 RSNDMSK PIC X(*).
 01 WSNDMSK PIC X(*).
 01 ESNDMSK PIC X(*).
 01 RRETMSK PIC X(*).
 01 WRETMSK PIC X(*).
 01 ERETMSK PIC X(*).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
 RSNDMSK WSNDMSK ESNDMSK
 RRETMSK WRETMSK ERETMSK
 ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Figure 108. SELECT call instruction example

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into one 32-bit mask [PIC
X(4)]. If you have 33 sockets, you must allocate two 32-bit masks [PIC X(8)].

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left-justified and padded on the right with
blanks.

MAXSOC
A fullword binary field that specifies the largest socket descriptor value that is being checked. The
SELECT call tests only bits that are in the range 0 through the MAXSOC value minus 1. For example, if
you set the MAXSOC value to 50, the range is 0 – 49.

TIMEOUT
If TIMEOUT is a positive value, it specifies the maximum interval to wait for the selection to complete.
If TIMEOUT-SECONDS is a negative value, the SELECT call blocks until a socket becomes ready. To
poll the sockets and return immediately, specify the TIMEOUT value to be 0.

TIMEOUT is specified in the two-word TIMEOUT as follows:

• TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds component of the timeout
value.

• TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the microseconds component of the
timeout value (0—999999).

For example, if you want SELECT to time out after 3.5 seconds, set TIMEOUT-SECONDS to 3 and
TIMEOUT-MICROSEC to 500000.

RSNDMSK
A bit string sent to request read event status.

• For each socket to be checked for pending read events, the corresponding bit in the string should be
set to 1.

• For sockets to be ignored, the value of the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for read events.

Chapter 13. CALL instruction application programming interface 485

WSNDMSK
A bit string sent to request write event status.

• For each socket to be checked for pending write events, the corresponding bit in the string should
be set to 1.

• For sockets to be ignored, the value of the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for write events.

ESNDMSK
A bit string sent to request exception event status.

• For each socket to be checked for pending exception events, the corresponding bit in the string
should be set to 1.

• For each socket to be ignored, the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for exception events.

Parameter values returned to the application
RRETMSK

A bit string returned with the status of read events. The length of the string should be equal to the
maximum number of sockets to be checked. For each socket that is ready to read, the corresponding
bit in the string will be set to 1; bits that represent sockets that are not ready to read will be set to 0.

WRETMSK
A bit string returned with the status of write events. The length of the string should be equal to the
maximum number of sockets to be checked. For each socket that is ready to write, the corresponding
bit in the string will be set to 1; bits that represent sockets that are not ready to be written will be set
to 0.

ERETMSK
A bit string returned with the status of exception events. The length of the string should be equal to
the maximum number of sockets to be checked. For each socket that has an exception status, the
corresponding bit will be set to 1; bits that represent sockets that do not have exception status will be
set to 0.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
>0

Indicates the sum of all ready sockets in the three masks.
 0

Indicates that the SELECT time limit has expired.
-1

Check ERRNO for an error code.

SELECTEX
The SELECTEX call monitors a set of sockets, a time value, and an ECB. It completes when either one of
the sockets has activity, the time value expires, or one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, take either of the following actions:

• Set the read, write, and exception arrays to zeros.
• Specify MAXSOC ≤ 0.

486 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 109 on page 488 shows an example of SELECTEX call instructions.

Chapter 13. CALL instruction application programming interface 487

If an application intends to pass a single ECB on the SELECTEX call, then the corresponding working
storage definitions and CALL instruction should be coded as below:

WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECTEX'.
 01 MAXSOC PIC 9(8) BINARY.
 01 TIMEOUT.
 03 TIMEOUT-SECONDS PIC 9(8) BINARY.
 03 TIMEOUT-MINUTES PIC 9(8) BINARY.
 01 RSNDMSK PIC X(*).
 01 WSNDMSK PIC X(*).
 01 ESNDMSK PIC X(*).
 01 RRETMSK PIC X(*).
 01 WRETMSK PIC X(*).
 01 ERETMSK PIC X(*).
 01 SELECB PIC X(4).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

Where * is the size of the select mask

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
 RSNDMSK WSNDMSK ESNDMSK
 RRETMSK WRETMSK ERETMSK
 SELECB ERRNO RETCODE.

However, if the application intends to pass the address of an ECB list on the SELECTEX call, then the
application must set the high order bit in the ECB list address and pass that address using the BY VALUE
option as documented in the following example. The remaining parameters must be set back to the
default by specifying BY REFERENCE before ERRNO:

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECTEX'.
 01 MAXSOC PIC 9(8) BINARY.
 01 TIMEOUT.
 03 TIMEOUT-SECONDS PIC 9(8) BINARY.
 03 TIMEOUT-MINUTES PIC 9(8) BINARY.
 01 RSNDMSK PIC X(*).
 01 WSNDMSK PIC X(*).
 01 ESNDMSK PIC X(*).
 01 RRETMSK PIC X(*).
 01 WRETMSK PIC X(*).
 01 ERETMSK PIC X(*).
 01 ECBLIST-PTR USAGE IS POINTER.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 Where * is the size of the select mask

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
 RSNDMSK WSNDMSK ESNDMSK
 RRETMSK WRETMSK ERETMSK
 BY VALUE ECBLIST-PTR
 BY REFERENCE ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Figure 109. SELECTEX call instruction example

Defining which sockets to test
The SELECTEX call monitors for read operations, write operations, and exception operations:

• When a socket is ready to read, one of the following situations has occurred:

– A buffer for the specified sockets contains input data. If input data is available for a given socket, a
read operation on that socket will not block.

488 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

– A connection has been requested on that socket.
• When a socket is ready to write, TCP/IP can accommodate additional output data. If TCP/IP can accept

additional output for a given socket, a write operation on that socket will not block.
• When an exception condition has occurred on a specified socket it is an indication that a TAKESOCKET

has occurred for that socket.
• A timeout occurs on the SELECTEX call. The timeout period can be specified when the SELECTEX call is

issued.
• The ECB (or one of the ECBs in the ECB list) passed on the SELECTEX call has been posted.

Each socket descriptor is represented by a bit in a bit string. The length of this bit-mask array is
dependent on the value of the MAXSOC parameter and must be a multiple of 4 bytes.

See “Selecting requests in a concurrent server program” on page 37 for more information.

Note: To simplify string processing in COBOL, you can use the program EZACIC06 to convert each bit in
the string to a character. For more information, see “EZACIC06 ” on page 527.

Read operations
Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or RECVMSG calls. A socket is ready
to be read when data has been received for it or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits in RSNDMSK to one
before issuing the SELECTEX call. When the SELECTEX call returns, the corresponding bits in the
RRETMSK indicate sockets are ready for reading.

Write operations
A socket is selected for writing (ready to be written) when:

• TCP/IP can accept additional outgoing data.
• The socket is marked nonblocking and a previous CONNECT did not complete immediately. In this case,

CONNECT returned an ERRNO with a value of 36 (EINPROGRESS). This socket will be selected for write
when the CONNECT completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent exceeds the amount of data
TCP/IP can accept. To avoid this, you can precede the write operation with a SELECTEX call to ensure that
the socket is ready for writing. When a socket is selected for WRITE, the program can determine the
amount of TCP/IP buffer space available by issuing the GETSOCKOPT call with the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits representing those
sockets to 1 before issuing the SELECTEX call. When the SELECTEX call returns, the corresponding bits in
the WRETMSK indicate sockets are ready for writing.

Exception operations
For each socket to be tested, the SELECTEX call can check for an existing exception condition. Two
exception conditions are supported:

• The calling program (concurrent server) has issued a GIVESOCKET command and the target child server
has successfully issued the TAKESOCKET call. When this condition is selected, the calling program
(concurrent server) should issue CLOSE to dissociate itself from the socket.

• A socket has received out-of-band data. On this condition, a READ will return the out-of-band data
ahead of program data.

To test whether any of several sockets have an exception condition, set the ESNDMSK bits representing
those sockets to 1. When the SELECTEX call returns, the corresponding bits in the ERETMSK indicate
sockets with exception conditions.

Chapter 13. CALL instruction application programming interface 489

MAXSOC parameter
The SELECTEX call must test each bit in each string before returning results. For efficiency, the MAXSOC
parameter can be used to specify the largest socket descriptor number that needs to be tested for any
event type. The SELECTEX call tests only bits that are in the range 0 through the MAXSOC value minus 1.

Example: If MAXSOC is set to 50, the range would be 0 through 49.

TIMEOUT parameter
If the time specified in the TIMEOUT parameter elapses before any event is detected, the SELECTEX call
returns, and the RETCODE is set to 0.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left-justified and padded on the right with
blanks.

MAXSOC
A fullword binary field that specifies the largest socket descriptor value that is being checked. The
SELECTEX call tests only bits that are in the range 0 through the MAXSOC value minus 1. For example,
if you set the MAXSOC value to 50, the range is 0 – 49.

TIMEOUT
If TIMEOUT is a positive value, it specifies a maximum interval to wait for the selection to complete. If
TIMEOUT-SECONDS is a negative value, the SELECTEX call blocks until a socket becomes ready or an
ECB or ECB in a list is posted. To poll the sockets and return immediately, set TIMEOUT to be zeros.

TIMEOUT is specified in the two-word TIMEOUT as follows:

• TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds component of the timeout
value.

• TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the microseconds component of the
timeout value (0—999999).

For example, if you want SELECTEX to time out after 3.5 seconds, set TIMEOUT-SECONDS to 3 and
TIMEOUT-MICROSEC to 500000.

RSNDMSK
The bit-mask array to control checking for read interrupts. If this parameter is not specified or the
specified bit-mask is zeros, the SELECT will not check for read interrupts. The length of this bit-mask
array is dependent on the value in MAXSOC.

WSNDMSK
The bit-mask array to control checking for write interrupts. If this parameter is not specified or the
specified bit-mask is zeros, the SELECT will not check for write interrupts. The length of this bit-mask
array is dependent on the value in MAXSOC.

ESNDMSK
The bit-mask array to control checking for exception interrupts. If this parameter is not specified or
the specified bit-mask is zeros, the SELECT will not check for exception interrupts. The length of this
bit-mask array is dependent on the value in MAXSOC.

SELECB
An ECB which, if posted, causes completion of the SELECTEX.

ECBLIST-PTR
A pointer to an ECB list. The application must set the high order bit in the ECB list address and pass
that address using the BY VALUE option. The remaining parameters must be set back to the default by
specifying BY REFERENCE before ERRNO.

490 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameter values returned to the application
ERRNO

A fullword binary field; if RETCODE is negative, this contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field
Value

Meaning
>0

The number of ready sockets.
0

Either the SELECTEX time limit has expired (ECB value is 0) or one of the caller's ECBs has been
posted (ECB value is nonzero and the caller's descriptor sets is set to 0). The caller must initialize
the ECB values to 0 before issuing the SELECTEX socket command.

-1
Check ERRNO for an error code.

RRETMSK
The bit-mask array returned by the SELECT if RSNDMSK is specified. The length of this bit-mask array
is dependent on the value in MAXSOC.

WRETMSK
The bit-mask array returned by the SELECT if WSNDMSK is specified. The length of this bit-mask array
is dependent on the value in MAXSOC.

ERETMSK
The bit-mask array returned by the SELECT if ESNDMSK is specified. The length of this bit-mask array
is dependent on the value in MAXSOC.

SEND
The SEND call sends data on a specified connected socket.

The FLAGS field allows you to:

• Send out-of-band data, such as interrupts, aborts, and data marked urgent. Only stream sockets
created in the AF_INET address family support out-of-band data.

• Suppress use of local routing tables. This implies that the caller takes control of routing and writing
network software.

For datagram sockets, SEND transmits the entire datagram if it fits into the receiving buffer. Extra data is
discarded.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each call to this function can send any number
of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in RETCODE. Therefore,
programs using stream sockets should place this call in a loop, reissuing the call until all data has been
sent.

Note: See “EZACIC04 ” on page 525 for a subroutine that will translate EBCDIC input data to ASCII.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 13. CALL instruction application programming interface 491

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 110 on page 492 shows an example of SEND call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SEND'.
 01 S PIC 9(4) BINARY.
 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 DONT-ROUTE VALUE IS 4.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE
 BUF ERRNO RETCODE.

Figure 110. SEND call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SEND. The field is left-justified and padded on the right with
blanks.

S
A halfword binary number specifying the socket descriptor of the socket that is sending data.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG X'00000000' No flag is set. The command behaves like a
WRITE call.

MSG-OOB X'00000001' Send out-of-band data. (Stream sockets only.)
Even if the OOB flag is not set, out-of-band data
can be read if the SO-OOBINLINE option is set for
the socket.

MSG-DONTROUTE X'00000004' Do not route. Routing is provided by the calling
program.

NBYTE
A fullword binary number set to the number of bytes of data to be transferred.

492 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

BUF
The buffer containing the data to be transmitted. BUF should be the size specified in NBYTE.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNO for an error code.

SENDMSG
The SENDMSG call sends messages on a socket with descriptor S passed in an array of messages.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 111 on page 495 shows an example of SENDMSG call instructions.

WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDMSG'.
 01 S PIC 9(4) BINARY.
 01 MSG-HDR.
 03 MSG-NAME USAGE IS POINTER.
 03 MSG-NAME-LEN PIC 9(8) BINARY.
 03 IOV USAGE IS POINTER.
 03 IOVCNT USAGE IS POINTER.
 03 MSG-ACCRIGHTS USAGE IS POINTER.
 03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 DONTROUTE VALUE IS 4.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 01 SENDMSG-IPV4ADDR PIC 9(8) BINARY.
 01 SENDMSG-IPV6ADDR.

Chapter 13. CALL instruction application programming interface 493

 05 FILLER PIC9(16) BINARY.
 05 FILLER PIC9(16) BINARY.

 LINKAGE SECTION.
 01 L1.
 03 SENDMSG-IOVECTOR.
 05 IOV1A USAGE IS POINTER.
 05 IOV1AL PIC 9(8) COMP.
 05 IOV1L PIC 9(8) COMP.
 05 IOV2A USAGE IS POINTER.
 05 IOV2AL PIC 9(8) COMP.
 05 IOV2L PIC 9(8) COMP.
 05 IOV3A USAGE IS POINTER.
 05 IOV3AL PIC 9(8) COMP.
 05 IOV3L PIC 9(8) COMP.

 03 SENDMSG-BUFFER1 PIC X(16).
 03 SENDMSG-BUFFER2 PIC X(16).
 03 SENDMSG-BUFFER3 PIC X(16).
 03 SENDMSG-BUFNO PIC 9(8) COMP.

 * IPv4 socket address structure.

 03 NAME.
 05 FAMILY PIC 9(4) BINARY.
 05 PORT PIC 9(4) BINARY.
 05 IP-ADDRESS PIC 9(8) BINARY.
 05 RESERVED PIC X(8) BINARY.

 * IPv6 socket address structure.

 03 NAME.
 05 FAMILY PIC 9(4) BINARY.
 05 PORT PIC 9(4) BINARY.
 05 FLOWINFO PIC 9(8) BINARY.
 05 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 05 SCOPE-ID PIC 9(8) BINARY.

 PROCEDURE DIVISION USING L1.

 * For IPv6.
 MOVE 19 TO FAMILY.
 MOVE 1234 TO PORT.
 MOVE 0 TO FLOWINFO.
 MOVE SENDMSG-IPV6ADDR TO IP-ADDRESS.
 MOVE 0 TO SCOPE-ID.
 * For IPv4.
 MOVE 2 TO FAMILY.
 MOVE 1234 TO PORT.
 MOVE SENDMSG-IPV4ADDR TO IP-ADDRESS.

 SET MSG-NAME TO ADDRESS OF NAME.
 MOVE LENGTH OF NAME TO MSG-NAME-LEN.
 SET IOV TO ADDRESS OF SENDMSG-IOVECTOR.
 MOVE 3 TO SENDMSG-BUFNO.
 SET MSG-IOVCNT TO ADDRESS OF SENDMSG-BUFNO.
 SET IOV1A TO ADDRESS OF SENDMSG-BUFFER1.
 MOVE 0 TO IOV1AL.
 MOVE LENGTH OF SENDMSG-BUFFER1 TO IOV1L.
 SET IOV2A TO ADDRESS OF SENDMSG-BUFFER2.
 MOVE 0 TO IOV2AL.
 MOVE LENGTH OF SENDMSG-BUFFER2 TO IOV2L.
 SET IOV3A TO ADDRESS OF SENDMSG-BUFFER3.
 MOVE 0 TO IOV3AL.
 MOVE LENGTH OF SENDMSG-BUFFER3 TO IOV3L.
 SET MSG-ACCRIGHTS TO NULLS.
 SET MSG-ACCRIGHTS-LEN TO NULLS.
 MOVE 0 TO FLAGS.
 MOVE 'MESSAGE TEXT 1 ' TO SENDMSG-BUFFER1.
 MOVE 'MESSAGE TEXT 2 ' TO SENDMSG-BUFFER2.
 MOVE 'MESSAGE TEXT 3 ' TO SENDMSG-BUFFER3.

 CALL 'EZASOKET' USING SOC-FUNCTION S MSG-HDR FLAGS ERRNO RETCODE.

494 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Figure 111. SENDMSG call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SENDMSG. The field is left-justified and padded on the right with
blanks.

S
A value or the address of a halfword binary number specifying the socket descriptor.

MSG
A pointer to an array of message headers from which messages are sent.
Field

Description
NAME

On input, a pointer to a buffer where the sender's address is stored upon completion of the call.
The storage being pointed to should be for an IPv4 socket address or an IPv6 socket address. The
IPv4 socket address structure contains the following fields:
Field

Description
FAMILY

Output parameter. A halfword binary number specifying the IPv4 addressing family. The value
for IPv4 socket descriptor (S parameter) is decimal 2, indicating AF_INET.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

IP-ADDRESS
Output parameter. A fullword binary number specifying the 32-bit IPv4 IP address of the
sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure contains the following fields:
Field

Description
FAMILY

Output parameter. A halfword binary number specifying the IPv6 addressing family. The value
for IPv6 socket descriptor (S parameter) is decimal 19, indicating AF_INET6.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IP-ADDRESS
Output parameter. A 16-byte binary field set to the 128-bit IPv6 IP address of the sending
socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and may be specified for any address types and

Chapter 13. CALL instruction application programming interface 495

scopes. For a link scope IPv6-ADDRESS, SCOPE-ID may specify a link index which identifies a
set of interfaces. For all other address scopes, SCOPE-ID must be set to 0.

NAME-LEN
On input, a pointer to the size of the address buffer.

IOV
On input, a pointer to an array of three fullword structures with the number of structures equal to
the value in IOVCNT and the format of the structures as follows:
Fullword 1

A pointer to the address of a data buffer.
Fullword 2

Reserved.
Fullword 3

A pointer to the length of the data buffer referenced in Fullword 1.

In COBOL, the IOV structure must be defined separately in the Linkage section, as shown in the
example.

IOVCNT
On input, a pointer to a fullword binary field specifying the number of data buffers provided for this
call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is ignored.

ACCRIGHTS-LEN
On input, a pointer to the length of the access rights received. This field is ignored.

FLAGS
A fullword field containing the following values:

Literal Value Binary Value Description

NO-FLAG X'00000000' No flag is set. The command behaves like a
WRITE call.

MSG-OOB X'00000001' Send out-of-band data. (Stream sockets only.)

MSG-DONTROUTE X'00000004' Do not route. Routing is provided by the calling
program.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNO for an error code.

496 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SENDTO
SENDTO is similar to SEND, except that it includes the destination address parameter. The destination
address allows you to use the SENDTO call to send datagrams on a UDP socket, regardless of whether the
socket is connected.

The FLAGS parameter allows you to:

• Send out-of-band data, such as interrupts, aborts, and data marked as urgent.
• Suppress use of local routing tables. This implies that the caller takes control of routing, which requires

writing network software.

For datagram sockets, SENDTO transmits the entire datagram if it fits into the receiving buffer. Extra data
is discarded.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each call to this function can send any number
of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in RETCODE. Therefore,
programs using stream sockets should place SENDTO in a loop that repeats the call until all data has been
sent.

Note: See “EZACIC04 ” on page 525 for a subroutine that will translate EBCDIC input data to ASCII.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 112 on page 498 shows an example of SENDTO call instructions.

Chapter 13. CALL instruction application programming interface 497

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDTO'.
 01 S PIC 9(4) BINARY.
 01 FLAGS. PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 DONT-ROUTE VALUE IS 4.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).

 * IPv4 socket address structure.
 01 NAME
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE
 BUF NAME ERRNO RETCODE.

Figure 112. SENDTO call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SENDTO. The field is left-justified and padded on the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket sending the data.

FLAGS
A fullword field that returns one of the following values:

Literal Value Binary Value Description

NO-FLAG X'00000000' No flag is set. The command behaves like a
WRITE call.

MSG-OOB X'00000001' Send out-of-band data. (Stream sockets only.)

MSG-DONTROUTE X'00000004' Do not route. Routing is provided by the calling
program.

NBYTE
A fullword binary number set to the number of bytes to transmit.

BUF
Specifies the buffer containing the data to be transmitted. BUF should be the size specified in NBYTE.

NAME
Specifies the IPv4 socket address structure as follows:

498 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

FAMILY
A halfword binary field containing the IPv4 addressing family. For TCP/IP the value must be
decimal 2, indicating AF_INET.

PORT
A halfword binary field containing the port number bound to the socket.

IP-ADDRESS
A fullword binary field containing the socket's 32-bit IPv4 IP address.

RESERVED
Specifies eight-byte reserved field. This field is required, but not used.

Specifies the IPv6 socket address structure as follows:
FAMILY

A halfword binary field containing the IPv6 addressing family. For TCP/IP the value is decimal 19,
indicating AF_INET6.

PORT
A halfword binary field containing the port number bound to the socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 IP address, in network byte order.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and may be specified for any address types and scopes.
For a link scope IPv6-ADDRESS, SCOPE-ID may specify a link index which identifies a set of
interfaces. For all other address scopes, SCOPE-ID must be set to 0.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNO for an error code.

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket. SETSOCKOPT can be called only for
sockets in the AF_INET or AF_INET6 domains.

The OPTVAL and OPTLEN parameters are used to pass data used by the particular set command. The
OPTVAL parameter points to a buffer containing the data needed by the set command. The OPTLEN
parameter must be set to the size of the data pointed to by OPTVAL.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Chapter 13. CALL instruction application programming interface 499

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 113 on page 500 shows an example of SETSOCKOPT call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SETSOCKOPT'.
 01 S PIC 9(4) BINARY.
 01 OPTNAME PIC 9(8) BINARY.
 01 OPTVAL PIC 9(16) BINARY.
 01 OPTLEN PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.
 01 OPTVAL PIC 9(16) BINARY.
 01 OPTLEN PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION
 CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME
 OPTVAL OPTLEN ERRNO RETCODE.

Figure 113. SETSOCKOPT call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SETSOCKOPT. The field is left-justified and padded to the right
with blanks.

S
A halfword binary number set to the socket whose options are to be set.

OPTNAME
Input parameter. See the table below for a list of the options and their unique requirements.

See Appendix D, “GETSOCKOPT/SETSOCKOPT command values,” on page 769 for the numeric
values of OPTNAME.

Note: COBOL programs cannot contain field names with the underbar character. Fields representing
the option name should contain dashes instead.

OPTVAL
Contains data which further defines the option specified in OPTNAME. For the SETSOCKOPT API,
OPTVAL will be an input parameter. See the table below for a list of the options and their unique
requirements.

OPTLEN
Input parameter. A fullword binary field containing the length of the data returned in OPTVAL. See the
table below for determining on what to base the value of OPTLEN.

500 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_ADD_MEMBERSHIP

Use this option to enable an application to
join a multicast group on a specific
interface. An interface has to be specified
with this option. Only applications that
want to receive multicast datagrams need
to join multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a 4-
byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_ADD_SOURCE_MEMBERSHIP

Use this option to enable an application to
join a source multicast group on a specific
interface and a specific source address.
You must specify an interface and a
source address with this option.
Applications that want to receive
multicast datagrams need to join source
multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

Chapter 13. CALL instruction application programming interface 501

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_BLOCK_SOURCE

Use this option to enable an application to
block multicast packets that have a
source address that matches the given
IPv4 source address. You must specify an
interface and a source address with this
option. The specified multicast group
must have been joined previously.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_DROP_MEMBERSHIP

Use this option to enable an application to
exit a multicast group or to exit all sources
for a multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a 4-
byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_DROP_SOURCE_MEMBERSHIP

Use this option to enable an application to
exit a source multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

502 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_MULTICAST_IF

Use this option to set or obtain the IPv4
interface address used for sending
outbound multicast datagrams from the
socket application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be
transmitted only on one interface at a
time.

A 4-byte binary field containing
an IPv4 interface address.

A 4-byte binary field containing
an IPv4 interface address.

IP_MULTICAST_LOOP

Use this option to control or determine
whether a copy of multicast datagrams is
looped back for multicast datagrams sent
to a group to which the sending host itself
belongs. The default is to loop the
datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will contain a 1.

If disabled, will contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast
datagrams. The default value is '01'x
meaning that multicast is available only to
the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

IP_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given IPv4 multicast group. You must
specify an interface and a source address
with this option.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for the
PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

Chapter 13. CALL instruction application programming interface 503

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_ADDR_PREFERENCES

Use this option to query or set IPv6
address preferences of a socket. The
default source address selection
algorithm considers these preferences
when it selects an IP address that is
appropriate to communicate with a given
destination address.

This is an AF_INET6-only socket option.

Result: These flags are only preferences.
The stack could assign a source IP
address that does not conform to the
IPV6_ADDR_PREFERENCES flags that you
specify.

Guideline: Use the INET6_IS_SRCADDR
function to test whether the source IP
address matches one or more
IPV6_ADDR_PREFERENCES flags.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

Some of these flags are
contradictory. Combining
contradictory flags, such as
IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA,
results in error code EINVAL.

See IPV6_ADDR_PREFERENCES
and Mapping of GAI_HINTS/
GAI_ADDRINFO EFLAGS in
SEZAINST(CBLOCK) for the PL/I
example of the OPTNAME and
flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_ NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

See IPV6_ADDR_
PREFERENCES and Mapping of
GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings in
SEZAINST(EZACOBOL) for the
COBOL example of the
OPTNAME and flag definitions.

504 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_JOIN_GROUP

Use this option to control the reception of
multicast packets and specify that the
socket join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK) for
the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of
multicast packets and specify that the
socket leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK) for
the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: An application must be
APF authorized to enable it to
set the hop limit value above the
system defined hop limit value.
CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of multicast hops.

Chapter 13. CALL instruction application programming interface 505

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_MULTICAST_IF

Use this option to set or obtain the index
of the IPv6 interface used for sending
outbound multicast datagrams from the
socket application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine
whether a multicast datagram is looped
back on the outgoing interface by the IP
layer for local delivery when datagrams
are sent to a group to which the sending
host itself belongs. The default is to loop
multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop
limit used for outgoing unicast IPv6
packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: APF authorized
applications are permitted to set
a hop limit that exceeds the
system configured default. CICS
applications cannot execute as
APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of unicast hops.

IPV6_V6ONLY

Use this option to set or determine
whether the socket is restricted to send
and receive only IPv6 packets. The
default is to not restrict the sending and
receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

506 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_BLOCK_SOURCE

Use this option to enable an application to
block multicast packets that have a
source address that matches the given
source address. You must specify an
interface index and a source address with
this option. The specified multicast group
must have been joined previously.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_JOIN_GROUP

Use this option to enable an application to
join a multicast group on a specific
interface. You must specify an interface
index. Applications that want to receive
multicast datagrams must join multicast
groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_JOIN_SOURCE_GROUP

Use this option to enable an application to
join a source multicast group on a specific
interface and a source address. You must
specify an interface index and the source
address. Applications that want to receive
multicast datagrams only from specific
source addresses need to join source
multicast groups.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

Chapter 13. CALL instruction application programming interface 507

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_LEAVE_GROUP

Use this option to enable an application to
exit a multicast group or exit all sources
for a given multicast groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to
exit a source multicast group.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application to
unblock a previously blocked source for a
given multicast group. You must specify
an interface index and a source address
with this option.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface index
number followed by a socket
address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for the
PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

508 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to
ASCII. When SO_ASCII is not set, data is
not translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_BROADCAST

Use this option to set or determine
whether a program can send broadcast
messages over the socket to destinations
that can receive datagram messages. The
default is disabled.

Note: This option has no meaning for
stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the
status of the debug option. The default is
disabled. The debug option controls the
recording of debug information.

Notes:

1. This is a REXX-only socket option.
2. This option has meaning only for

stream sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set,
data is not translated to or from EBCDIC.
This option is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_ERROR

Use this option to request pending errors
on the socket or to check for
asynchronous errors on connected
datagram sockets or for other errors that
are not explicitly returned by one of the
socket calls. The error status is clear
afterwards.

N/A A 4-byte binary field containing
the most recent ERRNO for the
socket.

Chapter 13. CALL instruction application programming interface 509

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_KEEPALIVE

Use this option to set or determine
whether the keep alive mechanism
periodically sends a packet on an
otherwise idle connection for a stream
socket.

The default is disabled.

When activated, the keep alive
mechanism periodically sends a packet on
an otherwise idle connection. If the
remote TCP does not respond to the
packet or to retransmissions of the
packet, the connection is terminated with
the error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine
how TCP/IP processes data that has not
been transmitted when a CLOSE is issued
for the socket. The default is disabled.

Notes:

1. This option has meaning only for
stream sockets.

2. If you set a zero linger time, the
connection cannot close in an orderly
manner, but stops, resulting in a RESET
segment being sent to the connection
partner. Also, if the aborting socket is
in nonblocking mode, the close call is
treated as though no linger option had
been set.

When SO_LINGER is set and CLOSE is
called, the calling program is blocked until
the data is successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and
TCP/IP continues to attempt to send data
for a specified time. This usually allows
sufficient time to complete the data
transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP waits only the amount of time
specified in OPTVAL for SO_LINGER.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable
this option. Set LINGER to the
number of seconds that TCP/IP
lingers after the CLOSE is issued.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a 0
indicates disabled. LINGER
indicates the number of seconds
that TCP/IP will try to send data
after the CLOSE is issued.

510 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_OOBINLINE

Use this option to control or determine
whether out-of-band data is received.

Note: This option has meaning only for
stream sockets.

When this option is set, out-of-band data
is placed in the normal data input queue
as it is received and is available to a RECV
or a RECVFROM even if the OOB flag is not
set in the RECV or the RECVFROM.

When this option is disabled, out-of-band
data is placed in the priority data input
queue as it is received and is available to
a RECV or a RECVFROM only when the
OOB flag is set in the RECV or the
RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

• TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
Socket

• UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
Socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP
receive buffer.

If disabled, contains a 0.

Chapter 13. CALL instruction application programming interface 511

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_RCVTIMEO

Use this option to control or determine
the maximum length of time that a
receive-type function can wait before it
completes.

If a receive-type function has blocked for
the maximum length of time that was
specified without receiving data, control is
returned with an errno set to
EWOULDBLOCK. The default value for this
option is 0, which indicates that a receive-
type function does not time out.

When the MSG_WAITALL flag (stream
sockets only) is specified, the timeout
takes precedence. The receive-type
function can return the partial count. See
the explanation of that operation's
MSG_WAITALL flag parameter.

The following receive-type functions are
supported:

• READ
• READV
• RECV
• RECVFROM
• RECVMSG

This option requires a TIMEVAL
structure, which is defined in
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds can be a value in the
range 0 - 2 678 400 (equal to 31
days), and the microseconds can
be a value in the range 0 -
 1 000 000 (equal to 1 second).
Although TIMEVAL value can be
specified using microsecond
granularity, the internal TCP/IP
timers that are used to
implement this function have a
granularity of approximately 100
milliseconds.

This option stores a TIMEVAL
structure that is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2 678 400 (equal
to 31 days). The number of
microseconds value that is
returned is in the range 0 -
 1 000 000.

512 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_REUSEADDR

Use this option to control or determine
whether local addresses are reused. The
default is disabled. This alters the normal
algorithm used with BIND. The normal
BIND algorithm allows each Internet
address and port combination to be
bound only once. If the address and port
have been already bound, then a
subsequent BIND will fail and result error
will be EADDRINUSE.

When this option is enabled, the following
situations are supported:

• A server can BIND the same port
multiple times as long as every
invocation uses a different local IP
address and the wildcard address
INADDR_ANY is used only one time per
port.

• A server with active client connections
can be restarted and can bind to its port
without having to close all of the client
connections.

• For datagram sockets, multicasting is
supported so multiple bind() calls can
be made to the same class D address
and port number.

• If you require multiple servers to BIND
to the same port and listen on
INADDR_ANY, see the SHAREPORT
option on the PORT statement in
TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
send buffer. The size of the TCP/IP send
buffer is protocol specific and is based on
the following conditions:

• The TCPSENDBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
socket

• The UDPSENDBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP send
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP send
buffer.

If disabled, contains a 0.

Chapter 13. CALL instruction application programming interface 513

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_SNDTIMEO

Use this option to control or determine
the maximum length of time that a send-
type function can remain blocked before it
completes.

If a send-type function has blocked for
this length of time, it returns with a partial
count or, if no data is sent, with an errno
set to EWOULDBLOCK. The default value
for this is 0, which indicates that a send-
type function does not time out.

For a SETSOCKOPT, the following send-
type functions are supported:

• SEND
• SENDMSG
• SENDTO
• WRITE
• WRITEV

This option requires a TIMEVAL
structure, which is defined in the
SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds value is in the range 0 -
 2 678 400 (equal to 31 days),
and the microseconds value is in
the range 0 - 1 000 000 (equal
to 1 second). Although the
TIMEVAL value can be specified
using microsecond granularity,
the internal TCP/IP timers that
are used to implement this
function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
SYS1.MACLIB(BPXYRLIM). The
TIMEVAL structure contains the
number of seconds and
microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2 678 400 (equal
to 31 days). The microseconds
value that is returned is in the
range 0 - 1 000 000.

SO_TYPE

Use this option to return the socket type.

N/A A 4-byte binary field indicating
the socket type:

X'1' indicates SOCK_STREAM.

X'2' indicates SOCK_DGRAM.

X'3' indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine
whether a socket-specific timeout value
(in seconds) is to be used in place of a
configuration-specific value whenever
keep alive timing is active for that socket.

When activated, the socket-specified
timer value remains in effect until
respecified by SETSOCKOPT or until the
socket is closed. For more information
about the socket option parameters, see
TCP_KeepAlive socket option inz/OS
Communications Server: IP Programmer's
Guide and Reference.

Tip: The site administrator can enable the
global keep-alive mechanism by
specifying the INTERVAL parameter on
the TCPCONFIG statement in the TCP/IP
stack profile data set, TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to a value in the
range of 1 – 2 147 460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the specific
timer value (in seconds) that is
in effect for the given socket.

If disabled, contains a 0
indicating keep alive timing is
not active.

514 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

TCP_NODELAY

Use this option to set or determine
whether data sent over the socket is
subject to the Nagle algorithm (RFC 896).

Under most circumstances, TCP sends
data when it is presented. When this
option is enabled, TCP will wait to send
small amounts of data until the
acknowledgment for the previous data
sent is received. When this option is
disabled, TCP will send small amounts of
data even before the acknowledgment for
the previous data sent is received.

Note: Use the following to set
TCP_NODELAY OPTNAME value for
COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP
 VALUE 2147483649.
01 TCP-NODELAY-REDEF REDEFINES
 TCP-NODELAY-VAL.
 05 FILLER PIC 9(6) BINARY.
 05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.

If enabled, contains a 0.

If disabled, contains a 1.

SHUTDOWN
One way to terminate a network connection is to issue the CLOSE call which attempts to complete all
outstanding data transmission requests prior to breaking the connection. The SHUTDOWN call can be
used to close one-way traffic while completing data transfer in the other direction. The HOW parameter
determines the direction of traffic to shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter determines the amount of
time the system will wait before releasing the connection. For example, with a LINGER value of 30
seconds, system resources (including the IMS or CICS transaction) will remain in the system for up to 30
seconds after the CLOSE call is issued. In high volume, transaction-based systems like CICS and IMS, this
can impact performance severely.

If the SHUTDOWN call is issued when the CLOSE call is received, the connection can be closed
immediately, rather than waiting for the 30-second delay.

If you issue SHUTDOWN for a socket that currently has outstanding socket calls pending, see Table 3 on
page 32 to determine the effects of this operation on the outstanding socket calls.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 13. CALL instruction application programming interface 515

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 114 on page 516 shows an example of SHUTDOWN call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SHUTDOWN'.
 01 S PIC 9(4) BINARY.
 01 HOW PIC 9(8) BINARY.
 88 END-FROM VALUE 0.
 88 END-TO VALUE 1.
 88 END-BOTH VALUE 2.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S HOW ERRNO RETCODE.

Figure 114. SHUTDOWN call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SHUTDOWN. The field is left-justified and padded on the right
with blanks.

S
A halfword binary number set to the socket descriptor of the socket to be shutdown.

HOW
A fullword binary field. Set to specify whether all or part of a connection is to be shut down. The
following values can be set:
Value

Description
0 (END-FROM)

Ends further receive operations.
1 (END-TO)

Ends further send operations.
2 (END-BOTH)

Ends further send and receive operations.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

516 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket descriptor representing the
endpoint.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 115 on page 517 shows an example of SOCKET call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SOCKET'.
 * AF_INET
 01 AF PIC 9(8) COMP VALUE 2.

 * AF_INET6
 01 AF PIC 9(8) COMP VALUE 19.
 01 SOCTYPE PIC 9(8) BINARY.
 88 STREAM VALUE 1.
 88 DATAGRAM VALUE 2.
 88 RAW VALUE 3.
 01 PROTO PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION AF SOCTYPE
 PROTO ERRNO RETCODE.

Figure 115. SOCKET call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Chapter 13. CALL instruction application programming interface 517

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SOCKET. The field is left-justified and padded on the right with
blanks.

AF
A fullword binary field set to the addressing family. For TCP/IP the value is set to decimal 2 for
AF_INET, or decimal 19, indicating AF_INET6.

SOCTYPE
A fullword binary field set to the type of socket required. The types are:
Value

Description
1

Stream sockets provide sequenced, two-way byte streams that are reliable and connection-
oriented. They support a mechanism for out-of-band data.

2
Datagram sockets provide datagrams, which are connectionless messages of a fixed maximum
length whose reliability is not guaranteed. Datagrams can be corrupted, received out of order, lost,
or delivered multiple times.

3
Raw sockets provide the interface to internal protocols (such as IP and ICMP).

PROTO
A fullword binary field set to the protocol to be used for the socket. If this field is set to 0, the default
protocol is used. For streams, the default is TCP; for datagrams, the default is UDP.

PROTO numbers are found in the hlq.etc.proto data set. For IPv6 raw sockets, PROTO cannot be set to
the following values:

Protocol name
Numeric value

IPROTO_HOPOPTS
0

IPPROTO_TCP
6

IPPROTO_UDP
17

IPPROTO_IPV6
41

IPPROTO_ROUTING
43

IPPROTO_FRAGMENT
44

IPPROTO_ESP
50

IPPROTO_AH
51

IPPROTO_NONE
59

IPPROTO_DSTOPTS
60

518 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
> or = 0

Contains the new socket descriptor.
-1

Check ERRNO for an error code.

TAKESOCKET
The TAKESOCKET call acquires a socket from another program and creates a new socket. Typically, a child
server issues this call using client ID and socket descriptor data that it obtained from the concurrent
server. See “GIVESOCKET” on page 450 for a discussion of the use of GETSOCKET and TAKESOCKET
calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in RETCODE. You should use this
new socket descriptor in subsequent calls such as GETSOCKOPT, which require the S (socket descriptor)
parameter.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 116 on page 520 shows an example of TAKESOCKET call instructions.

Chapter 13. CALL instruction application programming interface 519

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'TAKESOCKET'.
 01 SOCRECV PIC 9(4) BINARY.
 01 CLIENT.
 03 DOMAIN PIC 9(8) BINARY.
 03 NAME PIC X(8).
 03 TASK PIC X(8).
 03 RESERVED PIC X(20).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION SOCRECV CLIENT
 ERRNO RETCODE.

Figure 116. TAKESOCKET call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing TAKESOCKET. The field is left-justified and padded to the right
with blanks.

SOCRECV
A halfword binary field set to the descriptor of the socket to be taken. The socket to be taken is
passed by the concurrent server.

CLIENT
Specifies the client ID of the program that is giving the socket. In CICS and IMS, these parameters are
passed by the Listener program to the program that issues the TAKESOCKET call.

• In CICS, the information is obtained using EXEC CICS RETRIEVE.
• In IMS, the information is obtained by issuing GU TIM.

DOMAIN
A fullword binary field set to the domain of the program giving the socket. It is decimal 2,
indicating AF_INET, or decimal 19, indicating AF_INET6.

Note: The TAKESOCKET can only acquire a socket of the same address family from a
GIVESOCKET.

NAME
Specifies an 8-byte character field set to the MVS address space identifier of the program that
gave the socket.

TASK
Specifies an 8-byte field set to the task identifier of the task that gave the socket.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application
ERRNO

A fullword binary field. If the value of RETCODE is negative, the field contains an error number. See
Appendix B, “Socket call error return codes,” on page 745 for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description

520 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

≥ 0
Contains the new socket descriptor.

-1
Check ERRNO for an error code.

TERMAPI
This call terminates the session created by INITAPI.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 117 on page 521 shows an example of TERMAPI call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'TERMAPI'.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION.

Figure 117. TERMAPI call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing TERMAPI. The field is left-justified and padded to the right with
blanks.

WRITE
The WRITE call writes data on a connected socket. This call is similar to SEND, except that it lacks the
control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the receiving buffer.

Stream sockets act like streams of information with no boundaries separating data. For example, if a
program wants to send 1000 bytes, each call to this function can send any number of bytes, up to the
entire 1000 bytes. The number of bytes sent will be returned in RETCODE. Therefore, programs using
stream sockets should place this call in a loop, calling this function until all data has been sent.

See “EZACIC04 ” on page 525 for a subroutine that will translate EBCDIC output data to ASCII.

Chapter 13. CALL instruction application programming interface 521

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 118 on page 522 shows an example of WRITE call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'WRITE'.
 01 S PIC 9(4) BINARY.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NBYTE BUF
 ERRNO RETCODE.

Figure 118. WRITE call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing WRITE. The field is left-justified and padded on the right with
blanks.

S
A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be transmitted.

BUF
Specifies the buffer containing the data to be transmitted.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:

522 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Value
Description

≥0
A successful call. A return code greater than 0 indicates the number of bytes of data written.

-1
Check ERRNO for an error code.

WRITEV
The WRITEV function writes data on a socket from a set of buffers.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See "Addressability mode (Amode) considerations" under
“CALL instruction API environmental restrictions and programming
requirements” on page 391.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 119 on page 523 shows an example of WRITEV call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE 'WRITEV'.
 01 S PIC 9(4) BINARY.
 01 IOVCNT PIC 9(8) BINARY.

 01 IOV.
 03 BUFFER-ENTRY OCCURS N TIMES.
 05 BUFFER-POINTER USAGE IS POINTER.
 05 RESERVED PIC X(4).
 05 BUFFER-LENGTH PIC 9(8) USAGE IS BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 SET BUFFER-POINTER(1) TO ADDRESS OF BUFFER1.
 SET BUFFER-LENGTH(1) TO LENGTH OF BUFFER1.
 SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.
 SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.
 " " " " "
 " " " " "
 SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.
 SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.

 CALL 'EZASOKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 119. WRITEV call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Chapter 13. CALL instruction application programming interface 523

Parameter values set by the application
S

A value or the address of a halfword binary number specifying the descriptor of the socket from which
the data is to be written.

IOV
An array of tripleword structures with the number of structures equal to the value in IOVCNT and the
format of the structures as follows:
Fullword 1

The address of a data buffer.
Fullword 2

Reserved.
Fullword 3

The length of the data buffer referenced in Fullword 1.
IOVCNT

A fullword binary field specifying the number of data buffers provided for this call.

Parameters returned by the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix B,
“Socket call error return codes,” on page 745 for information about ERRNO return codes.

RETCODE
A fullword binary field.
Value

Meaning
<0

Check ERRNO for an error code.
0

Connection partner has closed connection.
>0

Number of bytes sent.

Using data translation programs for socket call interface
In addition to the socket calls, you can use utility programs to translate data.

Assembler language utility programs call format
The following example shows the assembler language call format for utility programs:

>>__CALL EZACIC04,(Inbuf, Inbuf_Length),VL__><

Data translation
TCP/IP hosts and networks use ASCII data notation; MVS TCP/IP and its subsystems use EBCDIC data
notation. In situations where data must be translated from one notation to the other, you can use the
following utility programs:

• EZACIC04 translates EBCDIC data to ASCII data using the translation table documented in the z/OS
Communications Server: IP Configuration Reference.

• EZACIC05 translates ASCII data to EBCDIC data using the translation table documented in the z/OS
Communications Server: IP Configuration Reference.

524 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• EZACIC14 provides an alternative to EZACIC04 and translates EBCDIC data to ASCII data using the
translation table documented in Figure 127 on page 534.

• EZACIC15 provides an alternative to EZACIC05 and translates ASCII data to EBCDIC data using the
translation table documented in Figure 129 on page 535.

Bit-string processing
In C-language, bit strings are often used to convey flags, switch settings, and so on; TCP/IP makes
frequent uses of bit strings. However, since bit strings are difficult to decode in COBOL, TCP/IP includes
the following information:

• EZACIC06 translates bit-masks into character arrays and character arrays into bit-masks.
• EZACIC08 interprets the variable length address list in the HOSTENT structure returned by

GETHOSTBYNAME or GETHOSTBYADDR.
• EZACIC09 interprets the ADDRINFO structure returned by GETADDRINFO.

EZACIC04
The EZACIC04 program is used to translate EBCDIC data to ASCII data. Figure 120 on page 525 shows
how EZACIC04 translates a byte of EBCDIC data.

 --
ASCII	second hex digit of byte of EBCDIC data															
output by	---															
EZACIC04	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	1A	09	1A	7F	1A	1A	1A	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	1A	0A	08	1A	18	19	1A	1A	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	1A	1A	1C	1A	1A	0A	17	1B	1A	1A	1A	1A	1A	05	06
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	1A	1A	16	1A	1A	1E	1A	04	1A	1A	1A	1A	14	15	1A
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	20	A6	E1	80	EB	90	9F	E2	AB	8B	9B	2E	3C	28	2B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	26	A9	AA	9C	DB	A5	99	E3	A8	9E	21	24	2A	29	3B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	2D	2F	DF	DC	9A	DD	DE	98	9D	AC	BA	2C	25	5F	3E
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	D7	88	94	B0	B1	B2	FC	D6	FB	60	3A	23	40	27	3D
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	F8	61	62	63	64	65	66	67	68	69	96	A4	F3	AF	AE
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
EBCDIC	9	8C	6A	6B	6C	6D	6E	6F	70	71	72	97	87	CE	93	F1
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	C8	7E	73	74	75	76	77	78	79	7A	EF	C0	DA	5B	F2
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	B5	B6	FD	B7	B8	B9	E6	BB	BC	BD	8D	D9	BF	5D	D8
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	7B	41	42	43	44	45	46	47	48	49	CB	CA	BE	E8	EC
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	7D	4A	4B	4C	4D	4E	4F	50	51	52	A1	AD	F5	F4	A3
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	5C	E7	53	54	55	56	57	58	59	5A	A0	85	8E	E9	E4
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	30	31	32	33	34	35	36	37	38	39	B3	F7	F0	FA	A7
 --

Figure 120. EZACIC04 EBCDIC-to-ASCII table

Figure 121 on page 526 shows an example of EZACIC04 call instructions.

Chapter 13. CALL instruction application programming interface 525

WORKING-STORAGE SECTION.
 01 OUT-BUFFER PIC X(length of output).
 01 LENGTH PIC 9(8) BINARY.

PROCEDURE DIVISION.
 CALL 'EZACIC04' USING OUT-BUFFER LENGTH.

Figure 121. EZACIC04 call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

OUT-BUFFER
A buffer that contains the following data:

• When called, EBCDIC data
• Upon return, ASCII data

LENGTH
Specifies the length of the data to be translated.

EZACIC05
The EZACIC05 program is used to translate ASCII data to EBCDIC data. EBCDIC data is required by
COBOL, PL/I, and assembler language programs. Figure 122 on page 526 shows how EZACIC05
translates a byte of ASCII data.

 --
EBCDIC	second hex digit of byte of ASCII data															
output by	---															
EZACIC05	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	37	2D	2E	2F	16	05	25	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	3C	3D	32	26	18	19	3F	27	22	1D	35
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	40	5A	7F	7B	5B	6C	50	7D	4D	5D	5C	4E	6B	60	4B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	7A	5E	4C	7E	6E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	7C	C1	C2	C3	C4	C5	C6	C7	C8	C9	D1	D2	D3	D4	D5
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	D7	D8	D9	E2	E3	E4	E5	E6	E7	E8	E9	AD	E0	BD	5F
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	79	81	82	83	84	85	86	87	88	89	91	92	93	94	95
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	97	98	99	A2	A3	A4	A5	A6	A7	A8	A9	C0	4F	D0	A1
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	00	01	02	03	37	2D	2E	2F	16	05	25	0B	0C	0D	0E
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
ASCII	9	10	11	12	13	3C	3D	32	26	18	19	3F	27	22	1D	35
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	40	5A	7F	7B	5B	6C	50	7D	4D	5D	5C	4E	6B	60	AF
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	7A	5E	4C	7E	6E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	7C	C1	C2	C3	C4	C5	C6	C7	C8	C9	D1	D2	D3	D4	D5
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	D7	D8	D9	E2	E3	E4	E5	E6	E7	E8	E9	AD	E0	BD	5F
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	79	81	82	83	84	85	86	87	88	89	91	92	93	94	95
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	97	98	99	A2	A3	A4	A5	A6	A7	A8	A9	C0	4F	D0	A1
 --

Figure 122. EZACIC05 ASCII-to-EBCDIC table

Figure 123 on page 527 shows an example of EZACIC05 call instructions.

526 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

WORKING-STORAGE SECTION.
 01 IN-BUFFER PIC X(length of output)
 01 LENGTH PIC 9(8) BINARY VALUE

PROCEDURE DIVISION.
 CALL 'EZACIC05' USING IN-BUFFER LENGTH.

Figure 123. EZACIC05 call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

IN-BUFFER
A buffer that contains the following data:

• When called, ASCII data
• Upon return, EBCDIC data

LENGTH
Specifies the length of the data to be translated.

EZACIC06
The SELECT and SELECTEX call uses bit strings to specify the sockets to test and to return the results of
the test. Because bit strings are difficult to manage in COBOL, you might want to use EZACIC06 utility
program to translate them to character strings to be used with the SELECT or SELECTEX call.

Figure 124 on page 527 shows an example of EZACIC06 call instructions.

WORKING-STORAGE SECTION.
 01 CHAR-MASK.
 05 CHAR-STRING PIC X(nn).

 01 CHAR-ARRAY REDEFINES CHAR-MASK.
 05 CHAR-ENTRY-TABLE OCCURS nn TIMES.
 10 CHAR-ENTRY PIC X(1).
 01 BIT-MASK.
 05 BIT-ARRAY-FWDS OCCURS (nn+31)/32 TIMES.
 10 BIT_ARRAY_WORD PIC 9 (8) COMP.

 01 BIT-FUNCTION-CODES.
 05 CTOB PIC X(4) VALUE 'CTOB'.
 05 BTOC PIC X(4) VALUE 'BTOC'.

 01 CHAR-MASK-LENGTH PIC 9(8) COMP VALUE nn.

 PROCEDURE CALL (to convert from character to binary)
 CALL 'EZACIC06' USING CTOB
 BIT-MASK
 CHAR-MASK
 CHAR-MASK-LENGTH
 RETCODE.

 PROCEDURE CALL (to convert from binary to character)
 CALL 'EZACIC06' USING BTOC
 BIT-MASK
 CHAR-MASK
 CHAR-MASK-LENGTH
 RETCODE.

Figure 124. EZACIC06 call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Chapter 13. CALL instruction application programming interface 527

CHAR-MASK
Specifies the character array where nn is the maximum number of sockets in the array. The first
character in the array represents socket 0, the second represents socket 1, and so on. Note that the
index is 1 greater than the socket number [for example, CHAR-ENTRY(1) represents socket 0, CHAR-
ENTRY (2) represents socket 1, and so on.]

BIT-MASK
Specifies the bit string to be translated for the SELECT call. Within each fullword of the bit string, the
bits are ordered right to left. The right-most bit in the first fullword represents socket 0 and the left-
most bit represents socket 31. The right-most bit in the second fullword represents socket 32 and the
left-most bit represents socket 63. The number of fullwords in the bit string should be calculated by
dividing the sum of 31 and the character array length by 32 (truncate the remainder).

COMMAND
BTOC specifies bit string to character array translation.

CTOB specifies character array to bit string translation.

CHAR-MASK-LENGTH
Specifies the length of the character array. This field should be no greater than 1 plus the MAXSNO
value returned on the INITAPI (which is usually the same as the MAXSOC value specified on the
INITAPI).

RETCODE
A binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

Example

If you want to use the SELECT call to test sockets 0, 5, and 32, and you are using a character array to
represent the sockets, you must set the appropriate characters in the character array to 1. In this
example, index positions 1, 6 and 33 in the character array are set to 1. Then you can call EZACIC06 with
the COMMAND parameter set to CTOB. When EZACIC06 returns, the first fullword of BIT-MASK contains
B'00000000000000000000000000100001' to indicate that sockets 0 and 5 will be checked. The
second word of BIT-MASK contains B'00000000000000000000000000000001' to indicate that socket
32 will be checked. These instructions process the bit string shown in the following example:

MOVE ZEROS TO CHAR-STRING.
MOVE '1' TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(33).
CALL 'EZACIC06' USING TOKEN CTOB BIT-MASK CH-MASK
 CHAR-MASK-LENGTH RETCODE.
MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket activity, enter the
following instructions.

MOVE TO BIT-MASK.
CALL 'EZACIC06' USING TOKEN BTOC BIT-MASK CH-MASK
 CHAR-MASK-LENGTH RETCODE.
PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX
 FROM 1 BY 1 UNTIL IDX EQUAL CHAR-MASK-LENGTH.

TEST-SOCKET.
 IF CHAR-ENTRY(IDX) EQUAL '1'
 THEN PERFORM SOCKET-RESPONSE THRU SOCKET-RESPONSE-EXIT
 ELSE NEXT SENTENCE.
TEST-SOCKET-EXIT.
 EXIT.

528 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZACIC08
The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket calls that return a
structure known as HOSTENT. A given TCP/IP host can have multiple alias names and host IP addresses.

TCP/IP uses indirect addressing to connect the variable number of alias names and IP addresses in the
HOSTENT structure that are returned by the GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/I or assembler language, the HOSTENT structure can be processed in a relatively
straight-forward manner. However, if you are coding in COBOL, HOSTENT can be more difficult to process
and you should use the EZACIC08 subroutine to process it for you.

It works as follows:

1. GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that indirectly addresses the
lists of alias names and IP addresses.

2. Upon return from GETHOSTBYADDR or GETHOSTBYNAME, your program calls EZACIC08 and passes it
the address of the HOSTENT structure. EZACIC08 processes the structure and returns the following
information:

• The length of host name, if present
• The host name
• The number of alias names for the host
• The alias name sequence number
• The length of the alias name
• The alias name
• The host IP address type, always 2 for AF_INET
• The host IP address length, always 4 for AF_INET
• The number of host IP addresses for this host
• The host IP address sequence number
• The host IP address

3. If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one alias name or host IP
address, the application program should repeat the call to EZACIC08 until all alias names and host IP
addresses have been retrieved.

Figure 125 on page 530 shows an example of EZACIC08 call instructions.

Chapter 13. CALL instruction application programming interface 529

 WORKING-STORAGE SECTION.

 01 HOSTENT-ADDR PIC 9(8) BINARY.
 01 HOSTNAME-LENGTH PIC 9(4) BINARY.
 01 HOSTNAME-VALUE PIC X(255).
 01 HOSTALIAS-COUNT PIC 9(4) BINARY.
 01 HOSTALIAS-SEQ PIC 9(4) BINARY.
 01 HOSTALIAS-LENGTH PIC 9(4) BINARY.
 01 HOSTALIAS-VALUE PIC X(255).
 01 HOSTADDR-TYPE PIC 9(4) BINARY.
 01 HOSTADDR-LENGTH PIC 9(4) BINARY.
 01 HOSTADDR-COUNT PIC 9(4) BINARY.
 01 HOSTADDR-SEQ PIC 9(4) BINARY.
 01 HOSTADDR-VALUE PIC 9(8) BINARY.
 01 RETURN-CODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 CALL 'EZASOKET' USING 'GETHOSTBYADDR'
 HOSTADDR HOSTENT-ADDR
 RETCODE.

 CALL 'EZASOKET' USING 'GETHOSTBYNAME'
 NAMELEN NAME HOSTENT-ADDR
 RETCODE.

 CALL 'EZACIC08' USING HOSTENT-ADDR HOSTNAME-LENGTH
 HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ
 HOSTALIAS-LENGTH HOSTALIAS-VALUE
 HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT
 HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE.

Figure 125. EZAZIC08 call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application
HOSTENT-ADDR

This fullword binary field must contain the address of the HOSTENT structure (as returned by the
GETHOSTBYxxxx call). This variable is the same as the variable HOSTENT in the GETHOSTBYADDR
and GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ
This halfword field is used by EZACIC08 to index the list of alias names. When EZACIC08 is called, it
adds 1 to the current value of HOSTALIAS-SEQ and uses the resulting value to index into the table of
alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field should be set to 0 for the
initial call to EZACIC08. For all subsequent calls to EZACIC08, this field should contain the
HOSTALIAS-SEQ number returned by the previous invocation.

HOSTADDR-SEQ
This halfword field is used by EZACIC08 to index the list of IP addresses. When EZACIC08 is called, it
adds 1 to the current value of HOSTADDR-SEQ and uses the resulting value to index into the table of
IP addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field should be set to 0 for the
initial call to EZACIC08. For all subsequent calls to EZACIC08, this field should contain the
HOSTADDR-SEQ number returned by the previous call.

Parameter values returned to the application
HOSTNAME-LENGTH

This halfword binary field contains the length of the host name (if host name was returned).
HOSTNAME-VALUE

This 255-byte character string contains the host name (if host name was returned).
HOSTALIAS-COUNT

This halfword binary field contains the number of alias names returned.
HOSTALIAS-SEQ

This halfword binary field is the sequence number of the alias name currently found in HOSTALIAS-
VALUE.

530 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

HOSTALIAS-LENGTH
This halfword binary field contains the length of the alias name currently found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE
This 255-byte character string contains the alias name returned by this instance of the call. The length
of the alias name is contained in HOSTALIAS-LENGTH.

HOSTADDR-TYPE
This halfword binary field contains the type of host address. For FAMILY type AF_INET, HOSTADDR-
TYPE is always 2.

HOSTADDR-LENGTH
This halfword binary field contains the length of the host IP address currently found in HOSTADDR-
VALUE. For FAMILY type AF_INET, HOSTADDR-LENGTH is always set to 4.

HOSTADDR-COUNT
This halfword binary field contains the number of host IP addresses returned by this instance of the
call.

HOSTADDR-SEQ
This halfword binary field contains the sequence number of the host IP address currently found in
HOSTADDR-VALUE.

HOSTADDR-VALUE
This fullword binary field contains a host IP address.

RETURN-CODE
This fullword binary field contains the EZACIC08 return code:
Value

Description
0

Successful completion.
-1

HOSTENT address is not valid.
-2

A value of HOSTALIAS-SEQ is not valid.
-3

A value of HOSTADDR-SEQ is not valid.

EZACIC09

The GETADDRINFO call was derived from the C socket call that return a structure known as RES. A given
TCP/IP host can have multiple sets of NAMES. TCP/IP uses indirect addressing to connect the variable
number of NAMES in the RES structure that is returned by the GETADDRINFO call. If you are coding in
PL/I or assembler language, the RES structure can be processed in a relatively straight-forward manner.
However, if you are coding in COBOL, RES can be more difficult to process and you should use the
EZACIC09 subroutine to process it for you. It works as follows:

1. GETADDRINFO returns a RES structure that indirectly addresses the lists of socket address structures.
2. Upon return from GETADDRINFO, your program calls EZACIC09 and passes it the address of the next

address information structure as referenced by the NEXT argument. EZACIC09 processes the structure
and returns the following information:

a. The socket address structure
b. The next address information structure

3. If the GETADDRINFO call returns more than one socket address structure the application program
should repeat the call to EZACIC09 until all socket address structures have been retrieved.

Chapter 13. CALL instruction application programming interface 531

Figure 126 on page 533 shows an example of EZACIC09 call instructions.

WORKING-STORAGE SECTION.
 *
 * Variables used for the GETADDRINFO call
 *
 01 getaddrinfo-parms.
 02 node-name pic x(255).
 02 node-name-len pic 9(8) binary.
 02 service-name pic x(32).
 02 service-name-len pic 9(8) binary.
 02 canonical-name-len pic 9(8) binary.
 02 ai-passive pic 9(8) binary value 1.
 02 ai-canonnameok pic 9(8) binary value 2.
 02 ai-numerichost pic 9(8) binary value 4.
 02 ai-numericserv pic 9(8) binary value 8.
 02 ai-v4mapped pic 9(8) binary value 16.
 02 ai-all pic 9(8) binary value 32.
 02 ai-addrconfig pic 9(8) binary value 64.
 *
 * Variables used for the EZACIC09 call
 *
 01 ezacic09-parms.
 02 res usage is pointer.
 02 res-name-len pic 9(8) binary.
 02 res-canonical-name pic x(256).
 02 res-name usage is pointer.
 02 res-next-addrinfo usage is pointer.
 *
 * Socket address structure
 *
 01 server-socket-address.
 05 server-family pic 9(4) Binary Value 19.
 05 server-port pic 9(4) Binary Value 9997.
 05 server-flowinfo pic 9(8) Binary Value 0.
 05 server-ipaddr.
 10 filler pic 9(16) binary value 0.
 10 filler pic 9(16) binary value 0.
 05 server-scopeid pic 9(8) Binary Value 0.

 LINKAGE SECTION.
 01 L1.
 03 HINTS-ADDRINFO.
 05 HINTS-AI-FLAGS PIC 9(8) BINARY.
 05 HINTS-AI-FAMILY PIC 9(8) BINARY.
 05 HINTS-AI-SOCKTYPE PIC 9(8) BINARY.
 05 HINTS-AI-PROTOCOL PIC 9(8) BINARY.
 05 FILLER PIC 9(8) BINARY.
 05 FILLER PIC 9(8) BINARY.
 05 FILLER PIC 9(8) BINARY.
 05 FILLER PIC 9(8) BINARY.
 03 HINTS-ADDRINFO-PTR USAGE IS POINTER.
 03 RES-ADDRINFO-PTR USAGE IS POINTER.
 *
 * RESULTS ADDRESS INFO
 *
 01 RESULTS-ADDRINFO.
 05 RESULTS-AI-FLAGS PIC 9(8) BINARY.
 05 RESULTS-AI-FAMILY PIC 9(8) BINARY.
 05 RESULTS-AI-SOCKTYPE PIC 9(8) BINARY.
 05 RESULTS-AI-PROTOCOL PIC 9(8) BINARY.
 05 RESULTS-AI-ADDR-LEN PIC 9(8) BINARY.
 05 RESULTS-AI-CANONICAL-NAME USAGE IS POINTER.
 05 RESULTS-AI-ADDR-PTR USAGE IS POINTER.
 05 RESULTS-AI-NEXT-PTR USAGE IS POINTER.
 *
 * SOCKET ADDRESS STRUCTURE FROM EZACIC09.
 *
 01 OUTPUT-NAME-PTR USAGE IS POINTER.
 01 OUTPUT-IP-NAME.
 03 OUTPUT-IP-FAMILY PIC 9(4) BINARY.
 03 OUTPUT-IP-PORT PIC 9(4) BINARY.
 03 OUTPUT-IP-SOCK-DATA PIC X(24).
 03 OUTPUT-IPV4-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
 05 OUTPUT-IPV4-IPADDR PIC 9(8) BINARY.
 05 FILLER PIC X(20).
 03 OUTPUT-IPV6-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
 05 OUTPUT-IPV6-FLOWINFO PIC 9(8) BINARY.
 05 OUTPUT-IPV6-IPADDR.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.

532 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 05 OUTPUT-IPV6-SCOPEID PIC 9(8) BINARY.
 PROCEDURE DIVISION USING L1.
 *
 * Get and address from the resolver.
 *
 move 'yournodename' to node-name.
 move 12 to node-name-len.
 move spaces to service-name.
 move 0 to service-name-len.
 move af-inet6 to hints-ai-family.
 move 49 to hints-ai-flags
 move 0 to hints-ai-socktype.
 move 0 to hints-ai-protocol.
 set address of results-addrinfo to res-addrinfo-ptr.
 set hints-addrinfo-ptr to address of hints-addrinfo.
 call 'EZASOKET' using soket-getaddrinfo
 node-name node-name-len
 service-name service-name-len
 hints-addrinfo-ptr
 res-addrinfo-ptr
 canonical-name-len
 errno retcode.
 *
 * Use EZACIC09 to extract the IP address
 *
 set address of results-addrinfo to res-addrinfo-ptr.
 set res to address of results-addrinfo.
 move zeros to res-name-len.
 move spaces to res-canonical-name.
 set res-name to nulls.
 set res-next-addrinfo to nulls.
 call 'EZACIC09' using res
 res-name-len
 res-canonical-name
 res-name
 res-next-addrinfo
 retcode.
 set address of output-ip-name to res-name.
 move output-ipv6-ipaddr to server-ipaddr.

Figure 126. EZACIC09 call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

Parameter values set by the application:
RES

This fullword binary field must contain the address of the ADDRINFO structure (as returned by the
GETADDRINFO call). This variable is the same as the RES variable in the GETADDRINFO socket call.

RES-NAME-LEN
A fullword binary field that will contain the length of the socket address structure as returned by the
GETADDRINFO call.

Parameter values returned to the application:
Description

RES-CANONICAL-NAME
A field large enough to hold the canonical name. The maximum field size is 256 bytes. The canonical
name length field will indicate the length of the canonical name as returned by the GETADDRINFO
call.

RES-NAME
The address of the subsequent socket address structure.

RES-NEXT
The address of the next address information structure.

RETURN-CODE
CODE This fullword binary field contains the EZACIC09 return code:
Value

Description

Chapter 13. CALL instruction application programming interface 533

0
Successful call.

-1
Invalid RES address.

EZACIC14
The EZACIC14 program is an alternative to EZACIC04, which translates EBCDIC data to ASCII data.
Figure 127 on page 534 shows how EZACIC14 translates a byte of EBCDIC data.

 --
ASCII	second hex digit of byte of EBCDIC data															
output by	---															
EZACIC14	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	9C	09	86	7F	97	8D	8E	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	9D	85	08	87	18	19	92	8F	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	80	81	82	83	84	0A	17	1B	88	89	8A	8B	8C	05	06
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	90	91	16	93	94	95	96	04	98	99	9A	9B	14	15	9E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	20	A0	E2	E4	E0	E1	E3	E5	E7	F1	A2	2E	3C	28	2B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	26	E9	EA	EB	E8	ED	EE	EF	EC	DF	21	24	2A	29	3B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	2D	2F	C2	C4	C0	C1	C3	C5	C7	D1	A6	2C	25	5F	3E
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	F8	C9	CA	CB	C8	CD	CE	CF	CC	60	3A	23	40	27	3D
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	D8	61	62	63	64	65	66	67	68	69	AB	BB	F0	FD	FE
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
EBCDIC	9	B0	6A	6B	6C	6D	6E	6F	70	71	72	AA	BA	E6	B8	C6
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	B5	7E	73	74	75	76	77	78	79	7A	A1	BF	D0	5B	DE
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	AC	A3	A5	B7	A9	A7	B6	BC	BD	BE	DD	A8	AF	5D	B4
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	7B	41	42	43	44	45	46	47	48	49	AD	F4	F6	F2	F3
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	7D	4A	4B	4C	4D	4E	4F	50	51	52	B9	FB	FC	F9	FA
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	5C	F7	53	54	55	56	57	58	59	5A	B2	D4	D6	D2	D3
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	30	31	32	33	34	35	36	37	38	39	B3	DB	DC	D9	DA
 --

Figure 127. EZACIC14 EBCDIC-to-ASCII table

Figure 128 on page 534 shows an example of EZACIC14 call instructions.

 WORKING-STORAGE SECTION.
 01 OUT-BUFFER PIC X(length of output).
 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZACIC14' USING OUT-BUFFER LENGTH.

Figure 128. EZACIC14 call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

OUT-BUFFER
A buffer that contains the following data:

• When called, EBCDIC data
• Upon return, ASCII data

LENGTH
Specifies the length of the data to be translated.

534 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZACIC15

The EZACIC15 program is an alternative to EZACIC05, which translates ASCII data to EBCDIC data.
Figure 129 on page 535 shows how EZACIC15 translates a byte of ASCII data.

 --
EBCDIC	second hex digit of byte of ASCII data															
output by	---															
EZACIC15	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	37	2D	2E	2F	16	05	25	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	3C	3D	32	26	18	19	3F	27	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	40	5A	7F	7B	5B	6C	50	7D	4D	5D	5C	4E	6B	60	4B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	7A	5E	4C	7E	6E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	7C	C1	C2	C3	C4	C5	C6	C7	C8	C9	D1	D2	D3	D4	D5
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	D7	D8	D9	E2	E3	E4	E5	E6	E7	E8	E9	AD	E0	BD	5F
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	79	81	82	83	84	85	86	87	88	89	91	92	93	94	95
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	97	98	99	A2	A3	A4	A5	A6	A7	A8	A9	C0	4F	D0	A1
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	20	21	22	23	24	15	06	17	28	29	2A	2B	2C	09	0A
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
ASCII	9	30	31	1A	33	34	35	36	08	38	39	3A	3B	04	14	3E
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	41	AA	4A	B1	9F	B2	6A	B5	BB	B4	9A	8A	B0	CA	AF
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	90	8F	EA	FA	BE	A0	B6	B3	9D	DA	9B	8B	B7	B8	B9
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	64	65	62	66	63	67	9E	68	74	71	72	73	78	75	76
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	AC	69	ED	EE	EB	EF	EC	BF	80	FD	FE	FB	FC	BA	AE
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	44	45	42	46	43	47	9C	48	54	51	52	53	58	55	56
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	8C	49	CD	CE	CB	CF	CC	E1	70	DD	DE	DB	DC	8D	8E
 --

Figure 129. EZACIC15 ASCII-to-EBCDIC table

Figure 130 on page 535 shows an example of EZACIC15 call instructions.

 WORKING-STORAGE SECTION.
 01 OUT-BUFFER PIC X(length of output).
 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZACIC15' USING OUT-BUFFER LENGTH.

Figure 130. EZACIC15 call instruction example

For equivalent PL/I and assembler language declarations, see “Converting parameter descriptions” on
page 394.

OUT-BUFFER
A buffer that contains the following data:

• When called, ASCII data
• Upon return, EBCDIC data

LENGTH
Specifies the length of the data to be translated.

Chapter 13. CALL instruction application programming interface 535

Call interface sample programs
This information provides sample programs for the call interface that you can use for a PL/I or COBOL
application program.

The following are the sample programs that are available in the SEZAINST data set:

Program Description

EZASOKPS PL/I call interface sample IPv4 server program

EZASOKPC PL/I call interface sample IPv4 client program

EZASO6PS PL/I call interface sample IPv6 server program

EZASO6PC PL/I call interface sample IPv6 client program

CBLOCK PL/I common variables

EZACOBOL COBOL common variables

EZASO6CS COBOL call interface sample IPv6 server program

EZASO6CC COBOL call interface sample IPv6 client program

Sample code for IPv4 server program
The EZASOKPS PL/I sample program is a server program that shows you how to use the following calls:

• ACCEPT
• BIND
• CLOSE
• GETSOCKNAME
• INITAPI
• LISTEN
• READ
• SOCKET
• TERMAPI
• WRITE

 /***/
 /* */
 /* MODULE NAME: EZASOKPS - THIS IS A VERY SIMPLE IPV4 SERVER */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* (C) Copyright IBM Corp. 1994, 2005 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: CSV1R7 */
 /* */
 /***/
 EZASOKPS: PROC OPTIONS(MAIN);

 /* INCLUDE CBLOCK - common variables */
 % include CBLOCK;

 ID.TCPNAME = 'TCPIP'; /* Set TCP to use */
 ID.ADSNAME = 'EZASOKPS'; /* and address space name */

536 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 open file(driver);

 /***/
 /* */
 /* Execute INITAPI */
 /* */
 /***/

 /***/
 /* */
 /* Uncomment this code to set max sockets to the maximum. */
 /* */
 /* MAXSOC_INPUT = 65535; */
 /* MAXSOC_FWD = MAXSOC_INPUT; */
 /***/

 call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
 MAXSNO, ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = 'FAIL: initapi' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute SOCKET */
 /* */
 /***/

 call ezasoket(SOCKET, AF_INET, TYPE_STREAM, PROTO,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: socket, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 else sock_stream = retcode;

 /***/
 /* */
 /* Execute BIND */
 /* */
 /***/

 name_id.port = 8888;
 name_id.address = '01234567'BX; /* internet address */
 call ezasoket(BIND, SOCK_STREAM, NAME_ID,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: bind' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute GETSOCKNAME */
 /* */
 /***/

 name_id.port = 8888;
 name_id.address = '01234567'BX; /* internet address */
 call ezasoket(GETSOCKNAME, SOCK_STREAM,
 NAME_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getsockname, stream, internet' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'getsockname = ' || name_id.address;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute LISTEN */
 /* */
 /***/

Chapter 13. CALL instruction application programming interface 537

 backlog = 5;
 call ezasoket(LISTEN, SOCK_STREAM, BACKLOG,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: listen w/ backlog = 5' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute ACCEPT */
 /* */
 /***/

 name_id.port = 8888;
 name_id.address = '01234567'BX; /* internet address */
 call ezasoket(ACCEPT, SOCK_STREAM,
 NAME_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: accept' || errno;
 write file(driver) from (msg);
 end;
 else do;
 accpsock = retcode;
 msg = 'accept socket = ' || accpsock;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute READ */
 /* */
 /***/

 nbyte = length(bufin);
 call ezasoket(READ, ACCPSOCK,
 NBYTE, BUFIN, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: read' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'read = ' || bufin;
 write file(driver) from (msg);
 bufout = bufin;
 nbyte = retcode;
 end;

 /***/
 /* */
 /* Execute WRITE */
 /* */
 /***/

 call ezasoket(WRITE, ACCPSOCK, NBYTE, BUFOUT,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: write' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'write = ' || bufout;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute CLOSE accept socket */
 /* */
 /***/

 call ezasoket(CLOSE, ACCPSOCK,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: close, accept sock' || errno;

538 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute TERMAPI */
 /* */
 /***/

 getout:
 call ezasoket(TERMAPI);

 close file(driver);
 end ezasokps;

Figure 131. EZASOKPS PL/1 sample server program for IPv4

Sample program for IPv4 client program
The EZASOKPC PL/I sample program is a client program that shows you how to use the following calls
provided by the call socket interface:

• CONNECT
• GETPEERNAME
• INITAPI
• READ
• SHUTDOWN
• SOCKET
• TERMAPI
• WRITE

 /***/
 /* */
 /* MODULE NAME: EZASOKPC - THIS IS A VERY SIMPLE IPV4 CLIENT */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* (C) Copyright IBM Corp. 1994, 2002 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: CSV1R4 */
 /* */
 /***/
 EZASOKPC: PROC OPTIONS(MAIN);

 /* INCLUDE CBLOCK - common variables */
 % include CBLOCK;

 ID.TCPNAME = 'TCPIP'; /* Set TCP to use */
 ID.ADSNAME = 'EZASOKPC'; /* and address space name */
 open file(driver);

 /***/
 /* */
 /* Execute INITAPI */
 /* */
 /***/

 call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
 MAXSNO, ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = 'FAIL: initapi' || errno;
 write file(driver) from (msg);
 goto getout;

Chapter 13. CALL instruction application programming interface 539

 end;

 /***/
 /* */
 /* Execute SOCKET */
 /* */
 /***/

 call ezasoket(SOCKET, AF_INET, TYPE_STREAM, PROTO,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: socket, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 sock_stream = retcode; /* save socket descriptor */

 /***/
 /* Execute CONNECT */
 /* */
 /***/

 name_id.port = 8888;
 name_id.address = '01234567'BX; /* internet address */
 call ezasoket(CONNECT, SOCK_STREAM, NAME_ID,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: connect, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute GETPEERNAME */
 /* */
 /***/

 call ezasoket(GETPEERNAME, SOCK_STREAM,
 NAME_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getpeername' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'getpeername =' || name_id.address;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute WRITE */
 /* */
 /***/

 bufout = message;
 nbyte = length(message);
 call ezasoket(WRITE, SOCK_STREAM, NBYTE, BUFOUT,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: write' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'write = ' || bufout;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute READ */
 /* */
 /***/

 nbyte = length(bufin);
 call ezasoket(READ, SOCK_STREAM,
 NBYTE, BUFIN, ERRNO, RETCODE);
 msg = blank; /* clear field */

540 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 if retcode < 0 then do;
 msg = 'FAIL: read' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'read = ' || bufin;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute SHUTDOWN from/to */
 /* */
 /***/

 getout:
 how = 2;
 call ezasoket(SHUTDOWN, SOCK_STREAM, HOW,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: shutdown' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute TERMAPI */
 /* */
 /***/

 call ezasoket(TERMAPI);

 close file(driver);
 end ezasokpc;

Figure 132. EZASOKPC PL/1 sample client program for IPv4

Sample code for IPv6 server program
The EZASO6PS PL/I sample program is a server program that shows you how to use the following calls
provided by the call socket interface:

• ACCEPT
• BIND
• CLOSE
• EZACIC09
• FREEADDRINFO
• GETADDRINFO
• GETHOSTNAME
• GETSOCKNAME
• INITAPI
• LISTEN
• NTOP
• PTON
• READ
• SOCKET
• TERMAPI
• WRITE

 /***/
 /* */
 /* MODULE NAME: EZASO6PS - THIS IS A VERY SIMPLE IPV6 SERVER */
 /* */

Chapter 13. CALL instruction application programming interface 541

 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* (C) Copyright IBM Corp. 2002, 2005 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: CSV1R7 */
 /* */
 /***/
 EZASO6PS: PROC OPTIONS(MAIN);

 /* INCLUDE CBLOCK - common variables */
 % include CBLOCK;

 ID.TCPNAME = 'TCPCS'; /* Set TCP to use */
 ID.ADSNAME = 'EZASO6PS'; /* and address space name */
 open file(driver);

 /***/
 /* */
 /* Execute INITAPI */
 /* */
 /***/

 /***/
 /* */
 /* Uncomment this code to set max sockets to the maximum. */
 /* */
 /* MAXSOC_INPUT = 65535; */
 /* MAXSOC_FWD = MAXSOC_INPUT; */
 /***/

 call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
 MAXSNO, ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = 'FAIL: initapi' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute SOCKET */
 /* */
 /***/

 call ezasoket(SOCKET, AF_INET6, TYPE_STREAM, PROTO,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: socket, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 else sock_stream = retcode;
 /***/
 /* */
 /* Execute PTON */
 /* */
 /***/
 PRESENTABLE_ADDR = IPV6_LOOPBACK; /* Set IP address to use */
 PRESENTABLE_ADDR_LEN = LENGTH(PRESENTABLE_ADDR) ; /* and its length */
 call ezasoket(PTON, AF_INET6, PRESENTABLE_ADDR,
 PRESENTABLE_ADDR_LEN, NUMERIC_ADDR,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: pton' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 name6_id.address = NUMERIC_ADDR; /* IPV6 internet address */
 /***/
 /* */
 /* Execute GETHOSTNAME */
 /* */

542 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 /***/
 call ezasoket(GETHOSTNAME, HOSTNAME_LEN, HOSTNAME,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: gethostname' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 else do;
 msg = 'gethostname = ' || HOSTNAME;
 write file(driver) from (msg);
 GAI_NODE = HOSTNAME; /* Set host name for getaddrinfo to use */
 end;

 /***/
 /* */
 /* Execute GETADDRINFO */
 /* */
 /***/
 GAI_SERVLEN = 0; /* set service length */
 GAI_HINTS.FLAGS = ai_CANONNAMEOK; /* Request canonical name */
 HINTS = ADDR(GAI_HINTS); /* Set results pointer */
 call ezasoket(GETADDRINFO,
 GAI_NODE, GAI_NODELEN,
 GAI_SERVICE, GAI_SERVLEN,
 HINTS, RES,
 CANONNAME_LEN,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getaddrinfo' || errno;
 write file(driver) from (msg);
 end;
 else do; /* process returned RES */

 /***/
 /* */
 /* Call EZACIC09 to format the returned result address information */
 /* */
 /***/

 call ezacic09(RES, OPNAMELEN, OPCANON, OPNAME, OPNEXT,
 RETCODE);
 msg = blank; /* clear field */
 if retcode ^= 0 then do;
 msg = 'FAIL: EZACIC09' || RETCODE;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'OPCANON = ' || OPCANON;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute FREEADDRINFO */
 /* */
 /***/
 call ezasoket(FREEADDRINFO, RES,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: freeaddrinfo' || errno;
 write file(driver) from (msg);
 end;

 end; /* end from getaddrinfo */
 /***/
 /* */
 /* Execute BIND */
 /* */
 /***/

 name6_id.port = 8888;
 call ezasoket(BIND, SOCK_STREAM, NAME6_ID,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: bind' || errno;
 write file(driver) from (msg);
 goto getout;

Chapter 13. CALL instruction application programming interface 543

 end;

 /***/
 /* */
 /* Execute GETSOCKNAME */
 /* */
 /***/

 call ezasoket(GETSOCKNAME, SOCK_STREAM,
 NAME6_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getsockname, stream, internet' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute LISTEN */
 /* */
 /***/

 backlog = 5;
 call ezasoket(LISTEN, SOCK_STREAM, BACKLOG,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: listen w/ backlog = 5' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute ACCEPT */
 /* */
 /***/

 call ezasoket(ACCEPT, SOCK_STREAM,
 NAME6_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: accept' || errno;
 write file(driver) from (msg);
 end;
 else do;
 accpsock = retcode;
 msg = 'accept socket = ' || accpsock;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute NTOP */
 /* */
 /***/
 call ezasoket(NTOP, AF_INET6, NUMERIC_ADDR,
 PRESENTABLE_ADDR, PRESENTABLE_ADDR_LEN,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: ntop' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 else do;
 msg = 'presentable address = ' || PRESENTABLE_ADDR;
 write file(driver) from (msg);
 end; /* */

 /***/
 /* */
 /* Execute READ */
 /* */
 /***/

 nbyte = length(bufin);
 call ezasoket(READ, ACCPSOCK,
 NBYTE, BUFIN, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: read' || errno;

544 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 write file(driver) from (msg);
 end;
 else do;
 msg = 'read = ' || bufin;
 write file(driver) from (msg);
 bufout = bufin;
 nbyte = retcode;
 end;

 /***/
 /* */
 /* Execute WRITE */
 /* */
 /***/

 call ezasoket(WRITE, ACCPSOCK, NBYTE, BUFOUT,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: write' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'write = ' || bufout;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute CLOSE accept socket */
 /* */
 /***/

 call ezasoket(CLOSE, ACCPSOCK,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: close, accept sock' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute TERMAPI */
 /* */
 /***/

 getout:
 call ezasoket(TERMAPI);

 close file(driver);
 end EZASO6PS;

Figure 133. EZASO6PS PL/1 sample server program for IPv6

Sample program for IPv6 client program
The EZASO6PC PL/I sample program is a client program that shows you how to use the following calls
provided by the call socket interface:

• CONNECT
• GETNAMEINFO
• GETPEERNAME
• INITAPI
• PTON
• READ
• SHUTDOWN
• SOCKET
• TERMAPI
• WRITE

Chapter 13. CALL instruction application programming interface 545

 /***/
 /* */
 /* MODULE NAME: EZASO6PC - THIS IS A VERY SIMPLE IPV6 CLIENT */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* (C) Copyright IBM Corp. 2002 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: CSV1R4 */
 /* */
 /***/
 EZASO6PC: PROC OPTIONS(MAIN);

 /* INCLUDE CBLOCK - common variables */
 % include CBLOCK;

 ID.TCPNAME = 'TCPCS'; /* Set TCP to use */
 ID.ADSNAME = 'EZASO6PS'; /* and address space name */
 open file(driver);

 /***/
 /* */
 /* Execute INITAPI */
 /* */
 /***/

 call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
 MAXSNO, ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = 'FAIL: initapi' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute SOCKET */
 /* */
 /***/

 call ezasoket(SOCKET, AF_INET6, TYPE_STREAM, PROTO,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: socket, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 sock_stream = retcode; /* save socket descriptor */

 /***/
 /* Execute PTON */
 /* */
 /***/
 PRESENTABLE_ADDR = IPV6_LOOPBACK; /* Set the address to use */
 PRESENTABLE_ADDR_LEN = LENGTH(PRESENTABLE_ADDR) ; /* and it's length */
 call ezasoket(PTON, AF_INET6, PRESENTABLE_ADDR,
 PRESENTABLE_ADDR_LEN, NUMERIC_ADDR,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: pton' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 msg = 'SUCCESS: pton converted ' || PRESENTABLE_ADDR;
 name6_id.address = NUMERIC_ADDR; /* IPV6 internet address */

 /***/
 /* Execute CONNECT */
 /* */
 /***/

546 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 name6_id.port = 8888;
 call ezasoket(CONNECT, SOCK_STREAM, NAME6_ID,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: connect, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute GETPEERNAME */
 /* */
 /***/

 call ezasoket(GETPEERNAME, SOCK_STREAM,
 NAME6_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getpeername' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute GETNAMEINFO */
 /* */
 /***/

 NAMELEN = 28 ; /* Set length of NAME */
 GNI_HOST = blank; /* Clear Host name */
 GNI_HOSTLEN = LENGTH(GNI_HOST); /* Set Host name length */
 GNI_SERVICE = blank; /* Clear Service name */
 GNI_SERVLEN = LENGTH(GNI_SERVICE); /* Set Service name length */
 GNI_FLAGS = NI_NAMEREQD; /* Set an error if name is not found */
 call ezasoket(GETNAMEINFO, NAME6_ID, NAMELEN,
 GNI_HOST, GNI_HOSTLEN,
 GNI_SERVICE, GNI_SERVLEN,
 GNI_FLAGS,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getnameinfo' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'getnameinfo host=' || GNI_HOST ;
 write file(driver) from (msg);
 msg = 'getnameinfo service=' || GNI_SERVICE ;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute WRITE */
 /* */
 /***/

 bufout = message;
 nbyte = length(message);
 call ezasoket(WRITE, SOCK_STREAM, NBYTE, BUFOUT,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: write' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'write = ' || bufout;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute READ */
 /* */
 /***/

 nbyte = length(bufin);
 call ezasoket(READ, SOCK_STREAM,

Chapter 13. CALL instruction application programming interface 547

 NBYTE, BUFIN, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: read' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'read = ' || bufin;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute SHUTDOWN from/to */
 /* */
 /***/

 getout:
 how = 2;
 call ezasoket(SHUTDOWN, SOCK_STREAM, HOW,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: shutdown' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute TERMAPI */
 /* */
 /***/

 call ezasoket(TERMAPI);

 close file(driver);
 end ezaso6pc;

Figure 134. EZASO6PC PL/1 sample client program for IPv6

Common variables used in PL/I sample programs
The CBLOCK common storage area contains the variables that are used in the PL/I programs in this
section.

 /**/
 /* */
 /* MODULE NAME: CBLOCK - SOKET COMMON VARIABLES */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* Copyright IBM Corp. 1994, 2010 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Part Type: Enterprise PL/1 for z/OS */
 /* */
 /* Status: CSV1R12 */
 /* */
 /* Change Activity: */
 /* Flag Reason Release Date Origin Description */
 /* ---- -------- -------- ------ -------- ------------------------ */
 /* $A1= PH34590 HIP6240 210323 tevaller: Identify internal use */
 /* only interfaces with */
 /* IFF_RESTRICTED */
 /**/
 /**/
 /* */
 /* SOKET COMMON VARIABLES */
 /* */
 /**/

548 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 DCL ABS BUILTIN;
 DCL ADDR BUILTIN;
 DCL ACCEPT CHAR(16) INIT('ACCEPT');
 DCL ACCPSOCK FIXED BIN(15); /* temporary ACCEPT socket */
 DCL AF_INET FIXED BIN(31) INIT(2); /* internet domain */
 DCL AF_INET6 FIXED BIN(31) INIT(19); /* internet v6 domain */
 DCL AF_IUCV FIXED BIN(31) INIT(17); /* iucv domain */
 /* Mapping of GAI_HINTS/GAI_ADDRINFO FLAGS */
 DCL ai_PASSIVE BIT(32) INIT('00000001'BX);
 /* flag: getaddrinfo hints */
 DCL ai_CANONNAMEOK BIT(32) INIT('00000002'BX);
 /* flag: getaddrinfo hints */
 DCL ai_NUMERICHOST BIT(32) INIT('00000004'BX);
 /* flag: getaddrinfo hints */
 DCL ai_NUMERICSERV BIT(32) INIT('00000008'BX);
 /* flag: getaddrinfo hints */
 DCL ai_V4MAPPED BIT(32) INIT('00000010'BX);
 /* flag: getaddrinfo hints */
 DCL ai_ALL BIT(32) INIT('00000020'BX);
 /* flag: getaddrinfo hints */
 DCL ai_ADDRCONFIG BIT(32) INIT('00000040'BX);
 /* flag: getaddrinfo hints */
 DCL ai_EXTFLAGS BIT(32) INIT('00000080'BX);
 /* flag: getaddrinfo hints */
 DCL ai_ALLFLAGMASK BIT(32) INIT('FFFFFF00'BX);
 DCL ALIAS CHAR(255); /* alternate NAME */
 DCL APITYPE FIXED BIN(15) INIT(2); /* default API type */
 DCL BACKLOG FIXED BIN(31); /* max length of pending queue*/
 DCL BADNAME CHAR(20); /* temporary name */
 DCL BIND CHAR(16) INIT('BIND');
 DCL BIND2ADDRSEL CHAR(16) INIT('BIND2ADDRSEL');
 DCL BIT BUILTIN;
 DCL BITZERO BIT(1); /* bit zero value */
 DCL BLANK255 CHAR(255) INIT(' '); /* */
 DCL BLANK CHAR(100) INIT(' '); /* */
 DCL BUF CHAR(80) INIT(' '); /* macro READ/WRITE buffer */
 DCL BUFF CHAR(15) INIT(' '); /* short buffer */
 DCL BUFFER CHAR(32767) INIT(' '); /* BUFFER */
 DCL BUFIN CHAR(32767) INIT(' '); /* Read buffer */
 DCL BUFOUT CHAR(32767) INIT(' '); /* WRITE buffer */
 DCL NCHBUFF CHAR(3200) INIT(' '); /* BUFFER */
 DCL CANONNAME_LEN FIXED BIN(31);/* getaddrinfo canonical name length*/
 DCL 1 CLIENT, /* socket addr of connection peer */
 2 DOMAIN FIXED BIN(31) INIT(2), /* domain of client (AF_INET) */
 2 NAME CHAR(8) INIT(' '), /* addr identifier for client */
 2 TASK CHAR(8) INIT(' '), /* task identifier for client */
 2 RESERVED CHAR(20) INIT(' '); /* reserved */
 DCL CLOSE CHAR(16) INIT('CLOSE');
 DCL COMMAND FIXED BIN(31) INIT(3); /* Query FNDELAY flag */
 DCL CONNECT CHAR(16) INIT('CONNECT');
 DCL COUNT FIXED BIN(31) INIT(100); /* elements in GRP_IOCTL_TABLE*/
 DCL DATA_SOCK FIXED BIN(15); /* temporary datagram socket */
 DCL DEF FIXED BIN(31) INIT(0); /* default protocol */
 DCL DONE_SENDING CHAR(1); /* ready flag */
 DCL DRIVER FILE OUTPUT UNBUF ENV(FB RECSIZE(100)) RECORD;
 DCL ERETMSK CHAR(4); /* indicate exception events */
 DCL ERR FIXED BIN(31); /* error number variable */
 DCL ERRNO FIXED BIN(31) INIT(0); /* error number */
 DCL ESNDMSK CHAR(4); /* check for pending */
 /* exception events */
 DCL EXIT LABEL; /* common exit point */
 DCL EZACIC05 ENTRY OPTIONS(ASM,INTER) EXT; /* translate ascii>ebcdic*/
 DCL EZACIC09 ENTRY OPTIONS(ASM,INTER) EXT; /* format getaddrinfo res*/
 DCL EZASOKET ENTRY OPTIONS(ASM,INTER) EXT; /* socket call */
 DCL FCNTL CHAR(16) INIT('FCNTL');
 DCL FIONBIO BIT(32) INIT('8004A77E'BX); /* flag: nonblocking */
 DCL FIONREAD BIT(32) INIT('4004A77F'BX);/* flag:#readable bytes */
 DCL FLAGS FIXED BIN(31) INIT(0); /* default: no flags */
 /* 1 = OOB, SEND OUT-OF-BAND*/
 /* 4 = DON'T ROUTE */
 DCL FREEADDRINFO CHAR(16) INIT('FREEADDRINFO');
 DCL GAI_NODE CHAR(255) INIT(' '); /* getaddrinfo node */
 DCL GAI_NODELEN FIXED BIN(31) INIT(255);/* getaddrinfo node length */
 DCL GAI_SERVICE CHAR(32) INIT(' '); /* getaddrinfo service */
 DCL GAI_SERVLEN FIXED BIN(31) INIT(32); /* getaddrinfo service */
 /* length */
 DCL 1 GAI_HINTS, /* getaddrinfo hints addrinfo */
 2 FLAGS FIXED BIN(31) INIT(0), /* hints flags, see defns */
 /* starting at ai_PASSIVE */
 2 AF FIXED BIN(31) INIT(0), /* hints family */
 2 SOCTYPE FIXED BIN(31) INIT(0), /* hints socket type */
 2 PROTO FIXED BIN(31) INIT(0), /* hints protocol */

Chapter 13. CALL instruction application programming interface 549

 2 NAMELEN FIXED BIN(31) INIT(0),
 2 * CHAR(4),
 2 * CHAR(4),
 2 CANONNAME FIXED BIN(31) INIT(0),
 2 * CHAR(4),
 2 NAME FIXED BIN(31) INIT(0),
 2 * CHAR(4),
 2 NEXT FIXED BIN(31) INIT(0),
 2 EFLAGS FIXED BIN(31) INIT(0); /* see definitions after */
 /* IPV6_ADDR_PREFERENCES */
 DCL 1 GAI_ADDRINFO BASED(RES), /* getaddrinfo RES addrinfo */
 2 FLAGS FIXED BIN(31), /* see ai_PASSIVE & following defns*/
 2 AF FIXED BIN(31),
 2 SOCTYPE FIXED BIN(31),
 2 PROTO FIXED BIN(31),
 2 NAMELEN FIXED BIN(31), /* RES socket address struct length*/
 2 * CHAR(4),
 2 * CHAR(4),
 2 CANONNAME POINTER, /* RES canonical name */
 2 * CHAR(4),
 2 NAME POINTER, /* RES socket address structure */
 2 * CHAR(4),
 2 NEXT POINTER, /* RES next addrinfo, zero if none.*/
 2 EFLAGS FIXED BIN(31); /* see definitions that follow the */
 /* IPV6_ADDR_PREFERENCES definition*/
 DCL 1 GAI_NAME_ID BASED(GAI_ADDRINFO.NAME),
 2 LEN BIT(8),
 2 FAMILY BIT(8),
 2 PORT BIT(16),
 2 ADDRESS BIT(32),
 2 RESERVED1 CHAR(8);
 DCL 1 GAI_NAME6_ID BASED(GAI_ADDRINFO.NAME),
 2 LEN BIT(8),
 2 FAMILY BIT(8),
 2 PORT BIT(16),
 2 FLOWINFO FIXED BIN(31),
 2 ADDRESS CHAR(16),
 2 SCOPEID FIXED BIN(31);
 DCL GETADDRINFO CHAR(16) INIT('GETADDRINFO');
 DCL GETCLIENTID CHAR(16) INIT('GETCLIENTID');
 DCL GETHOSTBYADDR CHAR(16) INIT('GETHOSTBYADDR');
 DCL GETHOSTBYNAME CHAR(16) INIT('GETHOSTBYNAME');
 DCL GETHOSTNAME CHAR(16) INIT('GETHOSTNAME');
 DCL GETHOSTID CHAR(16) INIT('GETHOSTID');
 DCL GETIBMOPT CHAR(16) INIT('GETIBMOPT');
 DCL GETNAMEINFO CHAR(16) INIT('GETNAMEINFO');
 DCL GETPEERNAME CHAR(16) INIT('GETPEERNAME');
 DCL GETSOCKNAME CHAR(16) INIT('GETSOCKNAME');
 DCL GETSOCKOPT CHAR(16) INIT('GETSOCKOPT');
 DCL GIVESOCKET CHAR(16) INIT('GIVESOCKET');
 DCL GLOBAL CHAR(16) INIT('GLOBAL');
 DCL GNI_FLAGS FIXED BIN(31); /* getnameinfo flags */
 DCL GNI_HOST CHAR(255); /* getnameinfo host */
 DCL GNI_HOSTLEN FIXED BIN(31); /* getnameinfo host length */
 DCL GNI_SERVICE CHAR(32); /* getnameinfo service */
 DCL GNI_SERVLEN FIXED BIN(31); /* getnameinfo service length */
 DCL 1 GROUP_FILTER4 BASED, /* Group_Filter for IPv4 */
 2 GF4_HEADER, /* Header portion */
 3 GF4_INTERFACE FIXED BIN(31), /* Interface index */
 3 * CHAR(4), /* Padding */
 3 GF4_GROUP, /* Group Multi Address */
 4 GF4_SOCK_LEN BIT(8), /* Socket len */
 4 GF4_SOCK_FAMILY BIT(8), /* Socket family */
 4 GF4_SOCK_SIN_PORT BIT(16), /* Socket port */
 4 GF4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 4 GF4_RESERVED1 CHAR(8), /* Unused */
 4 * CHAR(112), /* */
 3 GF4_FMODE FIXED BIN(31), /* Filter mode */
 3 GF4_NUMSRC FIXED BIN(31), /* Num of sources */
 2 GF4_SLIST CHAR(0); /* Source list */
 DCL 1 GF4_SRCENTRY BASED, /* Source Entry */
 2 GF4_SRCADDR, /* Source IP address */
 3 GF4_SOCK_LEN BIT(8), /* Socket len */
 3 GF4_SOCK_FAMILY BIT(8), /* Socket family */
 3 GF4_SOCK_SIN_PORT BIT(16), /* Socket port */
 3 GF4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 3 GF4_RESERVED1 CHAR(8), /* Unused */
 3 * CHAR(112); /* */

 DCL 1 GROUP_FILTER6 BASED, /* Group_Filter for IPv6 */
 2 GF6_HEADER, /* Header portion */
 3 GF6_INTERFACE FIXED BIN(31), /* Interface index */

550 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 3 * CHAR(4), /* Padding */
 3 GF6_GROUP, /* Group Multi Address */
 4 GF6_SOCK_LEN BIT(8), /* Socket len */
 4 GF6_SOCK_FAMILY BIT(8), /* Socket family */
 4 GF6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 4 GF6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 4 GF6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 4 GF6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 4 * CHAR(100), /* */
 3 GF6_FMODE FIXED BIN(31), /* Filter mode */
 3 GF6_NUMSRC FIXED BIN(31), /* Num of sources */
 2 GF6_SLIST CHAR(0); /* Source list */
 DCL 1 GF6_SRCENTRY BASED, /* Source Entry */
 2 GF6_SRCADDR, /* Source IP address */
 3 GF6_SOCK_LEN BIT(8), /* Socket len */
 3 GF6_SOCK_FAMILY BIT(8), /* Socket family */
 3 GF6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 3 GF6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 3 GF6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 3 GF6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 3 * CHAR(100); /* */
 DCL 1 GROUP_REQ4 BASED, /* Group_Req for IPv4 */
 2 GR4_INTERFACE FIXED BIN(31), /* Interface index */
 2 * CHAR(4), /* Padding */
 2 GR4_SOCK_LEN BIT(8), /* Socket len */
 2 GR4_SOCK_FAMILY BIT(8), /* Socket family */
 2 GR4_SOCK_SIN_PORT BIT(16), /* Socket port */
 2 GR4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 2 GR4_RESERVED1 CHAR(8), /* Unused */
 2 * CHAR(112); /* */
 DCL 1 GROUP_REQ6 BASED, /* Group_Req for IPv6 */
 2 GR6_INTERFACE FIXED BIN(31), /* Interface index */
 2 * CHAR(4), /* Padding */
 2 GR6_SOCK_LEN BIT(8), /* Socket len */
 2 GR6_SOCK_FAMILY BIT(8), /* Socket family */
 2 GR6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 2 GR6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 2 GR6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 2 GR6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 2 * CHAR(100); /* */
 DCL 1 GROUP_SOURCE_REQ4 BASED, /* Group_Source_Req for IPv4 */
 2 GSR4_INTERFACE FIXED BIN(31), /* Interface index */
 2 * CHAR(4), /* Padding */
 2 GSR4_GROUP, /* Multicast group addr */
 3 GSR4_SOCK_LEN BIT(8), /* Socket len */
 3 GSR4_SOCK_FAMILY BIT(8), /* Socket family */
 3 GSR4_SOCK_SIN_PORT BIT(16), /* Socket port */
 3 GSR4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 3 GSR4_RESERVED1 CHAR(8), /* Unused */
 3 * CHAR(112), /* */
 2 GSR4_SOURCE, /* Source IP address */
 3 GSR4_SOCK_LEN BIT(8), /* Socket len */
 3 GSR4_SOCK_FAMILY BIT(8), /* Socket family */
 3 GSR4_SOCK_SIN_PORT BIT(16), /* Socket port */
 3 GSR4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 3 GSR4_RESERVED1 CHAR(8), /* Unused */
 3 * CHAR(112); /* */
 DCL 1 GROUP_SOURCE_REQ6 BASED, /* Group_Source_Req for IPv6 */
 2 GSR6_INTERFACE FIXED BIN(31), /* Interface index */
 2 * CHAR(4), /* Padding */
 2 GSR6_GROUP, /* Multicast group addr */
 3 GSR6_SOCK_LEN BIT(8), /* Socket len */
 3 GSR6_SOCK_FAMILY BIT(8), /* Socket family */
 3 GSR6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 3 GSR6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 3 GSR6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 3 GSR6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 3 * CHAR(100), /* */
 2 GSR6_SOURCE, /* Source IP address */
 3 GSR6_SOCK_LEN BIT(8), /* Socket len */
 3 GSR6_SOCK_FAMILY BIT(8), /* Socket family */
 3 GSR6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 3 GSR6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 3 GSR6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 3 GSR6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 3 * CHAR(100); /* */
 DCL HINTS POINTER; /*getaddrinfo hints addrinfo pointer*/
 DCL 1 HOMEIF, /* Home Interface Structure */
 2 ADDRESS CHAR(16); /* Home Interface Address */
 DCL HOSTADDR BIT(32); /* host internet address */
 DCL HOSTNAME CHAR(24); /* host name from GETHOSTNAME */
 DCL HOSTNAME_LEN FIXED BIN(31) INIT(24);

Chapter 13. CALL instruction application programming interface 551

 /* host name length GETHOSTNAME */
 DCL HOW FIXED BIN(31) INIT(2); /* how shutdown is to be done */
 Dcl 1 HOSTENT Based, /* Host entry */
 3 H_NAME POINTER, /* Official name of host */
 3 H_ALIASES POINTER, /* Alias list address */
 3 H_ADDRTYPE BIT(32), /* Host address type */
 3 H_LENGTH FIXED BIN(31), /* Length of address */
 3 H_ADDR_LIST POINTER; /* List of addresses from */
 /* name server */
 DCL I FIXED BIN(15); /* loop index */
 DCL ICMP FIXED BIN(31) INIT(2); /* prototype icmp ??? */
 DCL 1 ID, /* */
 2 TCPNAME CHAR(8) INIT('TCPIP'), /* remote address space */
 2 ADSNAME CHAR(8) INIT('USER9'); /* local address space */
 DCL IDENT POINTER; /* TCP/IP Addr Space */
 DCL IFCONF CHAR(255); /* configuration structure */
 DCL 1 IF_NAMEINDEX,
 2 IF_NIHEADER,
 3 IF_NITOTALIF FIXED BIN(31), /*Total Active Interfaces on Sys. */
 3 IF_NIENTRIES FIXED BIN(31), /* Number of entries returned */
 2 IF_NITABLE(10) CHAR(24);
 DCL 1 IF_NAMEINDEXENTRY,
 2 IF_NIINDEX FIXED BIN(31), /* Interface Index */
 2 IF_NINAME CHAR(16), /* Interface Name, blank padded */
 2 IF_NIEXT,
 3 IF_NINAMETERM CHAR(1), /* Null for C for Name len=16 */
 3 IF_RESERVED CHAR(3); /* Reserved */
 DCL 1 IFREQ, /* Interface Structure */
 2 IFR_NAME CHAR(16), /* Interface Name, blank padded */
 2 IFR_IFR UNION,
 3 IFR_ADDR, /* Interface IP Address */
 4 IFR_ADDR_LEN BIT(8), /* Socket Len */
 4 IFR_ADDR_FAMILY BIT(8), /* Socket Family */
 4 IFR_ADDR_PORT BIT(16), /* Socket Port */
 4 IFR_ADDR_ADDR BIT(32), /* Socket Address */
 4 IFR_ADDR_RSVD CHAR(8), /* Socket Reserved */
 3 IFR_DSTADDR, /* Interface Dest IP Addr */
 4 IFR_DSTADDR_LEN BIT(8), /* Socket Len */
 4 IFR_DSTADDR_FAMILY BIT(8), /* Socket Family */
 4 IFR_DSTADDR_PORT BIT(16), /* Socket Port */
 4 IFR_DSTADDR_ADDR BIT(32), /* Socket Address */
 4 IFR_DSTADDR_RSVD CHAR(8), /* Socket Reserved */
 3 IFR_BROADADDR, /* Interface Broadcast IP Addr*/
 4 IFR_BROADADDR_LEN BIT(8), /* Socket Len */
 4 IFR_BROADADDR_FAMILY BIT(8), /* Socket Family */
 4 IFR_BROADADDR_PORT BIT(16), /* Socket Port */
 4 IFR_BROADADDR_ADDR BIT(32), /* Socket Address */
 4 IFR_BROADADDR_RSVD CHAR(8), /* Socket Reserved */
 3 IFR_FLAGS BIT(16), /* Interface Flags */
 3 IFR_METRIC FIXED BIN(31), /* Interface Metric */
 3 IFR_DATA FIXED BIN(31), /* Interface Data */
 3 IFR_MTU FIXED BIN(31); /* Interface MTU */

 /* The following constants are for use with the IFR_FLAGS field */
 /* in structure IFREQ. */
 DCL IFF_UP BIT(16) INIT('0001'BX); /* interface is UP */
 DCL IFF_BROADCAST BIT(16) INIT('0002'BX); /* broadcast addr valid */
 DCL IFF_DEBUG BIT(16) INIT('0004'BX); /* turn on debugging */
 DCL IFF_RESTRICTED BIT(16) INIT('0004'BX); /* overload debug for
 restricted interfaces
 since we don't allow
 debugging @A1A*/
 DCL IFF_LOOPBACK BIT(16) INIT('0008'BX); /* software loopback */
 DCL IFF_POINTOPOINT BIT(16) INIT('0010'BX); /* point-to-point link */
 DCL IFF_NOTRAILERS BIT(16) INIT('0020'BX); /* avoid use trailers */
 DCL IFF_RUNNING BIT(16) INIT('0040'BX); /* resources allocated */
 DCL IFF_NOARP BIT(16) INIT('0080'BX); /* no ARP */
 DCL IFF_PROMISC BIT(16) INIT('0100'BX); /* receive all packets */
 DCL IFF_ALLMULTI BIT(16) INIT('0200'BX); /* multicast packets */
 DCL IFF_MULTICAST BIT(16) INIT('0400'BX); /* multicast capable */
 DCL IFF_POINTOMULTIPT BIT(16) INIT('0800'BX);/* pt-to-multipt */
 DCL IFF_BRIDGE BIT(16) INIT('1000'BX); /* support token ring */
 DCL IFF_SNAP BIT(16) INIT('2000'BX); /* support extended SAP */
 DCL IFF_VIRTUAL BIT(16) INIT('4000'BX); /* virtual interface */
 DCL IFF_SAMEHOST BIT(16) INIT('8000'BX); /* Samehost */

 DCL INDEX BUILTIN;
 DCL IOCTL CHAR(16) INIT('IOCTL');
 DCL IOCTL_CMD FIXED BIN(31); /* ioctl command */
 DCL IOCTL_REQARG POINTER ; /* send pointer to data area*/
 DCL IOCTL_RETARG POINTER ; /* return pointer to data area*/
 DCL IOCTL_REQ00 FIXED BIN(31); /* command request argument */

552 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 DCL IOCTL_REQ04 FIXED BIN(31); /* command request argument */
 DCL IOCTL_REQ08 FIXED BIN(31); /* command request argument */
 DCL IOCTL_REQ32 CHAR(32) INIT(' '); /* command request argument */
 DCL IOCTL_RET00 FIXED BIN(31); /* command return argument */
 DCL IOCTL_RET04 FIXED BIN(31); /* command return argument */
 DCL INET6_IS_SRCADDR CHAR(16) INIT('INET6_IS_SRCADDR');
 DCL INITAPI CHAR(16) INIT('INITAPI'); /* */
 DCL IP FIXED BIN(31) INIT(1); /* prototype ip ??? */
 DCL 1 IP_MREQ,
 2 IMR_MULTIADDR BIT(32), /* IP multicast addr of group */
 2 IMR_INTERFACE BIT(32); /* local IP addr of interface */
 DCL 1 IPV6_MREQ,
 2 IPV6MR_MULTIADDR CHAR(16),
 2 IPV6MR_INTERFACE FIXED BIN(31);
 DCL 1 IP_MREQ_SOURCE BASED, /* Multi source API structure */
 2 IMRS_MULTIADDR BIT(32), /* IP multicast addr of grp */
 2 IMRS_SOURCEADDR BIT(32), /* IP source addr */
 2 IMRS_INTERFACE BIT(32); /* local IP addr of intf */
 DCL 1 IP_MSFILTER BASED, /* IP_MsFilter */
 2 IMSF_HEADER, /* Header portion */
 3 IMSF_MULTIADDR BIT(32), /* Multicast address */
 3 IMSF_INTERFACE BIT(32), /* Interface address */
 3 IMSF_FMODE FIXED BIN(31), /* Filter mode */
 3 IMSF_NUMSRC FIXED BIN(31), /* Num of sources */
 2 IMSF_SLIST CHAR(0); /* Source list */
 DCL 1 IMSF_SRCENTRY BASED, /* Source Entry */
 2 IMSF_SRCADDR BIT(32); /* Source IP address */
 DCL IP_MULTICAST_TTL BIT(32) INIT('00100003'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_MULTICAST_LOOP BIT(32) INIT('00100004'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_MULTICAST_IF BIT(32) INIT('00100007'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_ADD_MEMBERSHIP BIT(32) INIT('00100005'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_DROP_MEMBERSHIP BIT(32) INIT('00100006'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_BLOCK_SOURCE BIT(32) INIT('0010000A'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_UNBLOCK_SOURCE BIT(32) INIT('0010000B'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_ADD_SOURCE_MEMBERSHIP BIT(32) INIT('0010000C'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_DROP_SOURCE_MEMBERSHIP BIT(32) INIT('0010000D'BX);
 DCL IPRES POINTER; /* EZACIC09 RES addrinfo ptr */
 DCL IPV6_ADDR_PREFERENCES BIT(32) INIT('00010020'BX);
 /* getsockopt/setsockopt OPTNAME */
 /**/
 /* Mapping of GAI_HINTS/GAI_ADDRINFO EFLAGS flags and */
 /* IPV6_ADDR_PREFERENCES getsockopt, setsockopt OPTVAL flags, and */
 /* inet6_is_srcaddr flags */
 /**/
 /* Prefer home IPv6 address over care-of IPv6 address */
 DCL IPV6_PREFER_SRC_HOME BIT(32) INIT('00000001'BX);
 /* Prefer care-of IPv6 address over home IPv6 address */
 DCL IPV6_PREFER_SRC_COA BIT(32) INIT('00000002'BX);
 /* Prefer temporary IPv6 address over public IPv6 address */
 DCL IPV6_PREFER_SRC_TMP BIT(32) INIT('00000004'BX);
 /* Prefer public IPv6 address over temporary IPv6 address */
 DCL IPV6_PREFER_SRC_PUBLIC BIT(32) INIT('00000008'BX);
 /* Prefer cryptographic address over non-cryptographic address */
 DCL IPV6_PREFER_SRC_CGA BIT(32) INIT('00000010'BX);
 /* Prefer non-cryptographic address over cryptographic address */
 DCL IPV6_PREFER_SRC_NONCGA BIT(32) INIT('00000020'BX);
 /* Invalid EFLAGS or IPV6_ADDR_PREFERENCES OPTVAL flags */
 DCL IPV6_PREFERENCES_FLAGS_MASKINVALID BIT(32) INIT('FFFFFFC0'BX);
 /**/
 DCL IPV6_JOIN_GROUP BIT(32) INIT('00010005'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_LEAVE_GROUP BIT(32) INIT('00010006'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_LOOPBACK CHAR(3) INIT('::1');
 DCL IPV6_MULTICAST_HOPS BIT(32) INIT('00010009'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_MULTICAST_IF BIT(32) INIT('00010007'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_MULTICAST_LOOP BIT(32) INIT('00010004'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_UNICAST_HOPS BIT(32) INIT('00010003'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_V6ONLY BIT(32) INIT('0001000A'BX);
 DCL J FIXED BIN(15); /* loop index */

Chapter 13. CALL instruction application programming interface 553

 DCL K FIXED BIN(15); /* loop index */
 DCL LENGTH BUILTIN;
 DCL LABL CHAR(9);
 DCL LISTEN CHAR(16) INIT('LISTEN');
 DCL MAXSNO FIXED BIN(31) INIT(0); /* max descriptor assigned */
 DCL 1 MAXSOC_INPUT FIXED BIN(31) INIT(0);
 DCL 1 MAXSOC_FWD,
 2 MAXSOC_IGNORE FIXED BIN(15) INIT(0),
 2 MAXSOC FIXED BIN(15) INIT(255); /* largest sock # checked */
 DCL MCAST_JOIN_GROUP BIT(32) INIT('00100028'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_LEAVE_GROUP BIT(32) INIT('00100029'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_JOIN_SOURCE_GROUP BIT(32) INIT('0010002A'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_LEAVE_SOURCE_GROUP BIT(32) INIT('0010002B'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_BLOCK_SOURCE BIT(32) INIT('0010002C'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_UNBLOCK_SOURCE BIT(32) INIT('0010002D'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_EXCLUDE BIT(32) INIT('00000001'BX);
 DCl MCAST_INCLUDE BIT(32) INIT('00000000'BX);
 DCl MCAST_NUMSRC_MAX BIT(32)INIT('00000040'BX);
 DCL MESSAGE CHAR(50) INIT('I love my 1 @ Rottweiler!'); /* message */
 DCL MSG CHAR(100) INIT(' '); /* message text */
 DCL 1 NAME_ID, /* socket addr of connection peer */
 2 FAMILY FIXED BIN(15) INIT(2), /*addr'g family TCP/IP def */
 2 PORT BIT(16), /* system assigned port # */
 2 ADDRESS BIT(32), /* 32-bit internet */
 2 RESERVED CHAR(8); /* reserved */
 DCL 1 NAME6_ID, /* socket addr of connection peer */
 2 FAMILY FIXED BIN(15) INIT(19), /* NAMELN IGNORED & FAMILY */
 2 PORT BIT(16), /* port # */
 2 FLOWINFO FIXED BIN(31), /* Flow info */
 2 ADDRESS CHAR(16), /* IPv6 internet address */
 2 SCOPEID FIXED BIN(31); /* Scope ID */

 DCL NAMEL CHAR(255) VARYING; /* name field, long */
 DCL NAMES CHAR(24); /* name field, short */
 DCL NAMELEN FIXED BIN(31); /* length of name/alias field */
 DCL NBYTE FIXED BIN(31); /* Number of bytes in buffer */
 DCL 1 NETCONFHDR, /* Network Configuration Hdr */
 2 NCHEYECATCHER CHAR(4) INIT('6NCH'), /* Eye Catcher '6NCH' */
 2 NCHIOCTL BIT(32) INIT('C014F608'BX),
 /* The IOCTL being processed */
 /* with this instance of the */
 /* NetConfHdr. (RAS item) */
 2 NCHBUFFERLENGTH FIXED BIN(31) INIT(3200), /* Buffer Length */
 2 NCHBUFFERPTR POINTER, /* Buffer Pointer */
 2 NCHNUMENTRYRET FIXED BIN(31); /* Number of HomeIF returned via */
 /* SIOCGHOMEIF6 or the number of*/
 /* GRT6RtEntry's returned via */
 /* SIOCGRT6TABLE. */
 DCL NI_NOFQDN FIXED BIN(31) INIT(1);
 /* flag: getnameinfo */
 DCL NI_NUMERICHOST FIXED BIN(31) INIT(2);
 /* flag: getnameinfo */
 DCL NI_NAMEREQD FIXED BIN(31) INIT(4);
 /* flag: getnameinfo */
 DCL NI_NUMERICSERV FIXED BIN(31) INIT(8);
 /* flag: getnameinfo */
 DCL NI_DGRAM FIXED BIN(31) INIT(16);
 /* flag: getnameinfo */
 DCL NI_NUMERICSCOPE FIXED BIN(31) INIT(32);
 /* flag: getnameinfo */
 DCL NOTE(3) CHAR(25) INIT('Now is the time for 198 g',
 'ood people to come to the',
 ' aid of their parties!');
 DCL NS FIXED BIN(15); /* socket descriptor, new */
 DCL NTOP CHAR(16) INIT('NTOP'); /* Numeric to Presentation */
 DCL NULL BUILTIN;
 DCL 1 NUMERIC_ADDR CHAR(16); /* NTOP/PTON Numeric address */
 DCL OPNAMELEN FIXED BIN(31); /* Socket address structure length */
 DCL OPCANON CHAR(256); /* Canonical name */
 DCL OPNAME POINTER; /* Socket address structure */
 DCL OPNEXT POINTER; /* Next result address info in chain */
 DCL OPTL FIXED BIN(31); /* length of OPTVAL string */
 DCL OPTLEN FIXED BIN(31); /* length of OPTVAL string */
 DCL OPTN CHAR(15); /* OPTNAME value (macro) */
 DCL OPTNAME FIXED BIN(31); /* OPTNAME value (call) */
 DCL OPTVAL CHAR(255); /* GETSOCKOPT option data */

554 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 DCL OPTVALD FIXED BIN(31); /* SETSOCKOPT option data */
 DCL 1 OPT_STRUC, /* structure for option */
 2 ON_OFF FIXED BIN(31) INIT(1), /* enable option */
 2 TIME FIXED BIN(31) INIT(5); /* time-out in seconds */
 DCL 1 OPT_STRUCT, /* structure for option */
 2 ON FIXED BIN(31), /* used for getsockopt */
 2 TIMEOUT FIXED BIN(31); /* time-out in seconds */
 DCL PLITEST BUILTIN; /* debug tool */
 DCL PRESENTABLE_ADDR CHAR(45); /* NTOP/PTON presentable address */
 DCL PRESENTABLE_ADDR_LEN FIXED BIN(15);
 /* NTOP/PTON presentable address length*/
 DCL PROTO FIXED BIN(31) INIT(0); /* prototype default */
 DCL PTON CHAR(16) INIT('PTON'); /* Presentation to numeric */
 DCL READ CHAR(16) INIT('READ');
 DCL READV CHAR(16) INIT('READV');
 DCL RECV CHAR(16) INIT('RECV');
 DCL RECVFROM CHAR(16) INIT('RECVFROM');
 DCL RECVMSG CHAR(16) INIT('RECVMSG');
 DCL REUSE FIXED BIN(31) INIT('4'); /* toggle, reuse local addr */
 DCL REQARG FIXED BIN(31); /* command request argument */
 DCL RES POINTER; /* getaddrinfo RES addrinfo ptr */
 DCL RETC FIXED BIN(31); /* return code variable */
 DCL RETARG CHAR(255); /* return argument data area */
 DCL RETCODE FIXED BIN(31) INIT(0); /* return code */
 DCL RETLEN FIXED BIN(31); /* return area data length */
 DCL RRETMSK CHAR(4); /* indicate READ EVENTS */
 DCL RSNDMSK CHAR(4); /* check for pending read events */
 DCL RTENTRY CHAR(50) INIT('dummy table'); /* router entry */
 DCL SAVEFAM FIXED BIN(15); /* temporary family name */
 DCL SELECB CHAR(4) INIT('1');
 DCL SELECT CHAR(16) INIT('SELECT');
 DCL SELECTEX CHAR(16) INIT('SELECTEX');
 DCL SEND CHAR(16) INIT('SEND');
 DCL SENDMSG CHAR(16) INIT('SENDMSG');
 DCL SENDTO CHAR(16) INIT('SENDTO');
 DCL SETADEYE1 CHAR(8) INIT('SETAPPLD');
 DCL SETADVER FIXED BIN(15) INIT(1);
 DCL SETADCONTLEN FIXED BIN(15) INIT(48);
 DCL SETADBUFLEN FIXED BIN(15) INIT(40);
 DCL 1 SETAPPLDATA,
 2 SETAD_EYE1 CHAR(8),
 2 SETAD_VER FIXED BIN(15),
 2 SETAD_LEN FIXED BIN(15),
 2 * CHAR(4),
 2 SETAD_PTR64 ,
 3 SETAD_PTRHW CHAR(4),
 3 SETAD_PTR POINTER;
 DCL SETADEYE2 CHAR(8) INIT('APPLDATA');
 DCL 1 SETADCONTAINER,
 2 SETAD_EYE2 CHAR(8),
 2 SETAD_BUFFER CHAR(40);
 DCL SETSOCKOPT CHAR(16) INIT('SETSOCKOPT');
 DCL SHUTDOWN CHAR(16) INIT('SHUTDOWN');
 DCL SIOCADDRT BIT(32) INIT('8030A70A'BX); /* flag: add routing entry*/
 DCL SIOCATMARK BIT(32) INIT('4004A707'BX); /* flag: out-of-band data*/
 DCL SIOCDELRT BIT(32) INIT('8030A70B'BX); /* flag: delete routing */
 DCL SIOCGIFADDR BIT(32) INIT('C020A70D'BX); /*flag: network int addr*/
 DCL SIOCGHOMEIF6 BIT(32) INIT('C014F608'BX); /* flag netw int config*/
 DCL SIOCGIFBRDADDR BIT(32) INIT('C020A712'BX); /* flag net broadcast*/
 DCL SIOCGIFCONF BIT(32) INIT('C008A714'BX); /* flag: netw int config*/
 DCL SIOCGIFDSTADDR BIT(32) INIT('C020A70F'BX); /* flag: net des addr*/
 DCL SIOCGIFFLAGS BIT(32) INIT('C020A711'BX); /* flag: net intf flags*/
 DCL SIOCGIFMETRIC BIT(32) INIT('C020A717'BX); /* flag: get rout metr*/
 DCL SIOCGIFMTU BIT(32) INIT('C020A726'BX); /* flag: get intf mtu */
 DCL SIOCGIFNAMEINDEX BIT(32) INIT('4000F603'BX);
 /* flag: name and indexes */
 DCL SIOCGIFNETMASK BIT(32) INIT('C020A715'BX); /* flag: network mask*/
 DCL SIOCGIFNONSENSE BIT(32) INIT('B669FD2E'BX); /* flag: nonsense */
 DCL SIOCSIFMETRIC BIT(32) INIT('8020A718'BX); /* flag: set rout metr*/
 DCL SIOCSAPPLDATA BIT(32) INIT('8018D90C'BX); /* Set APPLDATA */
 DCL SIOCGIPMSFILTER BIT(32) INIT('C000A724'BX);
 /* flag: get multicast src filter */
 DCL SIOCSIPMSFILTER BIT(32) INIT('8000A725'BX);
 /* flag: set multicast src filter */
 DCL SIOCGMSFILTER BIT(32) INIT('C000F610'BX);
 /* flag: get multicast src filter */
 DCL SIOCSMSFILTER BIT(32) INIT('8000F611'BX);
 /* flag: set multicast src filter */
 /* The following constant is defined in EZBZTLS1, but is also */
 /* included here for completeness. */
 /* DCL SIOCTTLSCTL BIT(32) INIT('C038D90B'BX) */
 /* flag: ttls */

Chapter 13. CALL instruction application programming interface 555

 /* The following constants are defined in EZBPINF1, but is also */
 /* included here for completeness. */
 /* DCL SIOCSPARTNERINFO BIT(32) INIT('8004F613'BX); */
 /* DCL SIOCGPARTNERINFO BIT(32) INIT('C000F612'BX); */
 /* flag: PartnerInfo */
 DCL SOCK FIXED BIN(15); /* socket descriptor */
 DCL SOCKET CHAR(16) INIT('SOCKET');
 DCL SOCK_DATAGRAM FIXED BIN(15); /* socket descriptor datagram */
 DCL SOCK_RAW FIXED BIN(15); /* socket descriptor raw */
 DCL SOCK_STREAM FIXED BIN(15); /* stream socket descriptor */
 DCL SOCK_STREAM_1 FIXED BIN(15); /* stream socket descriptor */
 DCL SO_BROADCAST FIXED BIN(31) INIT(32); /* toggle, broadcast msg */
 DCL SO_ERROR FIXED BIN(31) INIT(4103); /* check/clear async error */
 DCL SO_KEEPALIVE FIXED BIN(31) INIT(8); /* request status of stream*/
 DCL SO_LINGER FIXED BIN(31) INIT(128); /* toggle, linger on close */
 DCL SO_OOBINLINE FIXED BIN(31) INIT(256);/*toggle, out-of-bound data*/
 DCL SO_RCVTIMEO BIT(32) INIT('00001006'BX);
 DCL SO_REUSEADDR FIXED
 BIN(31) INIT(4); /* toggle, local address reuse*/
 DCL SO_SNDBUF FIXED BIN(31) INIT(4097);
 DCL SO_SNDTIMEO BIT(32) INIT('00001005'BX);
 DCL SO_TYPE FIXED BIN(31) INIT(4104); /* return type of socket */
 DCL STRING BUILTIN;
 DCL SUBSTR BUILTIN;
 DCL SUBTASK CHAR(8) INIT('ANYNAME'); /* task/path identifier */
 DCL SYNC CHAR(16) INIT('SYNC');
 DCL TAKESOCKET CHAR(16) INIT('TAKESOCKET');
 DCL TASK CHAR(16) INIT('TASK');
 DCL TERMAPI CHAR(16) INIT('TERMAPI'); /* */
 DCL TIME BUILTIN;
 DCL 1 TIMEOUT,
 2 TIME_SEC FIXED BIN(31), /* value in secs */
 2 TIME_MSEC FIXED BIN(31); /* value in millisecs */
 DCL 1 TIMEVAL,
 2 TV_SEC BIT(32), /* value in secs */
 2 TV_USEC BIT(32); /* value in microseconds */
 DCL TYPE_DATAGRAM FIXED BIN(31) INIT(2);/*fixed lengthconnectionless*/
 DCL TYPE_RAW FIXED BIN(31) INIT(3); /* internal protocol interface */
 DCL TYPE_STREAM FIXED BIN(31) INIT(1); /* two-way byte stream */
 DCL WRETMSK CHAR(4); /* indicate WRITE EVENTS */
 DCL WRITE CHAR(16) INIT('WRITE');
 DCL WRITEV CHAR(16) INIT('WRITEV');
 DCL WSNDMSK CHAR(4); /*check for pending write events */
 DCL TCP_KEEPALIVE BIT(32) INIT('80000008'BX);
 DCL TCP_NODELAY BIT(32) INIT('80000001'BX);

Figure 135. CBLOCK PL/1 common variables

Common variables used in COBOL sample programs
The EZACOBOL common storage area contains the variables that are used in the COBOL programs in this
section.

 * *
 * MODULE NAME: EZACOBOL - COBOL COMMON VARIABLES *
 * *
 * Copyright: Licensed Materials - Property of IBM *
 * *
 * "Restricted Materials of IBM" *
 * *
 * 5694-A01 *
 * *
 * Copyright IBM Corp. 2007, 2010 *
 * *
 * US Government Users Restricted Rights - *
 * Use, duplication or disclosure restricted by *
 * GSA ADP Schedule Contract with IBM Corp. *
 * *
 * Note: COBOL variable names can contain a maximum of *
 * 30 characters. *
 * *
 * Status: CSV1R12 *
 * *
 * Change Activity: *
 * Flag Reason Release Date Origin Description *
 * ---- -------- -------- ------ -------- --------------------- *

556 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 * $A1= PH34590 HIP6240 210323 tevaller: Identify internal use *
 * only interfaces with *
 * IFF_RESTRICTED *

 * *
 * COBOL COMMON VARIABLES *
 * *

 *
 * Socket option values.
 *
 01 IP-ADD-MEMBERSHIP PIC X(4) VALUE X'00100005'.
 01 IP-ADD-SOURCE-MEMBERSHIP PIC X(4) VALUE X'0010000C'.
 01 IP-BLOCK-SOURCE PIC X(4) VALUE X'0010000A'.
 01 IP-DROP-MEMBERSHIP PIC X(4) VALUE X'00100006'.
 01 IP-DROP-SOURCE-MEMBERSHIP PIC X(4) VALUE X'0010000D'.
 01 IP-MULTICAST-IF PIC X(4) VALUE X'00100007'.
 01 IP-MULTICAST-LOOP PIC X(4) VALUE X'00100004'.
 01 IP-MULTICAST-TTL PIC X(4) VALUE X'00100003'.
 01 IP-UNBLOCK-SOURCE PIC X(4) VALUE X'0010000B'.
 01 IPV6-ADDR-PREFERENCES PIC X(4) VALUE X'00010020'.
 01 IPV6-JOIN-GROUP PIC X(4) VALUE X'00010005'.
 01 IPV6-LEAVE-GROUP PIC X(4) VALUE X'00010006'.
 01 IPV6-MULTICAST-HOPS PIC X(4) VALUE X'00010009'.
 01 IPV6-MULTICAST-IF PIC X(4) VALUE X'00010007'.
 01 IPV6-MULTICAST-LOOP PIC X(4) VALUE X'00010004'.
 01 IPV6-UNICAST-HOPS PIC X(4) VALUE X'00010003'.
 01 IPV6-V6ONLY PIC X(4) VALUE X'0001000A'.
 01 MCAST-BLOCK-SOURCE PIC X(4) VALUE X'0010002C'.
 01 MCAST-JOIN-GROUP PIC X(4) VALUE X'00100028'.
 01 MCAST-JOIN-SOURCE-GROUP PIC X(4) VALUE X'0010002A'.
 01 MCAST-LEAVE-GROUP PIC X(4) VALUE X'00100029'.
 01 MCAST-LEAVE-SOURCE-GROUP PIC X(4) VALUE X'0010002B'.
 01 MCAST-UNBLOCK-SOURCE PIC X(4) VALUE X'0010002D'.
 01 SO-RCVTIMEO PIC X(4) VALUE X'00001006'.
 01 SO-SNDTIMEO PIC X(4) VALUE X'00001005'.
 *
 * IOCTL Commands
 *
 01 SIOCGIFMTU PIC X(4) VALUE X'C020A726'.
 01 SIOCGIPMSFILTER PIC X(4) VALUE X'C000A724'.
 01 SIOCSIPMSFILTER PIC X(4) VALUE X'8000A725'.
 01 SIOCGMSFILTER PIC X(4) VALUE X'C000F610'.
 01 SIOCSMSFILTER PIC X(4) VALUE X'8000F611'.
 01 SIOCSAPPLDATA PIC X(4) VALUE X'8018D90C'.
 *
 * Structure allows applications to allocate space for
 * either form of inet socket address
 *
 01 SOCKADDR-STORAGE.
 05 SS-LEN PIC X(1).
 05 SS-FAMILY PIC X(1).
 05 SS-DATA PIC X(126).
 *
 * IP-MREQ for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP
 *
 01 IP-MREQ.
 05 IMR-MULTIADDR PIC 9(8) BINARY.
 05 IMR-INTERFACE PIC 9(8) BINARY.
 *
 * IP-MREQ-SOURCE for
 * IP_ADD_SOURCE_MEMBERSHIP
 * IP_DROP_SOURCE_MEMBERSHIP
 * IP_BLOCK_SOURCE
 * IP_UNBLOCK_SOURCE
 *
 01 IP-MREQ-SOURCE.
 05 IMR-MULTIADDR PIC 9(8) BINARY.
 05 IMR-SOURCEADDR PIC 9(8) BINARY.
 05 IMR-INTERFACE PIC 9(8) BINARY.
 *
 * IPV6-MREQ for IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP
 *
 01 IPV6-MREQ.
 05 IPV6MR-MULTIADDR.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 05 IPV6MR-INTERFACE PIC 9(8) BINARY.
 *
 * GROUP-REQ for
 * MCAST_JOIN_GROUP

Chapter 13. CALL instruction application programming interface 557

 * MCAST_LEAVE_GROUP
 *
 01 GROUP-REQ.
 05 GR-INTERFACE PIC 9(8) BINARY.
 05 FILLER PIC X(4).
 05 GR-GROUP PIC X(128).
 05 GR-GROUP-R REDEFINES GR-GROUP.
 10 GR-GROUP-SOCK-LEN PIC X(1).
 10 GR-GROUP-SOCK-FAMILY PIC X(1).
 10 GR-GROUP-SOCK-DATA PIC X(26).
 10 GR-GROUP-SOCK-SIN REDEFINES GR-GROUP-SOCK-DATA.
 15 GR-GROUP-SOCK-SIN-PORT PIC 9(4) BINARY.
 15 GR-GROUP-SOCK-SIN-ADDR PIC 9(8) BINARY.
 15 FILLER PIC X(8).
 15 FILLER PIC X(12).
 10 GR-GROUP-SOCK-SIN6 REDEFINES GR-GROUP-SOCK-DATA.
 15 GR-GROUP-SOCK-SIN6-PORT PIC 9(4) BINARY.
 15 GR-GROUP-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 15 GR-GROUP-SOCK-SIN6-ADDR.
 20 FILLER PIC 9(16) BINARY.
 20 FILLER PIC 9(16) BINARY.
 15 GR-GROUP-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 10 FILLER PIC X(100).
 *
 * GROUP-SOURCE-REQ for
 * MCAST_BLOCK_SOURCE
 * MCAST_UNBLOCK_SOURCE
 * MCAST_JOIN_SOURCE_GROUP
 * MCAST_LEAVE_SOURCE_GROUP
 *
 01 GROUP-SOURCE-REQ.
 05 GSR-INTERFACE PIC 9(8) BINARY.
 05 FILLER PIC X(4).
 05 GSR-GROUP PIC X(128).
 05 GSR-GROUP-R REDEFINES GSR-GROUP.
 10 GSR-GROUP-SOCK-LEN PIC X(1).
 10 GSR-GROUP-SOCK-FAMILY PIC X(1).
 10 GSR-GROUP-SOCK-DATA PIC X(26).
 10 GSR-GROUP-SOCK-SIN REDEFINES GSR-GROUP-SOCK-DATA.
 15 GSR-GROUP-SOCK-SIN-PORT PIC 9(4) BINARY.
 15 GSR-GROUP-SOCK-SIN-ADDR PIC 9(8) BINARY.
 15 FILLER PIC X(8).
 15 FILLER PIC X(12).
 10 GSR-GROUP-SOCK-SIN6 REDEFINES GSR-GROUP-SOCK-DATA.
 15 GSR-GROUP-SOCK-SIN6-PORT PIC 9(4) BINARY.
 15 GSR-GROUP-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 15 GSR-GROUP-SOCK-SIN6-ADDR.
 20 FILLER PIC 9(16) BINARY.
 20 FILLER PIC 9(16) BINARY.
 15 GSR-GROUP-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 10 FILLER PIC X(100).
 05 GSR-SOURCE PIC X(128).
 05 GSR-SOURCE-R REDEFINES GSR-SOURCE.
 10 GSR-SOURCE-SOCK-LEN PIC X(1).
 10 GSR-SOURCE-SOCK-FAMILY PIC X(1).
 10 GSR-SOURCE-SOCK-DATA PIC X(26).
 10 GSR-SOURCE-SOCK-SIN REDEFINES GSR-SOURCE-SOCK-DATA.
 15 GSR-SOURCE-SOCK-SIN-PORT PIC 9(4) BINARY.
 15 GSR-SOURCE-SOCK-SIN-ADDR PIC 9(8) BINARY.
 15 FILLER PIC X(8).
 15 FILLER PIC X(12).
 10 GSR-SOURCE-SOCK-SIN6 REDEFINES GSR-SOURCE-SOCK-DATA.
 15 GSR-SOURCE-SOCK-SIN6-PORT PIC 9(4) BINARY.
 15 GSR-SOURCE-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 15 GSR-SOURCE-SOCK-SIN6-ADDR.
 20 FILLER PIC 9(16) BINARY.
 20 FILLER PIC 9(16) BINARY.
 15 GSR-SOURCE-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 10 FILLER PIC X(100).
 *
 * MULTICAST CONSTANTS
 *
 77 MCAST-INCLUDE PIC 9(8) BINARY VALUE 0.
 77 MCAST-EXCLUDE PIC 9(8) BINARY VALUE 1.
 77 MCAST-NUMSRC-MAX PIC 9(8) BINARY VALUE 64.
 *
 * IP-MSFILTER
 *
 01 IP-MSFILTER.
 02 IMSF-HEADER.
 03 IMSF-MULTIADDR PIC 9(8) BINARY.
 03 IMSF-INTERFACE PIC 9(8) BINARY.

558 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 03 IMSF-FMODE PIC 9(8) BINARY.
 88 IMSF-FMODE-INCLUDE VALUE 0.
 88 IMSF-FMODE-EXCLUDE VALUE 1.
 03 IMSF-NUMSRC PIC 9(8) BINARY.
 02 IMSF-SLIST.
 03 IMSF-SRCENTRY OCCURS 1 TO 64 TIMES
 DEPENDING ON IMSF-NUMSRC.
 05 IMSF-SRCADDR PIC 9(8) BINARY.
 *
 * GROUP-FILTER
 *
 01 GROUP-FILTER.
 02 GF-HEADER.
 03 GF-INTERFACE PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 GF-GROUP PIC X(128).
 03 GF-GROUP-R REDEFINES GF-GROUP.
 05 GF-GROUP-SOCK-LEN PIC X(1).
 05 GF-GROUP-SOCK-FAMILY PIC X(1).
 05 GF-GROUP-SOCK-DATA PIC X(26).
 05 GF-GROUP-SOCK-SIN REDEFINES GF-GROUP-SOCK-DATA.
 10 GF-GROUP-SOCK-SIN-PORT PIC 9(4) BINARY.
 10 GF-GROUP-SOCK-SIN-ADDR PIC 9(8) BINARY.
 10 FILLER PIC X(8).
 10 FILLER PIC X(12).
 05 GF-GROUP-SOCK-SIN6 REDEFINES GF-GROUP-SOCK-DATA.
 10 GF-GROUP-SOCK-SIN6-PORT PIC 9(4) BINARY.
 10 GF-GROUP-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 10 GF-GROUP-SOCK-SIN6-ADDR.
 15 FILLER PIC 9(16) BINARY.
 15 FILLER PIC 9(16) BINARY.
 10 GF-GROUP-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 05 FILLER PIC X(100).
 03 GF-FMODE PIC 9(8) BINARY.
 88 GF-FMODE-INCLUDE VALUE 0.
 88 GF-FMODE-EXCLUDE VALUE 1.
 03 GF-NUMSRC PIC 9(8) BINARY.
 02 GF-SLIST.
 03 GF-SRCENTRY OCCURS 1 TO 64 TIMES
 DEPENDING ON GF-NUMSRC.
 05 GF-SRCADDR PIC X(128).
 05 GF-SRCADDR-R REDEFINES GF-SRCADDR.
 10 GF-SLIST-SOCK-LEN PIC X(1).
 10 GF-SLIST-SOCK-FAMILY PIC X(1).
 10 GF-SLIST-SOCK-DATA PIC X(26).
 10 GF-SLIST-SOCK-SIN REDEFINES GF-SLIST-SOCK-DATA.
 15 GF-SLIST-SOCK-SIN-PORT PIC 9(4) BINARY.
 15 GF-SLIST-SOCK-SIN-ADDR PIC 9(8) BINARY.
 15 FILLER PIC X(8).
 15 FILLER PIC X(12).
 10 GF-SLIST-SOCK-SIN6 REDEFINES GF-SLIST-SOCK-DATA.
 15 GF-SLIST-SOCK-SIN6-PORT PIC 9(4) BINARY.
 15 GF-SLIST-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 15 GF-SLIST-SOCK-SIN6-ADDR.
 20 FILLER PIC 9(16) BINARY.
 20 FILLER PIC 9(16) BINARY.
 15 GF-SLIST-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 10 FILLER PIC X(100).
 *
 * Structure for setting APPLDATA when using the SIOCSAPPLDATA
 * ioctl.
 *
 77 SETADEYE1 PIC X(8) VALUE 'SETAPPLD'.
 77 SETADVER PIC 9(4) BINARY VALUE 1.
 01 SETAPPLDATA.
 02 SETAD-EYE1 PIC X(8).
 02 SETAD-VER PIC 9(4) BINARY.
 02 SETAD-LEN PIC 9(4) BINARY.
 02 FILLER PIC X(4).
 02 SETAD-PTR64 PIC 9(16) BINARY.
 02 SETAD-PTR31 REDEFINES SETAD-PTR64.
 03 SETAD-PTRHW PIC 9(8) BINARY.
 03 SETAD-PTR USAGE IS POINTER.
 *
 * Structure for containing the actual application data being set
 * by the SIOCSAPPLDATA ioctl.
 *
 77 SETADEYE2 PIC X(8) VALUE 'APPLDATA'.
 01 SETADCONTAINER.
 02 SETAD-EYE2 PIC X(8).
 02 SETAD-BUFFER PIC X(40).
 *

Chapter 13. CALL instruction application programming interface 559

 * TIMEVAL for SO_RCVTIMEO and SO_SNDTIMEO
 *
 01 TIMEVAL.
 02 TV-SEC PIC 9(8) BINARY.
 02 TV-USEC PIC 9(8) BINARY.

 *
 * IFREQ structure for SIOCGIFxxxx ioctls.
 *
 01 IFREQ.
 05 IFR-NAME PIC X(16).
 05 IFR-IFR PIC X(16).
 05 IFR-ADDR REDEFINES IFR-IFR.
 10 IFR-ADDR-LEN PIC X(1).
 10 IFR-ADDR-FAMILY PIC X(1).
 10 IFR-ADDR-PORT PIC 9(4) BINARY.
 10 IFR-ADDR-ADDR PIC 9(8) BINARY.
 10 FILLER PIC X(8).
 05 IFR-DSTADDR REDEFINES IFR-IFR.
 10 IFR-DSTADDR-LEN PIC X(1).
 10 IFR-DSTADDR-FAMILY PIC X(1).
 10 IFR-DSTADDR-PORT PIC 9(4) BINARY.
 10 IFR-DSTADDR-ADDR PIC 9(8) BINARY.
 10 FILLER PIC X(8).
 05 IFR-BROADADDR REDEFINES IFR-IFR.
 10 IFR-BROADADDR-LEN PIC X(1).
 10 IFR-BROADADDR-FAMILY PIC X(1).
 10 IFR-BROADADDR-PORT PIC 9(4) BINARY.
 10 IFR-BROADADDR-ADDR PIC 9(8) BINARY.
 10 FILLER PIC X(8).
 05 IFR-FLAGS-R REDEFINES IFR-IFR.
 10 IFR-FLAGS PIC X(2).
 10 FILLER PIC X(14).
 05 IFR-METRIC-R REDEFINES IFR-IFR.
 10 IFR-METRIC PIC 9(8) BINARY.
 10 FILLER PIC X(12).
 05 IFR-DATA-R REDEFINES IFR-IFR.
 10 IFR-DATA PIC 9(8) BINARY.
 10 FILLER PIC X(12).
 05 IFR-MTU-R REDEFINES IFR-IFR.
 10 IFR-MTU PIC 9(8) BINARY.
 10 FILLER PIC X(12).
 *
 * Constants for use with the IFR_FLAGS field in structure IFREQ.
 *
 01 IFF-UP PIC X(2) VALUE X'0001'.
 01 IFF-BROADCAST PIC X(2) VALUE X'0002'.
 01 IFF-DEBUG PIC X(2) VALUE X'0004'.
 01 IFF-RESTRICTED PIC X(2) VALUE X'0004'.
 01 IFF-LOOPBACK PIC X(2) VALUE X'0008'.
 01 IFF-POINTOPOINT PIC X(2) VALUE X'0010'.
 01 IFF-NOTRAILERS PIC X(2) VALUE X'0020'.
 01 IFF-RUNNING PIC X(2) VALUE X'0040'.
 01 IFF-NOARP PIC X(2) VALUE X'0080'.
 01 IFF-PROMISC PIC X(2) VALUE X'0100'.
 01 IFF-ALLMULTI PIC X(2) VALUE X'0200'.
 01 IFF-MULTICAST PIC X(2) VALUE X'0400'.
 01 IFF-POINTOMULTIPT PIC X(2) VALUE X'0800'.
 01 IFF-BRIDGE PIC X(2) VALUE X'1000'.
 01 IFF-SNAP PIC X(2) VALUE X'2000'.
 01 IFF-VIRTUAL PIC X(2) VALUE X'4000'.
 01 IFF-SAMEHOST PIC X(2) VALUE X'8000'.
 *
 * HOSTENT structure
 *
 01 HOSTENT.
 * Official name of host
 03 H-NAME PIC S9(8) BINARY.
 * Alias list address
 03 H-ALIASES PIC S9(8) BINARY.
 * Host address type
 03 H-ADDRTYPE PIC S9(8) BINARY.
 * Length of address
 03 H-LENGTH PIC S9(8) BINARY.
 * List of addresses from name server
 03 H-ADDR-LIST PIC S9(8) BINARY.
 *
 * Address information structure
 *
 01 ADDRINFO.
 * Flags
 03 AI-FLAGS PIC S9(8) BINARY.

560 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 * Socket family
 03 AI-FAMILY PIC S9(8) BINARY.
 * Socket type
 03 AI-SOCKTYPE PIC S9(8) BINARY.
 * Protocol
 03 AI-PROTOCOL PIC S9(8) BINARY.
 * Length of AI-ADDR value
 03 AI-ADDRLEN PIC S9(8) BINARY.
 * Pad to double word boundary
 03 FILLER PIC X(4).
 03 FILLER PIC X(4).
 * Canonical name
 03 AI-CANONNAME PIC S9(8) BINARY.
 03 FILLER PIC X(4).
 * Binary address, sockaddr_in(6)
 03 AI-ADDR PIC S9(8) BINARY.
 03 FILLER PIC X(4).
 * Next addrinfo structure
 03 AI-NEXT PIC S9(8) BINARY.
 * Extended flags
 03 AI-EFLAGS PIC S9(8) BINARY.
 *
 * AI-FLAGS mappings
 *
 77 AI-PASSIVE PIC X(4) VALUE X'00000001'.
 77 AI-PASSIVE-BIT PIC S9(8) BINARY VALUE 1.
 77 AI-CANONNAMEOK PIC X(4) VALUE X'00000002'.
 77 AI-CANONNAMEOK-BIT PIC S9(8) BINARY VALUE 2.
 77 AI-NUMERICHOST PIC X(4) VALUE X'00000004'.
 77 AI-NUMERICHOST-BIT PIC S9(8) BINARY VALUE 4.
 77 AI-NUMERICSERV PIC X(4) VALUE X'00000008'.
 77 AI-NUMERICSERV-BIT PIC S9(8) BINARY VALUE 8.
 77 AI-V4MAPPED PIC X(4) VALUE X'00000010'.
 77 AI-V4MAPPED-BIT PIC S9(8) BINARY VALUE 16.
 77 AI-ALL PIC X(4) VALUE X'00000020'.
 77 AI-ALL-BIT PIC S9(8) BINARY VALUE 32.
 77 AI-ADDRCONFIG PIC X(4) VALUE X'00000040'.
 77 AI-ADDRCONFIG-BIT PIC S9(8) BINARY VALUE 64.
 77 AI-EXTFLAGS PIC X(4) VALUE X'00000080'.
 77 AI-EXTFLAGS-BIT PIC S9(8) BINARY VALUE 128.
 77 AI-ALLFLAGMASK PIC X(4) VALUE X'FFFFFF00'.
 77 AI-ALLFLAGMASK-BITS PIC S9(8) VALUE -256.
 *
 * AI-EFLAGS mappings
 * Also maps OPTVAL for getsockopt and setsockopt when
 * OPTNAME is IPV6-ADDR-PREFERENCES
 * Also maps FLAGS for inet6_is_srcaddr
 *
 77 IPV6-PREFER-SRC-HOME PIC S9(8) BINARY VALUE 1.
 77 IPV6-PREFER-SRC-COA PIC S9(8) BINARY VALUE 2.
 77 IPV6-PREFER-SRC-TMP PIC S9(8) BINARY VALUE 4.
 77 IPV6-PREFER-SRC-PUBLIC PIC S9(8) BINARY VALUE 8.
 77 IPV6-PREFER-SRC-CGA PIC S9(8) BINARY VALUE 16.
 77 IPV6-PREFER-SRC-NONCGA PIC S9(8) BINARY VALUE 32.
 77 IPV6-PREFER-SRC-INVALIDBITS PIC S9(8) BINARY VALUE -64.
 *
 * NI_FLAGS mappings
 *
 77 NI-NOFQDN PIC X(4) VALUE X'00000001'.
 77 NI-NUMERICHOST PIC X(4) VALUE X'00000002'.
 77 NI-NAMEREQD PIC X(4) VALUE X'00000004'.
 77 NI-NUMERICSERV PIC X(4) VALUE X'00000008'.
 77 NI-DGRAM PIC X(4) VALUE X'00000010'.
 77 NI-NUMERICSCOPE PIC X(4) VALUE X'00000020'.
 *
 * End of EZACOBOL - COBOL COMMON VARIABLES
 *

Figure 136. EZACOBOL COBOL common variables

COBOL call interface sample IPv6 server program
The EZASO6CS program is a server program that shows you how to use the following calls provided by the
call socket interface:

• ACCEPT
• BIND

Chapter 13. CALL instruction application programming interface 561

• CLOSE
• EZACIC09
• FREEADDRINFO
• GETADDRINFO
• GETCLIENTID
• GETHOSTNAME
• INITAPI
• LISTEN
• NTOP
• PTON
• READ
• SOCKET
• TERMAPI
• WRITE

 * *
 * MODULE NAME: EZASO6CS - THIS IS A VERY SIMPLE IPV6 SERVER *
 * *
 * Copyright: Licensed Materials - Property of IBM *
 * *
 * "Restricted Materials of IBM" *
 * *
 * 5694-A01 *
 * *
 * Copyright IBM Corp. 2002, 2008 *
 * *
 * US Government Users Restricted Rights - *
 * Use, duplication or disclosure restricted by *
 * GSA ADP Schedule Contract with IBM Corp. *

 * *
 * Note: COBOL variable names can contain a maximum of *
 * 30 characters. *

 * *
 * Status: CSV1R10 *
 * *
 * LANGUAGE: COBOL *
 * *

 Identification Division.
 ========================

 Program-id. EZASO6CS.

 =====================
 Environment Division.
 =====================

 ==============
 Data Division.
 ==============

 Working-storage Section.

 * Socket interface function codes *

 01 soket-functions.
 02 soket-accept pic x(16) value 'ACCEPT '.
 02 soket-bind pic x(16) value 'BIND '.
 02 soket-close pic x(16) value 'CLOSE '.
 02 soket-connect pic x(16) value 'CONNECT '.
 02 soket-fcntl pic x(16) value 'FCNTL '.
 02 soket-freeaddrinfo pic x(16) value 'FREEADDRINFO '.
 02 soket-getaddrinfo pic x(16) value 'GETADDRINFO '.
 02 soket-getclientid pic x(16) value 'GETCLIENTID '.

562 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 02 soket-gethostbyaddr pic x(16) value 'GETHOSTBYADDR '.
 02 soket-gethostbyname pic x(16) value 'GETHOSTBYNAME '.
 02 soket-gethostid pic x(16) value 'GETHOSTID '.
 02 soket-gethostname pic x(16) value 'GETHOSTNAME '.
 02 soket-getnameinfo pic x(16) value 'GETNAMEINFO '.
 02 soket-getpeername pic x(16) value 'GETPEERNAME '.
 02 soket-getsockname pic x(16) value 'GETSOCKNAME '.
 02 soket-getsockopt pic x(16) value 'GETSOCKOPT '.
 02 soket-givesocket pic x(16) value 'GIVESOCKET '.
 02 soket-initapi pic x(16) value 'INITAPI '.
 02 soket-ioctl pic x(16) value 'IOCTL '.
 02 soket-listen pic x(16) value 'LISTEN '.
 02 soket-ntop pic x(16) value 'NTOP '.
 02 soket-pton pic x(16) value 'PTON '.
 02 soket-read pic x(16) value 'READ '.
 02 soket-recv pic x(16) value 'RECV '.
 02 soket-recvfrom pic x(16) value 'RECVFROM '.
 02 soket-select pic x(16) value 'SELECT '.
 02 soket-send pic x(16) value 'SEND '.
 02 soket-sendto pic x(16) value 'SENDTO '.
 02 soket-setsockopt pic x(16) value 'SETSOCKOPT '.
 02 soket-shutdown pic x(16) value 'SHUTDOWN '.
 02 soket-socket pic x(16) value 'SOCKET '.
 02 soket-takesocket pic x(16) value 'TAKESOCKET '.
 02 soket-termapi pic x(16) value 'TERMAPI '.
 02 soket-write pic x(16) value 'WRITE '.

 * Work variables *

 01 errno pic 9(8) binary value zero.
 01 retcode pic s9(8) binary value zero.
 01 client-ipaddr-dotted pic x(15) value space.
 01 server-ipaddr-dotted pic x(15) value space.
 01 ezaconn-function pic x value space.
 88 CONNECTED value 'Y'.
 01 saved-message-id pic x(8) value space.
 88 close-down-message-received value '*CLSDWN*'.
 01 Terminate-Options pic x value space.
 88 Opened-API value 'A'.
 88 Opened-Socket value 'S'.
 01 saved-message-id-len pic 9(8) Binary value 8.
 01 Cur-time .
 02 Hour pic 9(2).
 02 Minute pic 9(2).
 02 Second pic 9(2).
 02 Hund-Sec pic 9(2).
 01 S pic 9(4) comp.

 * Variables used for the INITAPI call *

 01 maxsoc-fwd pic 9(8) Binary.
 01 maxsoc-rdf redefines maxsoc-fwd.
 02 filler pic x(2).
 02 maxsoc pic 9(4) Binary.
 01 initapi-ident.
 05 tcpname pic x(8) Value 'TCPCS '.
 05 asname pic x(8) Value space.
 01 subtask pic x(8) value 'EZASO6CS'.
 01 maxsno pic 9(8) Binary Value 1.

 * Variables returned by the GETCLIENTID Call *

 01 clientid.
 05 clientid-domain pic 9(8) Binary value 19.
 05 clientid-name pic x(8) value space.
 05 clientid-task pic x(8) value space.
 05 filler pic x(20) value low-value.

 * Variables used for the SOCKET call *

 01 AF-INET pic 9(8) Binary Value 2.
 01 AF-INET6 pic 9(8) Binary Value 19.
 01 SOCK-STREAM pic 9(8) Binary Value 1.
 01 SOCK-DATAGRAM pic 9(8) Binary Value 2.
 01 SOCK-RAW pic 9(8) Binary Value 3.
 01 IPPROTO-IP pic 9(8) Binary Value zero.
 01 IPPROTO-TCP pic 9(8) Binary Value 6.
 01 IPPROTO-UDP pic 9(8) Binary Value 17.
 01 IPPROTO-IPV6 pic 9(8) Binary Value 41.
 01 socket-descriptor pic 9(4) Binary Value zero.

 * Variables returned by the GETHOSTNAME Call *

Chapter 13. CALL instruction application programming interface 563

 01 host-name-len pic 9(8) binary.
 01 host-name pic x(24).
 01 host-name-char-count pic 9(4) binary.
 01 host-name-unstrung pic x(24) value spaces.

 * Variables used/returned by the GETADDRINFO Call *

 01 node-name pic x(255).
 01 node-name-len pic 9(8) binary.
 01 service-name pic x(32).
 01 service-name-len pic 9(8) binary.
 01 canonical-name-len pic 9(8) binary.
 01 ai-passive pic 9(8) binary value 1.
 01 ai-canonnameok pic 9(8) binary value 2.
 01 ai-numerichost pic 9(8) binary value 4.
 01 ai-numericserv pic 9(8) binary value 8.
 01 ai-v4mapped pic 9(8) binary value 16.
 01 ai-all pic 9(8) binary value 32.
 01 ai-addrconfig pic 9(8) binary value 64.

 * Variables used for the BIND call *

 01 server-socket-address.
 05 server-family pic 9(4) Binary value 19.
 05 server-port pic 9(4) Binary value 1031.
 05 server-flowinfo pic 9(8) Binary value 0.
 05 server-ipaddr.
 10 filler pic 9(16) Binary value 0.
 10 filler pic 9(16) Binary value 0.
 05 server-scopeid pic 9(8) Binary value 0.
 01 NBYTE PIC 9(8) COMP value 80.
 01 BUF PIC X(80).
 01 BACKLOG PIC S9(8) COMP VALUE 10.

 * Variables used/returned by the EZACIC09 call *

 01 input-addrinfo-ptr usage is pointer.
 01 output-name-len pic 9(8) binary.
 01 output-canonical-name pic x(256).
 01 output-name usage is pointer.
 01 output-next-addrinfo usage is pointer.

 * Variables used for the LISTEN call *

 01 backlog-level pic 9(4) Binary Value zero.

 * Variables used for the ACCEPT call *

 01 socket-descriptor-new pic 9(4) Binary Value zero.

 * Variables used for the NTOP/PTON call *

 01 IN6ADDR-ANY pic x(45)
 value '::'.
 01 IN6ADDR-LOOPBACK pic x(45)
 value '::1'.
 01 ntop-family pic 9(8) Binary.
 01 pton-family pic 9(8) Binary.
 01 presentable-addr pic x(45) value spaces.
 01 presentable-addr-len pic 9(4) Binary value 45.
 01 numeric-addr.
 05 filler pic 9(16) Binary Value 0.
 05 filler pic 9(16) Binary Value 0.

 * Variables used by the RECV Call *

 01 client-socket-address.
 05 client-family pic 9(4) Binary Value 19.
 05 client-port pic 9(4) Binary Value 1032.
 05 client-flowinfo pic 9(8) Binary Value zero.
 05 client-ipaddr.
 10 filler pic 9(16) Binary Value 0.
 10 filler pic 9(16) Binary Value 0.
 05 client-scopeid pic 9(8) Binary Value zero.

 * Buffer and length field for recv and send operation *

 01 send-request-len pic 9(8) Binary Value zero.
 01 read-request-len pic 9(8) Binary Value zero.
 01 read-buffer pic x(4000) value space.
 01 filler redefines read-buffer.

564 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 05 message-id pic x(8).
 05 filler pic x(3992).

 * recv and send flags *

 01 send-flag pic 9(8) Binary value zero.
 01 recv-flag pic 9(8) Binary value zero.

 * Error message for socket interface errors *

 77 failure pic S9(8) comp.
 01 ezaerror-msg.
 05 filler pic x(9) Value 'Function='.
 05 ezaerror-function pic x(16) Value space.
 05 filler pic x value ' '.
 05 filler pic x(8) Value 'Retcode='.
 05 ezaerror-retcode pic ---99.
 05 filler pic x value ' '.
 05 filler pic x(9) Value 'Errorno='.
 05 ezaerror-errno pic zzz99.
 05 filler pic x value ' '.
 05 ezaerror-text pic x(50) value ' '.

 *================
 Linkage Section.
 *================
 01 L1.
 03 hints-addrinfo.
 05 hints-ai-flags pic 9(8) binary.
 05 hints-ai-family pic 9(8) binary.
 05 hints-ai-socktype pic 9(8) binary.
 05 hints-ai-protocol pic 9(8) binary.
 05 filler pic 9(8) binary.
 05 filler pic 9(8) binary.
 05 filler pic 9(8) binary.
 05 filler pic 9(8) binary.
 03 hints-addrinfo-ptr usage is pointer.
 03 results-addrinfo-ptr usage is pointer.
 *
 * Results address info
 *
 01 results-addrinfo.
 05 results-ai-flags pic 9(8) binary.
 05 results-ai-family pic 9(8) binary.
 05 results-ai-socktype pic 9(8) binary.
 05 results-ai-protocol pic 9(8) binary.
 05 results-ai-addr-len pic 9(8) binary.
 05 results-ai-canonical-name usage is pointer.
 05 results-ai-addr-ptr usage is pointer.
 05 results-ai-next-ptr usage is pointer.
 *
 * Socket address structure from EZACIC09.
 *
 01 output-name-ptr usage is pointer.
 01 output-ip-name.
 03 output-ip-family pic 9(4) Binary.
 03 output-ip-port pic 9(4) Binary.
 03 output-ip-sock-data pic x(24).
 03 output-ipv4-sock-data redefines
 output-ip-sock-data.
 05 output-ipv4-ipaddr pic 9(8) Binary.
 05 filler pic x(20).
 03 output-ipv6-sock-data redefines
 output-ip-sock-data.
 05 output-ipv6-flowinfo pic 9(8) Binary.
 05 output-ipv6-ipaddr.
 10 filler pic 9(16) Binary.
 10 filler pic 9(16) Binary.
 05 output-ipv6-scopeid pic 9(8) Binary.

 ===
 Procedure Division using L1.
 ===

 ~~
 * P R O C E D U R E C O N T R O L S *
 ~~

 Perform Initialize-API thru Initialize-API-Exit.
 Perform Get-ClientID thru Get-ClientID-Exit.
 Perform Sockets-Descriptor thru Sockets-Descriptor-Exit.
 Perform Presentation-To-Numeric thru

Chapter 13. CALL instruction application programming interface 565

 Presentation-To-Numeric-Exit.
 Perform Get-Host-Name thru Get-Host-Name-Exit.
 Perform Get-Address-Info thru Get-Address-Info-Exit.
 Perform Bind-Socket thru Bind-Socket-Exit.
 Perform Listen-To-Socket thru Listen-To-Socket-Exit.
 Perform Accept-Connection thru Accept-Connection-Exit.
 Move 45 to presentable-addr-len.
 Move spaces to presentable-addr.
 Move server-ipaddr to numeric-addr.
 Move 19 to ntop-family.
 Perform Numeric-TO-Presentation thru
 Numeric-To-Presentation-Exit.
 Perform Read-Message thru Read-Message-Exit.
 Perform Write-Message thru Write-Message-Exit.
 Perform Close-Socket thru Exit-Now.

 * Initialize socket API *

 Initialize-API.
 Move soket-initapi to ezaerror-function.

 * If you want to set maxsoc to the max, uncomment the next line.*

 * Move 65535 to maxsoc-fwd.
 Call 'EZASOKET' using soket-initapi maxsoc initapi-ident
 subtask maxsno errno retcode.
 Move 'Initapi failed' to ezaerror-text.
 If retcode < 0 move 12 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move 'A' to Terminate-Options.
 Initialize-API-Exit.
 Exit.

 * Let us see the client-id *

 Get-ClientID.
 move soket-getclientid to ezaerror-function.
 Call 'EZASOKET' using soket-getclientid clientid errno
 retcode.
 Display 'Client ID = ' clientid-name
 'task=' clientid-task.
 Move 'Getclientid failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Get-ClientID-Exit.
 Exit.

 * Get us a stream socket descriptor. *

 Sockets-Descriptor.
 move soket-socket to ezaerror-function.
 Call 'EZASOKET' using soket-socket AF-INET6 SOCK-STREAM
 IPPROTO-IP errno retcode.
 Move 'Socket call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move retcode to socket-descriptor.
 Move 'S' to Terminate-Options.
 Sockets-Descriptor-Exit.
 Exit.

 * Use PTON to create an IP address to bind to. *

 Presentation-To-Numeric.
 move soket-pton to ezaerror-function.
 move IN6ADDR-LOOPBACK to presentable-addr.
 Call 'EZASOKET' using soket-pton AF-INET6
 presentable-addr presentable-addr-len
 numeric-addr
 errno retcode.
 Move 'PTON call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 move numeric-addr to server-ipaddr.
 Presentation-To-Numeric-Exit.
 Exit.

566 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 * Get the host name. *

 Get-Host-Name.
 move soket-gethostname to ezaerror-function.
 move 24 to host-name-len.
 Call 'EZASOKET' using soket-gethostname
 host-name-len host-name
 errno retcode.
 display 'Host name = ' host-name.
 Move 'GETHOSTNAME call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Get-Host-Name-Exit.
 Exit.

 * Get address information *

 Get-Address-Info.
 move soket-getaddrinfo to ezaerror-function.
 move 0 to host-name-char-count.
 inspect host-name tallying host-name-char-count
 for characters before x'00'.
 unstring host-name delimited by x'00'
 into host-name-unstrung
 count in host-name-char-count.
 string host-name-unstrung delimited by ' '
 into node-name.
 move host-name-char-count to node-name-len
 display 'node-name-len: ' node-name-len.
 move spaces to service-name.
 move 0 to service-name-len.
 move 0 to hints-ai-family.
 move ai-canonnameok to hints-ai-flags
 move 0 to hints-ai-socktype.
 move 0 to hints-ai-protocol.
 display 'GETADDRINFO Input fields: '
 display 'Node name = ' node-name.
 display 'Node name length = ' node-name-len.
 display 'Service name = ' service-name.
 display 'Service name length = ' service-name-len.
 display 'Hints family = ' hints-ai-family.
 display 'Hints flags = ' hints-ai-flags.
 display 'Hints socktype = ' hints-ai-socktype.
 display 'Hints protocol = ' hints-ai-protocol.
 set address of results-addrinfo to results-addrinfo-ptr.
 move soket-getaddrinfo to ezaerror-function.
 set hints-addrinfo-ptr to address of hints-addrinfo.
 Call 'EZASOKET' using soket-getaddrinfo
 node-name node-name-len
 service-name service-name-len
 hints-addrinfo-ptr
 results-addrinfo-ptr
 canonical-name-len
 errno retcode.
 Move 'GETADDRINFO call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure
 Perform Return-Code-Check thru Return-Code-Exit
 else
 Perform Return-Code-Check thru Return-Code-Exit
 display 'Address of results addrinfo is '
 results-addrinfo-ptr.
 set address of results-addrinfo to results-addrinfo-ptr
 set input-addrinfo-ptr to address of results-addrinfo
 display 'Address of input-addrinfo-ptr is '
 input-addrinfo-ptr.
 Perform Format-Result-AI thru Format-Result-AI-Exit
 Perform Set-Next-Addrinfo thru
 Set-Next-Addrinfo-Exit until
 output-next-addrinfo is equal to NULLS
 Perform Free-Address-Info thru Free-Address-Info-Exit.
 Get-Address-Info-Exit.
 Exit.

 * Set next addrinfo address *

 Set-Next-Addrinfo.
 display 'Setting next addrinfo address as '
 results-ai-next-ptr.
 display 'Address of output-next-addrinfo as '
 output-next-addrinfo.

Chapter 13. CALL instruction application programming interface 567

 set address of results-addrinfo to output-next-addrinfo.
 set input-addrinfo-ptr to address of results-addrinfo.
 display 'Address of input-addrinfo-ptr is '
 input-addrinfo-ptr.
 Perform Format-Result-AI thru Format-Result-AI-Exit.
 Set-Next-Addrinfo-Exit.
 Exit.

 * Format result address information *

 Format-Result-AI.
 move 'EZACIC09' to ezaerror-function.
 move zeros to output-name-len.
 move spaces to output-canonical-name.
 set output-name to nulls.
 set output-next-addrinfo to nulls.
 Call 'EZACIC09' using input-addrinfo-ptr
 output-name-len
 output-canonical-name
 output-name
 output-next-addrinfo
 retcode.
 Move 'EZACIC09 call failed' to ezaerror-text.
 display 'EZACIC09 output:'
 display 'Canonical name = ' output-canonical-name.
 display 'name length = ' output-name-len.
 display 'name = ' output-name.
 display 'next addrinfo = ' output-next-addrinfo.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 display 'Formatting result address ip address'.
 set address of output-ip-name to output-name.
 move results-ai-family to ntop-family.
 display 'ntop-family = ' ntop-family.
 if ntop-family = AF-INET then
 display 'Formatting ipv4 addres'
 move output-ipv4-ipaddr to numeric-addr
 move 16 to presentable-addr-len
 else
 display 'Formatting ipv6 addres'
 move output-ipv6-ipaddr to numeric-addr
 move 45 to presentable-addr-len.
 move spaces to presentable-addr.
 Perform Numeric-To-Presentation thru
 Numeric-To-Presentation-Exit.
 Format-Result-AI-Exit.
 Exit.

 * Release resolver storage *

 Free-Address-Info.
 move soket-freeaddrinfo to ezaerror-function.
 Call 'EZASOKET' using soket-freeaddrinfo
 results-addrinfo-ptr
 errno retcode.
 Move 'FREEADDRINFO call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Free-Address-Info-Exit.
 Exit.

 * Bind socket to our server port number *

 Bind-Socket.
 Move soket-bind to ezaerror-function.
 Call 'EZASOKET' using soket-bind socket-descriptor
 server-socket-address errno retcode.
 Display 'Port = ' server-port
 ' Address = ' presentable-addr.
 Move 'Bind call failed' to ezaerror-text
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Bind-Socket-Exit.
 Exit.

 * Listen to the socket *

 Listen-To-Socket.

568 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 Move soket-listen to ezaerror-function.
 Call 'EZASOKET' using soket-listen socket-descriptor
 backlog errno retcode.
 Display 'Backlog=' backlog.
 Move 'Listen call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Listen-To-Socket-Exit.
 Exit.

 * Accept a connection request *

 Accept-Connection.
 Move soket-accept to ezaerror-function.
 Call 'EZASOKET' using soket-accept socket-descriptor
 server-socket-address errno retcode.
 Move retcode to socket-descriptor-new.
 Display 'New socket=' retcode.
 Move 'Accept call failed' to ezaerror-text .
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Accept-Connection-Exit.
 Exit.

 * Use NTOP to display the IP address. *

 Numeric-To-Presentation.
 move soket-ntop to ezaerror-function.
 Call 'EZASOKET' using soket-ntop ntop-family
 numeric-addr
 presentable-addr presentable-addr-len
 errno retcode.
 Display 'Presentable address = ' presentable-addr.
 Move 'NTOP call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Numeric-TO-Presentation-Exit.
 Exit.

 * Read a message from the client. *

 Read-Message.
 move soket-read to ezaerror-function.
 move spaces to buf.
 display 'New socket desciptor = ' socket-descriptor-new.
 Call 'EZASOKET' using soket-read socket-descriptor-new
 nbyte buf
 errno retcode.
 display 'Message received = ' buf.
 Move 'Read call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Read-Message-Exit.
 Exit.

 * Write a message to the client. *

 Write-Message.
 move soket-write to ezaerror-function.
 move 'Message from EZASO6SC' to buf.
 Call 'EZASOKET' using soket-write socket-descriptor-new
 nbyte buf
 errno retcode.
 Move 'Write call failed' to ezaerror-text
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Write-Message-Exit.
 Exit.

 * Close connected socket *

 Close-Socket.
 move soket-close to ezaerror-function
 Call 'EZASOKET' using soket-close socket-descriptor-new
 errno retcode.
 Accept cur-time from time.

Chapter 13. CALL instruction application programming interface 569

 Display cur-time ' EZASO6CS : CLOSE RETCODE=' RETCODE
 ' ERRNO= ' ERRNO.
 If retcode < 0 move 24 to failure
 move 'Close call Failed' to ezaerror-text
 perform write-ezaerror-msg thru write-ezaerror-msg-exit.
 Close-Socket-Exit.
 Exit.

 * Terminate socket API *

 exit-term-api.
 Call 'EZASOKET' using soket-termapi.

 * Terminate program *

 exit-now.
 move failure to return-code.
 Goback.

 * Subroutine *
 * ---------- *
 * *
 * Write out an error message *

 write-ezaerror-msg.
 move errno to ezaerror-errno.
 move retcode to ezaerror-retcode.
 display ezaerror-msg.
 write-ezaerror-msg-exit.
 exit.

 * Check Return Code after each Socket Call *

 Return-Code-Check.
 Accept Cur-Time from TIME.
 move errno to ezaerror-errno.
 move retcode to ezaerror-retcode.
 Display Cur-Time ' EZASO6CS: ' ezaerror-function
 ' RETCODE= ' ezaerror-retcode
 ' ERRNO= ' ezaerror-errno.
 IF RETCODE < 0
 Perform Write-ezaerror-msg thru write-ezaerror-msg-exit
 Move zeros to errno retcode
 IF Opened-Socket Go to Close-Socket
 ELSE IF Opened-API Go to exit-term-api
 ELSE Go to exit-now.
 Move zeros to errno retcode.
 Return-Code-Exit.
 Exit.

Figure 137. EZASO6CS COBOL call interface sample IPv6 server program

COBOL call interface sample IPv6 client program
The EZASO6CC program is a client module that shows you how to use the following calls provided by the
call socket interface:

• CLOSE
• CONNECT
• GETCLIENTID
• GETNAMEINFO
• INITAPI
• NTOP
• PTON
• READ

570 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• SHUTDOWN
• SOCKET
• TERMAPI
• WRITE

 * *
 * MODULE NAME: EZASO6CC - THIS IS A VERY SIMPLE IPV6 CLIENT *
 * *
 * Copyright: Licensed Materials - Property of IBM *
 * *
 * "Restricted Materials of IBM" *
 * *
 * 5694-A01 *
 * *
 * Copyright IBM Corp. 2002, 2008 *
 * *
 * US Government Users Restricted Rights - *
 * Use, duplication or disclosure restricted by *
 * GSA ADP Schedule Contract with IBM Corp. *

 * *
 * Note: COBOL variable names can contain a maximum of *
 * 30 characters. *

 * *
 * Status: CSV1R10 *
 * *
 * LANGUAGE: COBOL *
 * *

 Identification Division.
 ========================

 Program-id. EZASO6CC.

 =====================
 Environment Division.
 =====================

 ==============
 Data Division.
 ==============

 Working-storage Section.

 * Socket interface function codes *

 01 soket-functions.
 02 soket-accept pic x(16) value 'ACCEPT '.
 02 soket-bind pic x(16) value 'BIND '.
 02 soket-close pic x(16) value 'CLOSE '.
 02 soket-connect pic x(16) value 'CONNECT '.
 02 soket-fcntl pic x(16) value 'FCNTL '.
 02 soket-freeaddrinfo pic x(16) value 'FREEADDRINFO '.
 02 soket-getaddrinfo pic x(16) value 'GETADDRINFO '.
 02 soket-getclientid pic x(16) value 'GETCLIENTID '.
 02 soket-gethostbyaddr pic x(16) value 'GETHOSTBYADDR '.
 02 soket-gethostbyname pic x(16) value 'GETHOSTBYNAME '.
 02 soket-gethostid pic x(16) value 'GETHOSTID '.
 02 soket-gethostname pic x(16) value 'GETHOSTNAME '.
 02 soket-getnameinfo pic x(16) value 'GETNAMEINFO '.
 02 soket-getpeername pic x(16) value 'GETPEERNAME '.
 02 soket-getsockname pic x(16) value 'GETSOCKNAME '.
 02 soket-getsockopt pic x(16) value 'GETSOCKOPT '.
 02 soket-givesocket pic x(16) value 'GIVESOCKET '.
 02 soket-initapi pic x(16) value 'INITAPI '.
 02 soket-ioctl pic x(16) value 'IOCTL '.
 02 soket-listen pic x(16) value 'LISTEN '.
 02 soket-ntop pic x(16) value 'NTOP '.
 02 soket-pton pic x(16) value 'PTON '.
 02 soket-read pic x(16) value 'READ '.
 02 soket-recv pic x(16) value 'RECV '.
 02 soket-recvfrom pic x(16) value 'RECVFROM '.
 02 soket-select pic x(16) value 'SELECT '.

Chapter 13. CALL instruction application programming interface 571

 02 soket-send pic x(16) value 'SEND '.
 02 soket-sendto pic x(16) value 'SENDTO '.
 02 soket-setsockopt pic x(16) value 'SETSOCKOPT '.
 02 soket-shutdown pic x(16) value 'SHUTDOWN '.
 02 soket-socket pic x(16) value 'SOCKET '.
 02 soket-takesocket pic x(16) value 'TAKESOCKET '.
 02 soket-termapi pic x(16) value 'TERMAPI '.
 02 soket-write pic x(16) value 'WRITE '.

 * Work variables *

 01 errno pic 9(8) binary value zero.
 01 retcode pic s9(8) binary value zero.
 01 index-counter pic 9(8) binary value zero.
 01 buffer-element.
 05 buffer-element-nbr pic 9(5).
 05 filler pic x(3) value space.
 01 server-ipaddr-dotted pic x(15) value space.
 01 client-ipaddr-dotted pic x(15) value space.
 01 close-server pic 9(8) Binary value zero.
 88 close-server-down value 1.
 01 Connect-Flag pic x value space.
 88 CONNECTED value 'Y'.
 01 Client-Server-Flag pic x value space.
 88 CLIENTS value 'C'.
 88 SERVERS value 'S'.
 01 Terminate-Options pic x value space.
 88 Opened-API value 'A'.
 88 Opened-Socket value 'S'.
 01 timer-accum pic 9(8) Binary value zero.
 01 timer-interval pic 9(8) Binary value 2000.
 01 Cur-time.
 02 Hour pic 9(2).
 02 Minute pic 9(2).
 02 Second pic 9(2).
 02 Hund-Sec pic 9(2).
 77 Failure Pic S9(8) comp.

 * Variables used for the INITAPI call *

 01 maxsoc-fwd pic 9(8) Binary.
 01 maxsoc-rdf redefines maxsoc-fwd.
 02 filler pic x(2).
 02 maxsoc pic 9(4) Binary.
 01 initapi-ident.
 05 tcpname pic x(8) Value 'TCPCS '.
 05 asname pic x(8) Value space.
 01 subtask pic x(8) value 'EZSO6CC'.
 01 maxsno pic 9(8) Binary Value 1.

 * Variables used by the SHUTDOWN Call *

 01 how pic 9(8) Binary.

 * Variables returned by the GETCLIENTID Call *

 01 clientid.
 05 clientid-domain pic 9(8) Binary value 19.
 05 clientid-name pic x(8) value space.
 05 clientid-task pic x(8) value space.
 05 filler pic x(20) value low-value.

 * Variables returned by the GETNAMEINFO Call *

 01 name-len pic 9(8) binary.
 01 host-name pic x(255).
 01 host-name-len pic 9(8) binary.
 01 service-name pic x(32).
 01 service-name-len pic 9(8) binary.
 01 name-info-flags pic 9(8) binary value 0.
 01 ni-nofqdn pic 9(8) binary value 1.
 01 ni-numerichost pic 9(8) binary value 2.
 01 ni-namereqd pic 9(8) binary value 4.
 01 ni-numericserver pic 9(8) binary value 8.
 01 ni-dgram pic 9(8) binary value 16.

 * Variables used for the SOCKET call *

 01 AF-INET pic 9(8) Binary Value 2.
 01 AF-INET6 pic 9(8) Binary Value 19.
 01 SOCK-STREAM pic 9(8) Binary Value 1.
 01 SOCK-DATAGRAM pic 9(8) Binary Value 2.

572 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 01 SOCK-RAW pic 9(8) Binary Value 3.
 01 IPPROTO-IP pic 9(8) Binary Value zero.
 01 IPPROTO-TCP pic 9(8) Binary Value 6.
 01 IPPROTO-UDP pic 9(8) Binary Value 17.
 01 IPPROTO-IPV6 pic 9(8) Binary Value 41.
 01 socket-descriptor pic 9(4) Binary Value zero.

 * Server socket address structure *

 01 server-socket-address.
 05 server-afinet pic 9(4) Binary Value 19.
 05 server-port pic 9(4) Binary Value 1031.
 05 server-flowinfo pic 9(8) Binary Value zero.
 05 server-ipaddr.
 10 filler pic 9(16) Binary Value 0.
 10 filler pic 9(16) Binary Value 0.
 05 server-scopeid pic 9(8) Binary Value zero.
 01 NBYTE PIC 9(8) COMP value 80.
 01 BUF PIC X(80).

 * Variables used by the BIND Call *

 01 client-socket-address.
 05 client-family pic 9(4) Binary Value 19.
 05 client-port pic 9(4) Binary Value 1032.
 05 client-flowinfo pic 9(8) Binary Value 0.
 05 client-ipaddr.
 10 filler pic 9(16) Binary Value 0.
 10 filler pic 9(16) Binary Value 0.
 05 client-scopeid pic 9(8) Binary Value 0.

 * Buffer and length fields for send operation *

 01 send-request-length pic 9(8) Binary value zero.
 01 send-buffer.
 05 send-buffer-total pic x(4000) value space.
 05 closedown-message redefines send-buffer-total.
 10 closedown-id pic x(8).
 10 filler pic x(3992).
 05 send-buffer-seq redefines send-buffer-total
 pic x(8) occurs 500 times.

 * Variables used for the NTOP/PTON call *

 01 IN6ADDR-ANY pic x(45)
 value '::'.
 01 IN6ADDR-LOOPBACK pic x(45)
 value '::1'.
 01 presentable-addr pic x(45) value spaces.
 01 presentable-addr-len pic 9(4) Binary value 45.
 01 numeric-addr.
 05 filler pic 9(16) Binary Value 0.
 05 filler pic 9(16) Binary Value 0.

 * Buffer and length fields for recv operation *

 01 read-request-length pic 9(8) Binary value zero.
 01 read-buffer pic x(4000) value space.

 * Other fields for send and reccfrom operation *

 01 send-flag pic 9(8) Binary value zero.
 01 recv-flag pic 9(8) Binary value zero.

 * Error message for socket interface errors *

 01 ezaerror-msg.
 05 filler pic x(9) Value 'Function='.
 05 ezaerror-function pic x(16) Value space.
 05 filler pic x value ' '.
 05 filler pic x(8) Value 'Retcode='.
 05 ezaerror-retcode pic ---99.
 05 filler pic x value ' '.
 05 filler pic x(9) Value 'Errorno='.
 05 ezaerror-errno pic zzz99.
 05 filler pic x value ' '.
 05 ezaerror-text pic x(50) value ' '.

 Linkage Section.
 *================

 ===

Chapter 13. CALL instruction application programming interface 573

 Procedure Division.
 ===

 ~~
 * P R O C E D U R E C O N T R O L S *
 ~~

 Perform Initialize-API thru Initialize-API-Exit.
 Perform Get-Client-ID thru Get-Client-ID-Exit.
 Perform Sockets-Descriptor thru Sockets-Descriptor-Exit.
 Perform Presentation-To-Numeric thru
 Presentation-To-Numeric-Exit.
 Perform CONNECT-Socket thru CONNECT-Socket-Exit.
 Perform Numeric-TO-Presentation thru
 Numeric-To-Presentation-Exit.
 Perform Get-Name-Information thru
 Get-Name-Information-Exit.
 Perform Write-Message thru Write-Message-Exit.
 Perform Shutdown-Send thru Shutdown-Send-Exit.
 Perform Read-Message thru Read-Message-Exit.
 Perform Shutdown-Receive thru Shutdown-Receive-Exit.
 Perform Close-Socket thru Exit-Now.

 * Initialize socket API *

 Initialize-API.
 Move soket-initapi to ezaerror-function.
 Call 'EZASOKET' using soket-initapi maxsoc initapi-ident
 subtask maxsno errno retcode.
 Move 'Initapi failed' to ezaerror-text.
 If retcode < 0 move 12 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move 'A' to Terminate-Options.
 Initialize-API-Exit.
 Exit.

 * Let us see the client-id *

 Get-Client-ID.
 Move soket-getclientid to ezaerror-function.
 Call 'EZASOKET' using soket-getclientid clientid errno
 retcode.
 Display 'Our client ID = ' clientid-name ' ' clientid-task.
 Move 'Getclientid failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move 'C' to client-server-flag.
 Get-Client-ID-Exit.
 Exit.

 * Get us a stream socket descriptor *

 Sockets-Descriptor.
 Move soket-socket to ezaerror-function.
 Call 'EZASOKET' using soket-socket AF-INET6 SOCK-STREAM
 IPPROTO-IP errno retcode.
 Move 'Socket call failed' to ezaerror-text.
 If retcode < 0 move 60 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move 'S' to Terminate-Options.
 Move retcode to socket-descriptor.
 Sockets-Descriptor-Exit.
 Exit.

 * Use PTON to create an IP address to bind to. *

 Presentation-To-Numeric.
 move soket-pton to ezaerror-function.
 move IN6ADDR-LOOPBACK to presentable-addr.
 Call 'EZASOKET' using soket-pton AF-INET6
 presentable-addr presentable-addr-len
 numeric-addr
 errno retcode.
 Move 'PTON call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 move numeric-addr to server-ipaddr.
 Presentation-To-Numeric-Exit.

574 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 Exit.

 * CONNECT *

 Connect-Socket.
 Move space to Connect-Flag.
 Move zeros to errno retcode.
 move soket-connect to ezaerror-function.
 CALL 'EZASOKET' USING SOKET-CONNECT socket-descriptor
 server-socket-address errno retcode.
 Move 'Connection call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 If retcode = 0 Move 'Y' to Connect-Flag.
 Connect-Socket-Exit.
 Exit.

 * Use NTOP to display the IP address. *

 Numeric-To-Presentation.
 move soket-ntop to ezaerror-function.
 move server-ipaddr to numeric-addr.
 move soket-ntop to ezaerror-function.
 Call 'EZASOKET' using soket-ntop AF-INET6
 numeric-addr
 presentable-addr presentable-addr-len
 errno retcode.
 Display 'Presentable address = ' presentable-addr.
 Move 'NTOP call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Numeric-TO-Presentation-Exit.
 Exit.

 * Use GETNAMEINFO to get the host and service names *

 Get-Name-Information.
 move 28 to name-len.
 move 255 to host-name-len.
 move 32 to service-name-len.
 move ni-namereqd to name-info-flags.
 move soket-getnameinfo to ezaerror-function.
 Call 'EZASOKET' using soket-getnameinfo
 server-socket-address name-len
 host-name host-name-len
 service-name service-name-len
 name-info-flags
 errno retcode.
 Display 'Host name = ' host-name.
 Display 'Service = ' service-name.
 Move 'Getaddrinfo call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Get-Name-Information-Exit.
 Exit.

 * Write a message to the server *

 Write-Message.
 Move soket-write to ezaerror-function.
 Move 'Message from EZASO6CC' to buf.
 Call 'EZASOKET' using soket-write socket-descriptor
 nbyte buf
 errno retcode.
 Move 'Write call failed' to ezaerror-text.
 If retcode < 0 move 84 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Write-Message-Exit.
 Exit.

 * Shutdown to pipe *

 Shutdown-Send.
 Move soket-shutdown to ezaerror-function.
 move 1 to how.
 Call 'EZASOKET' using soket-shutdown socket-descriptor
 how

Chapter 13. CALL instruction application programming interface 575

 errno retcode.
 Move 'Shutdown call failed' to ezaerror-text.
 If retcode < 0 move 99 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Shutdown-Send-Exit.
 Exit.

 * Read a message from the server. *

 Read-Message.
 Move soket-read to ezaerror-function.
 Move spaces to buf.
 Call 'EZASOKET' using soket-read socket-descriptor
 nbyte buf
 errno retcode.
 If retcode < 0
 Move 'Read call failed' to ezaerror-text
 move 120 to failure
 Perform Return-Code-Check thru Return-Code-Exit.
 Read-Message-Exit.
 Exit.

 * Shutdown receive pipe *

 Shutdown-Receive.
 Move soket-shutdown to ezaerror-function.
 move 0 to how.
 Call 'EZASOKET' using soket-shutdown socket-descriptor
 how
 errno retcode.
 Move 'Shutdown call failed' to ezaerror-text.
 If retcode < 0 move 99 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Shutdown-Receive-Exit.
 Exit.

 * Close socket *

 Close-Socket.
 Move soket-close to ezaerror-function.
 Call 'EZASOKET' using soket-close socket-descriptor
 errno retcode.
 Move 'Close call failed' to ezaerror-text.
 If retcode < 0 move 132 to failure
 perform write-ezaerror-msg thru
 write-ezaerror-msg-exit.
 Accept Cur-Time from TIME.
 Display Cur-Time ' EZASO6CC: ' ezaerror-function
 ' RETCODE=' RETCODE ' ERRNO= ' ERRNO.
 Close-Socket-Exit.
 Exit.

 * Terminate socket API *

 exit-term-api.
 ACCEPT cur-time from TIME.
 Display cur-time ' EZASO6CC: TERMAPI '
 ' RETCODE= ' RETCODE ' ERRNO= ' ERRNO.
 Call 'EZASOKET' using soket-termapi.

 * Terminate program *

 exit-now.
 Move failure to return-code.
 Goback.

 * Subroutine. *
 * ----------- *
 * Write out an error message *

 write-ezaerror-msg.
 Move errno to ezaerror-errno.
 Move retcode to ezaerror-retcode.
 Display ezaerror-msg.
 write-ezaerror-msg-exit.
 Exit.

576 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 * Check Return Code after each Socket Call *

 Return-Code-Check.
 Accept Cur-Time from TIME.
 Display Cur-Time ' EZASO6CC: ' ezaerror-function
 ' RETCODE=' RETCODE ' ERRNO= ' ERRNO.
 IF RETCODE < 0
 Perform Write-ezaerror-msg thru write-ezaerror-msg-exit
 Move zeros to errno retcode
 IF Opened-Socket Go to Close-Socket
 ELSE IF Opened-API Go to exit-term-api
 ELSE Go to exit-now.
 Move zeros to errno retcode.
 Return-Code-Exit.
 Exit.

Figure 138. EZASO6CC COBOL call interface sample IPv6 client program

Chapter 13. CALL instruction application programming interface 577

578 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 14. REXX socket application programming
interface

The z/OS Communications Server socket API for REXX supports IPv4 and IPv6 socket call instructions.

The REXX socket API uses the REXX built-in function RXSOCKET to access the z/OS Communications
Server socket interface. This API provides similar socket functions to those in other high-level languages.
When possible, the REXX socket functions match the C socket functions; an example of the corresponding
LE C/C++ socket function is included when applicable.

Overview of the REXX socket API
This section contains introductory material about REXX socket APIs.

Supported REXX APIs
z/OS Communications Server supports the REXX Sockets API and the REXX FTP API.

The REXX FTP API is documented in z/OS Communications Server: IP Programmer's Guide and
Reference. The REXX Sockets API is documented in this deliverable. Unless noted in z/OS
Communications Server: New Function Summary, this REXX socket API is upward compatible. Application
programs that use new functions will not be downward compatible.

Rule: Unless indicated otherwise, all socket commands that are listed are enabled for IPv4 and IPv6.

Tip: This API is compatible with compiled REXX.

Prerequisites for using REXX sockets
To use REXX sockets, the EZBRXSOC load module must be included.

The EZBRXSOC load module is defined with two load module aliases: RXSOCKET and SOCKET. When a
program invokes the REXX socket function, either the load module or an alias is called. The load module
and its aliases reside in the SEZALOAD library. The examples in this documentation use the SOCKET alias.

Requirement: The EZBRXSOC load module and its aliases must be included in one of the following items:

• The system LNKLST
• The STEPLIB DD concatenation of the job that is running the program that uses REXX sockets

Format of the REXX socket function and return values
You can issue socket commands in REXX by calling the built-in socket function.

Format
This function uses the following format, which is similar to that used to invoke C sockets:

SOCKET (command ,

,

arguments

)

Parameters
command

The socket API command to be issued, for example, SEND.

© Copyright IBM Corp. 2000, 2020 579

arguments
One or more parameters separated by a comma. All parameters are passed as space-delimited
strings.

Returned value
The socket function returns a space-delimited string. If the REXX socket library can issue the socket
command, the return value consists of the REXX TCP/IP error number value, the return code, and any
additional socket information. If the REXX socket library cannot process the socket command, the return
value consists of a REXX socket library error value and information about what caused the error.

Tip: For an error condition, the REXX socket library returns both the numeric and text versions of the
error, for example, 2009 ESOCKETNOTDEFINED Socket not defined.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

Example
Consider the following code sample:

src = socket(“ACCEPT”,l_socketid);

where:

• "ACCEPT" is the socket command.
• l_socketid is an argument that is required by the ACCEPT command. In this example, it specifies the

socket descriptor of the listening socket.

When a new connection is available, the ACCEPT command returns the following string:
src = 0 45

where 0 is the return code, and 45 is the file descriptor of the new connection.

REXX programming hints and tips
This topic contains information that you might find helpful when you use REXX sockets.

Capitalization
Throughout the documentation, REXX socket API commands and constants are capitalized when they are
used in descriptive text. For example, the LISTEN command places a socket descriptor in passive mode.

Quotation marks
Throughout the documentation, REXX socket API commands and constants are enclosed in quotation
marks (") when they are used in code examples, for example, src = socket("ACCEPT",sockfd);.

Although the use of quotation marks is optional, consider using quotation marks to prevent programming
errors. Using quotation marks forces the socket function to use string literals rather than REXX variables.
When REXX encounters an uninitialized variable, it initializes that variable with the name of the variable.
The command socket(ACCEPT,sockid) is valid because the uninitialized variable ACCEPT is initialized
to the character string ACCEPT. However, if the program initializes the ACCEPT variable with a value other
than the character string ACCEPT, the socket function fails.

Guideline: Unless otherwise indicated by a specific socket command, all socket commands and constant
values must be passed as character strings.

580 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Splitting a function over multiple lines
The socket function, with parameters, might exceed 80 characters. In such cases, you can split the
function across multiple lines by using the REXX continuation character, a comma (,). Consider the
following examples:
Continuing a string across two lines

l_string1 = "This is a string split between",
 "two lines.";

Continuing a string when the continuation occurs on a parameter boundry

src = socket("GETADDRINFO","CHILE",,
 23,"AI_CANONNAMEOK");

In this example, the first comma after the parameter "CHILE" indicates the end of the parameter. The
second comma indicates that the REXX statement continues on the next line.

Return codes
To avoid problems, an application should check the return code of a socket command after each socket
call. The examples in this topic do not always follow this recommendation. The examples are intended to
show how to issue the socket command.

Guideline: Use either the REXX PARSE feature or the WORD function to access the return code. For
example,

parse var l_retcode src remainder;
if src = 0 then do
 /* DO SOME STUFF */
end;
else do
 /* Process the error */
end;

Allocating and deallocating socket sets
To use the socket commands provided by the REXX socket function, a socket set must be active. To
allocate a socket set, use the INITIALIZE socket command. The INITIALIZE command creates a socket
set and can support multiple socket calls. The subtaskid value identifies the socket set and usually
corresponds to the application name. The service value indicates the TCP/IP stack name to form an
affinity with.

Restriction: When the INITIALIZE command is issued, the REXX socket API forms an affinity with the
default TCP/IP stack. In an INET environment, the affinity is created with the active stack. In a CINET
environment, the affinity is created with the default stack. The default stack is determined either by the
first BPXPRMxx SUBFILESYSTYPE statement or by the SUBFILESYSTYPE statement with the keyword
DEFAULT. For additional information, see z/OS Communication Server: MVS Initialization and Tuning
Reference.

Guideline: Before you exit the program or when you do not need the socket environment, use the
TERMINATE socket command to deallocate the socket set.

Blocking and nonblocking mode
A socket can be in blocking or nonblocking mode. In blocking mode, commands such as SEND and RECV
block the caller until either the operation is completed successfully or an error occurs. In nonblocking
mode, the caller is not blocked, but the operation ends immediately with either the 35 EWOULDBLOCK or
36 EINPROGRESS return code. Use the FCNTL or IOCTL commands to switch the socket between
blocking and nonblocking modes.

Chapter 14. REXX socket application programming interface 581

When a socket is in nonblocking mode, you can use the SELECT command to monitor the socket for one or
more socket events. The socket can be monitored for events that indicate that the socket is ready for
writing or reading, or whether an exception has occurred.

Transferring a socket to a subtask
If the application uses the GIVESOCKET and TAKESOCKET commands to transfer a socket from a parent
program to a subtask, both the parent and subtask must agree on a mechanism for exchanging the client
ID and the socket descriptor. The parent program can use the SELECT command to monitor when the
subtask takes the socket. After the subtask takes the socket, the parent then can close the socket that
was given.

SO_ASCII and SO_EBCDIC socket options
The socket options SO_ASCII and SO_EBCDIC identify the socket data type for use by the REXX
RXSOCKET program. Setting the SO_EBCDIC option to ON has no effect, and setting the SO_ASCII option
to ON causes all incoming data on the socket to be translated from ASCII to EBCDIC and all outgoing data
on the socket to be translated from EBCDIC to ASCII.

How structures are represented
Instead of using binary-based data structures, the REXX socket library represents all data structures as
strings of space-delimited values, where each value represents a field in the data structure.

The REXX language is a type-independent language. All data is manipulated and represented using a
character format. When an application passes data into the REXX socket library, the data must be a
space-delimited string. When the REXX socket library returns socket information, it returns the
information as a space-delimited string on the return value.

Rules:

• All IPv4 addresses are represented as strings in dotted decimal format.
• All IPv6 addresses are represented as strings in IPv6 colon hexadecimal format.
• When a NAME string is returned as a result, the IP address is in IPv4 dotted decimal or IPv6 colon

hexadecimal format.

Tip: When you specify a NAME string as an input parameter to a command, you can specify the ipaddress
field either as an IP address or as a host name to be resolved by a name server. For example, you can
code NAME=”AF_INET 1049 MYHOST”, where AF_INET is the address family, 1049 is the port number,
and MYHOST is the host name to be resolved to an IP address.

struct sockaddr_in
This structure represents an IPv4 socket address. In the REXX socket library, this structure is represented
by the NAME string. The NAME string has the following format:

NAME = “domain portid ipaddress”

where:
domain

The number 2 or AF_INET
portid

The local or remote port to which the socket is to be bound or connected
ipaddress

The IPv4 address of the local or remote host to which the socket is to be bound or connected

The following string is an example of an IPv4 NAME string:

NAME = "AF_INET 24 10.11.103.1";

582 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

struct sockaddr_in6
This structure represents an IPv6 socket address. In the REXX socket library, this structure is represented
by the NAME string. The NAME string has the following format:

NAME = “domain portid flowinfo ipaddress scopeid”

where:
domain

The number 19 or AF_INET6.
portid

The local or remote port to which the socket is to be bound or connected.
flowinfo

This value must be set to 0.
ipaddress

The IPv6 address of the local or remote host to which the socket is to be bound or connected.
scopeid

Identifies the interfaces that are applicable for the scope of the address that is specified in the
ipaddress field. For a link-local IP address, the scopeid field can specify a link index, which identifies a
set of interfaces. For all other scopes, the scopeid field must be set to 0. Setting the scopeid field to 0
indicates that any address type and scope can be specified.

The following string is an example of an IPv6 NAME string:

NAME = "AF_INET6 24 0 2001:10:11:103::1 0"

struct ip_mreq
This structure represents the mapping between an IPv4 multicast address and an IPv4 interface. In the
REXX socket library, this structure is represented by the ipmreq string. The ipmreq string has the following
format:

ipmreq = "maddress iaddress"

where:
maddress

An IPv4 multicast address
iaddress

The IPv4 interface address

The following string is an example of an IPv4 ipmreq string:

ipmreq = "224.224.224.1 10.123.21.3"

struct ipv6_mreq
This structure represents the mapping between an IPv6 multicast address and an interface index. In the
REXX socket library, this structure is represented by the ipmreq string. The ipmreq string has the following
format:

ipmreq = "maddress index"

where:
maddress

An IPv6 multicast address
index

An interface index number

Chapter 14. REXX socket application programming interface 583

The following string is an example of an IPv6 ipmreq string:

ipmreq = "FF05::101 34"

struct ip_mreq_source
This structure represents a multicast source filter. It is used with the IOCTL command to filter the
multicast packets that an application wants to receive; it also defines the remote host from which the
packets are sent. In the REXX socket library, this structure is represented by the ip_mreq_source string.
The ip_mreq_source string has the following format:

ipmreqsource = "maddress saddress iaddress"

where:
maddress

An IPv4 multicast address
saddress

An IPv4 source address of a remote host
iaddress

An IPv4 interface address

The following string is an example of an ip_mreq_source string:

ipmreqsource ="224.224.224.2 10.1.2.3 10.123.21.3"

Restriction: This structure supports IPv4 addresses only.

struct group_req
This structure represents a protocol-independent mapping between a multicast IP address and an
interface index. It is used with the IOCTL command to join and leave multicast groups. In the REXX socket
library, this structure is represented by the groupreq string. The groupreq string has the following format:

groupreq = "index NAME"

where:
index

An interface index
NAME

The NAME string of a multicast socket address

The following strings are examples of groupreq strings:

groupreq = "15664 AF_INET 5000 224.224.224.2"
groupreq = "15667 AF_INET6 5000 0 FF05::101 0"

struct group_req_source
This structure represents a protocol-independent mapping between a multicast IP address, an interface
index, and a source address for a remote host. It is used with the IOCTL command to filter the multicast
packets that an application wants to receive; it also defines the remote host from which the packets are
sent. In the REXX socket library, this structure is represented by the groupreqsource string. The
groupreqsource string has the following format:

groupreqsource = "index M_NAME S_NAME"

where:

584 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

index
An interface index

M_NAME
The NAME string of a multicast socket address

S_NAME
The NAME string of a source socket address

The following strings are examples of groupreqsource strings:

groupreqsource = "15664 AF_INET 5000 224.224.224.2 AF_INET 5000 10.1.2.3"
groupreqsource = "15667 AF_INET6 5000 0 FF05::101 0 AF_INET6 5000 0
 2001:10:1:2::3 0"

REXX runtime functions
This section describes the runtime functions that are supported by the REXX socket function. When
applicable, the LE C/C++ Equivalent call is also shown.

Commands to process socket sets

“INITIALIZE” on page 635 Use the INITIALIZE command to preallocate a
socket set.

“SOCKETSET” on page 674 Use the SOCKETSET command to retrieve the
name of the active socket set. If you specify the
name of a socket set as a parameter, then that
socket set becomes the active socket set.

“SOCKETSETLIST” on page 675 Use the SOCKETSETLIST command to list the
names of all available socket sets that are currently
defined by the application.

“SOCKETSETSTATUS” on page 676 Use the SOCKETSETSTATUS command to list
information about a socket set.

“TERMINATE” on page 679 Use the TERMINATE command to close all sockets
in the specified socket set and to release the
socket set.

Commands to open, close, and manipulate sockets

“ACCEPT” on page 588 Use the ACCEPT command to accept new
connections from a client.

“BIND” on page 590 Use the BIND command to bind a local NAME
string to a socket descriptor.

“BIND2ADDRSEL” on page 592 Use the BIND2ADDRSEL command to bind a
socket to the local IP address that would be
selected by the stack to communicate with the
input destination IP address.

“CLOSE” on page 594 Use the CLOSE command to close a socket and
release the resources that are associated with the
socket descriptor.

“CONNECT” on page 595 A client application uses the CONNECT command
to establish a connection between a local socket
and a remote socket.

“GIVESOCKET” on page 631 Use the GIVESOCKET command to transfer a
socket descriptor to another application that is
running on the same host.

Chapter 14. REXX socket application programming interface 585

Commands to process socket sets

“LISTEN” on page 646 Use the LISTEN command to determine whether a
socket is ready to accept client connection
requests.

“SHUTDOWN” on page 671 Use the SHUTDOWN command to shut down all or
part of a duplex connection.

“SOCKET” on page 672 Use the SOCKET command to open a socket
descriptor in the active socket set.

“TAKESOCKET” on page 677 Use the TAKESOCKET command to take a socket
descriptor that is passed from another program
using the GIVESOCKET command. A socket
descriptor can be taken by an application only
when the socket is in the same address family.

Commands to exchange data on sockets

“READ” on page 647 Use the READ command to read data on the
specified socket. The maximum amount of data to
be read is specified by the maxlength parameter. If
the socket is in blocking mode and data is not
available on the socket, the command blocks until
data arrives.

“RECV” on page 649 Use the RECV command to receive data on a
specified socket. The RECV command can be
issued only against connected sockets.

“RECVFROM” on page 651 Use the RECVFROM command to receive data on
the specified socket.

“SEND” on page 657 Use the SEND command to send an outgoing
message on the connected socket.

“SENDTO” on page 659 Use the SENDTO command to send an outgoing
message on a socket descriptor. This command
differs from the SEND command in that it includes
the destination address as a parameter.

“WRITE” on page 680 Use the WRITE command to send an outgoing
message on the connected socket. The WRITE
command is similar to the SEND command, except
that the WRITE command does not support the
control flags that are available with the SEND
command.

Commands to resolve host names and IP addresses

“GETADDRINFO” on page 599 Use the GETADDRINFO command to resolve host
or service name information.

“GETCLIENTID” on page 607 Use the GETCLIENTID command to retrieve the
client ID for the calling application. The client ID is
the identifier by which the calling application is
known to the TCP/IP address space.

“GETDOMAINNAME” on page 609 Use the GETDOMAINNAME command to retrieve
the name of the domain to which the current
TCP/IP stack belongs.

586 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Commands to process socket sets

“GETHOSTBYADDR” on page 610 Use the GETHOSTBYADDR command to resolve an
IPv4 address to a host name.

“GETHOSTBYNAME” on page 611 Use the GETHOSTBYNAME command to resolve a
host name to an IPv4 address.

“GETHOSTID” on page 612 Use the GETHOSTID command to return the
primary IPv4 address for the current host. The
primary address is the IP address of the default
home address that is specified in the TCP/IP
configuration file for the stack with which the
current socket set is associated.

“GETHOSTNAME” on page 613 Use the GETHOSTNAME command to return the
name of the host on which the application is
running

“GETNAMEINFO” on page 614 Use the GETNAMEINFO command to translate a
socket address to a node name and service
location.

“GETPEERNAME” on page 616 Use the GETPEERNAME command to return the
name of the remote peer that is connected to the
socket.

“GETPROTOBYNAME” on page 618 Use the GETPROTOBYNAME command to translate
a network protocol name to a protocol number.

“GETPROTOBYNUMBER” on page 618 Use the GETPROTOBYNUMBER command to
translate a network protocol number to a protocol
name.

“GETSERVBYNAME” on page 619 Use the GETSERVBYNAME command to retrieve a
service and port number.

“GETSERVBYPORT” on page 620 Use the GETSERVBYPORT command to translate a
port number to the name of the service that is
using the port.

“GETSOCKNAME” on page 621 Use the GETSOCKNAME command to retrieve the
name of a bound socket.

“INET6ISSRCADDR” on page 633 Use the INET6ISSRCADDR command to indicate
whether an input IPV6 socket address matches an
address that is defined to the stack, which
conforms to one or more input
IPV6_ADDR_PREFERENCES flags.

“RESOLVE” on page 654 Use the RESOLVE command to resolve a host name
or an IP address.

Commands to manage socket configuration, options, and modes

“FCNTL” on page 598 Use the FCNTL command to control the operating
characteristics of a socket.

“GETSOCKOPT” on page 623 Use the GETSOCKOPT command to retrieve the
active socket options that were set by the
SETSOCKOPT command.

“IOCTL” on page 636 Use the IOCTL command to perform control
functions on sockets.

Chapter 14. REXX socket application programming interface 587

Commands to process socket sets

“SELECT” on page 655 Use the SELECT command to monitor groups of
sockets to determine when one or more of the
sockets is ready for a read operation, is ready for a
write operation, or has an exception pending.

“SETSOCKOPT” on page 661 Use the SETSOCKOPT command to set socket
options.

“VERSION” on page 680 Use the VERSION command to retrieve the name,
version number, and version date of the REXX
socket library.

ACCEPT
Use the ACCEPT command to accept new connections from a client.

This command is valid only for stream sockets. Connection requests are processed in the order in which
they are received. When a new connection is accepted, a new socket ID is created with the same
properties as the listening socket ID. The new socket ID cannot be used to accept new connections. The
original socket remains available to accept new connection requests.

This command supports both blocking and nonblocking sockets.

Rule: When the listening socket is in blocking mode, the ACCEPT command blocks the caller until a new
connection request is received. When the listening socket is in nonblocking mode, the ACCEPT command
immediately returns the 35 EWOULDBLOCK return code.

Tip: When you use blocking or nonblocking socket calls, use the SELECT command to check for new
connection requests before you call the ACCEPT command. The availability of a new connection is
reported as a READ event on the listening socket. The new socket should not be accepted until after the
READ event is received.

Format
SOCKET ("ACCEPT" , socketid)

Parameters
socketid

The socket descriptor of the listening socket where new connection requests are queued

Returned value
The command returns a string that contains the return code, the new scopeid value for the accepted
connection, and the NAME string of the connecting client. The return code can be 0, a REXX socket API
error number, or the REXX TCP/IP error number that is set by the socket command. The return code 0
indicates that the requested socket command was completed successfully.

For information about the format of the NAME string, see “How structures are represented” on page 582.

Consider the following IPv4 and IPv6 examples:
IPv4

The string, 0 6 AF_INET 50000 10.1.2.3, is an example of what this command returns. 0 is the
function return code, 6 is the new socket ID of the accepted connection, AF_INET is the address
family to which the socket belongs, 50000 is the remote port from which the client is connecting, and
10.1.2.3 is the remote address from which the client is connecting.

588 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IPv6
The string, 0 6 AF_INET6 5462 0 2001:10:11:103::1 0, is an example of what this command returns.
0 is the function return code, 6 is the new socket ID of the accepted connection, AF_INET6 is the
address family to which the socket belongs, 5462 is the remote port from which the client is
connecting, 0 is the flowinfo value, 2001:10:11:103::1 is the remote address from which the client is
connecting, and 0 is the scopeid value. For IPv6 connections, the flowinfo and scopeid fields are set to
0.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 1 EPERM
• 9 EBADF
• 22 EINVAL
• 35 EWOULDBLOCK

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2006 ESOCKETNOTDEFINED
• 2007 EMAXSOCKETSREACHED
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
int accept(int socket, struct sockaddr *address, int *address_len);

Chapter 14. REXX socket application programming interface 589

Code example

/* REXX EZARXR01 */
/*
 * This sample demonstrates the use of the INITIALIZE, SOCKET, BIND
 * LISTEN, ACCEPT, RECV, CLOSE, and TERMINATE socket commands.
 *
 * The program creates a listening socket and then goes into a
 * loop and blocks on the accept command. When a new connection is

 * ACCEPTED the program will issue one receive command and then close
 * the connection. If the data received is the string "DONE", then the

 * program will close the listening socket and terminate. Otherwise the
 * program will wait for the next connection.
 *
 * RESTRICTION: This program is designed to read 1 packet with a max
 * size of 512 bytes.
 *
 * GUIDELINE: It is generally recommended that a program loop around
 * the RECV command to ensure that all data is read off
 * the socket. This sample does not follow the guideline.
 */
src = socket("INITIALIZE","MYSET01",10);
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET6","STREAM");
 if perror(src,"SOCKET") = 0 then do
 parse var src . l_sockid
 l_name6 = "AF_INET6 54004 0 ::0 0";
 src = socket("BIND", l_sockid, l_name6);
 if perror(src,"BIND") = 0 then do
 src = socket("LISTEN", l_sockid);
 if perror(src,"LISTEN") = 0 then do
 l_Done = "FALSE";
 do until l_Done = "TRUE";
 say "Listening on socket "l_sockid;
 src = socket("ACCEPT", l_sockid);
 if perror(src,"ACCEPT") = 0 then do
 parse var src . l_newsockid . ;
 src = socket("RECV",l_newsockid,512);
 parse var src l_retcode l_datalen l_data
 if l_data = "DONE" | perror(src,"RECV") \= 0 then
 l_Done = "TRUE";
 src = socket("CLOSE",l_newsockid);
 src = perror(src,"Accepted socket close");
 end;
 else do
 src = socket("CLOSE",l_sockid);
 src = perror(src,"Listen close");
 l_done = "TRUE";
 end; /* ACCEPT */
 end; /* DO */
 end; /* LISTEN */
 end; /* BIND */
 end; /* SOCKET */
end; /* INITIALIZE */
src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;
/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 139. ACCEPT command example

BIND
Use the BIND command to bind a local NAME string to a socket descriptor.

The format of the NAME string depends on the addressing family of the socket. An application can use the
BIND command to specify the network interface from which the socket can receive TCP connection
requests or UDP packets. A socket bound to a specific local-IP address receives only packets that are
targeted to that address. Outgoing packets have as their source address the address that is used to bind

590 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

the socket. The BIND command supports both stream or datagram sockets, and it can be issued by both
clients or servers.

Guidelines:

• Do not bind a socket to a specific interface address. Binding a socket to a specific interface address
limits network access to the application and might result in unexpected outages. To enable TCP
connections to be accepted and UDP datagrams to be received over any interface, specify INADDR_ANY
or IN6ADDR_ANY in the ipaddress field of the NAME parameter.

• A server (an application that calls the LISTEN command) should always bind to the same well-known
port. When the socket is bound and the LISTEN command is issued, the bound socket is marked as
being passive. Passive sockets cannot be used to send or receive data. They are used to receive new
connection requests from remote clients using the ACCEPT command.

• The 48 EADDRINUSE error message indicates that a previous application is using the port. This error
also can be received when a listening server is restarted. The TCP/IP stack maintains state information
from the previous instance of the server for a fixed time before it releases a port and address for reuse.
To avoid this situation, use the SETSOCKOPT command to set the SO_REUSEADDR socket option on the
listening socket.

Format

SOCKET ("BIND" , socketid , name)

Parameters

socketid
The socket descriptor.

name
The socket address to which the socket is to be bound.

The format for the name parameter depends on the socket type:
AF_INET sockets (IPv4)

name = "domain portid ipaddress"
AF_INET6 sockets (IPv6)

name = "domain portid flowinfo ipaddress scopeid"
where:

• The domain value is the decimal number 2 for AF_INET and the decimal number 19 for AF_INET6.
• The portid value is 0 or the local port to which the socket will bind. When the portid field is set to 0,

the stack selects the local port.
• The ipaddress value is the IP address to which the socket binds and the source address of outgoing

packets. Other valid values are INADDR_ANY, IN6ADDR_ANY, INADDR_BROADCAST, BROADCAST,
and LOOPBACK. When the ipaddress field is set to INADDR_ANY or IN6ADDR_ANY, the stack
passes to the application any TCP connection requests or UDP datagrams that are received for the
socket on any local interface. For outgoing packets, the stack selects the source address.

Tip: System administrators can override the INADDR_ANY or IN6ADDR_ANY value by specifying the
BIND option on the PORT reservation statement in the TCPIP.PROFILE file. This is equivalent to
coding the IP address on the name parameter. For more information, see z/OS Communications
Server: IP Configuration Reference.

• The flowinfo value must be 0.
• The scopeid value identifies the interfaces that are applicable for the scope of the address that is
specified in the ipaddress field. For a link-local IP address, the scopeid field can specify a link index,
which identifies a set of interfaces. For all other scopes, the scopeid field must be set to 0. Setting
the scopeid field to 0 indicates that any address type and scope can be specified.

Returned value

Chapter 14. REXX socket application programming interface 591

The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by
the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 1 EPERM
• 9 EBADF
• 22 EINVAL
• 47 EAFNOSUPPORT
• 48 EADDRINUSE
• 49 EADDRNOTAVAIL

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent

int bind(int socket, struct sockaddr *address, int *address_len);

Returned value

See the “ACCEPT” on page 588 command for an example of using the BIND command.

BIND2ADDRSEL
Use the BIND2ADDRSEL command to bind a socket to the local IP address that would be selected by the
stack to communicate with the input destination IP address.

Use the BIND2ADDRSEL command when the application must verify that the local IP address assigned by
the stack meets its address selection criteria as specified by the IPV6_ADDR_PREFERENCES socket
option before the stack sends any packets to the remote host. In a TCP or UDP application, the
BIND2ADDRSEL command usually follows the SETSOCKOPT command with option
IPV6_ADDR_PREFERENCES and precedes any communication with a remote host.

Result: The stack attempts to select a local IP address according to your application preferences.
However, a successful BIND2ADDRSEL command does not guarantee that all the selection preferences of
your source IP address were met.

Guidelines:

• Use the SETSOCKOPT command to set the IPV6_ADDR_PREFERENCES option to indicate your selection
preferences of source IP address before binding the socket and before allowing an implicit bind of the
socket to occur.

Result: If a socket has not been explicitly bound to a local IP address with a BIND or BIND2ADDRSEL
command when a CONNECT, SENDTO, or SENDMSG macro is issued, an implicit bind of the socket
occurs. The stack chooses the local IP address used for outbound packets.

Requirement: When your application is using stream sockets, and must prevent the stack from sending
any packets whatsoever (such as SYN) to the remote host before it can verify that the local IP address
meets the values specified for the IPV6_ADDR_PREFERENCES option, do not allow the CONNECT
command to implicitly bind the socket to a local IP address. Instead, bind the socket with the
BIND2ADDRSEL command and test the local IP address assigned with the INET6_IS_SRCADDR
command. If the assigned local IP address is satisfactory, you can then use the CONNECT command to
establish communication with the remote host.

592 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• After you successfully issue the BIND2ADDRSEL command, use the GETSOCKNAME command to obtain
the local IP address that is bound to the socket. When the local IP address is obtained, use the
INET6_IS_SRCADDR command to verify that the local IP address meets your address selection criteria.

Format
SOCKET ("BIND2ADDRSEL" , socketid , name)

Parameters
socketid

The socket descriptor.
name

The socket address of the remote host machine that the application communicates with.

name = "domain portid flowinfo ipaddress scopeid

where:

• The domain value must be the decimal number 19 or AF_INET6.
• The portid value is not used by the BIND2ADDRSEL command.

Requirement: You must specify a decimal numeral between 0 and 65535 for the portid value.
• The flowinfo value is not used by the BIND2ADDRSEL command.

Requirement: You must specify a decimal numeral between 0 and 2147483647 for the flowinfo
value.

• The ipaddress value is the IPv6 address of the remote host machine the application will
communicate with.

Rule: Specify an IPv4 address by using its IPV4 mapped IPV6 format.
• The scopeid value identifies the interfaces that are applicable for the scope of the address that is
specified in the ipaddress field. For a link-local IP address, the scopeid field can specify a link index,
which identifies a set of interfaces. For all other scopes, the scopeid field must be set to 0. Setting
the scopeid field to 0 indicates that any address type and scope can be specified.

Returned value
The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by
the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 1 EPERM
• 9 EBADF
• 22 EINVAL
• 41 EPROTOTYPE
• 45 EOPNOTSUPP
• 47 EAFNOSUPPORT
• 49 EADDRNOTAVAIL
• 65 EHOSTUNREACH

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL

Chapter 14. REXX socket application programming interface 593

• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
int bind2addrsel(int socket, struct sockaddr *address, int *address_len);

CLOSE
Use the CLOSE command to close a socket and release the resources that are associated with the socket
descriptor.

If the socket descriptor is a connected stream socket, the connection to the remote host is also closed. If
a connected stream socket is closed but has input data still pending on the socket, the CLOSE command
causes the connection to be reset.

Format
SOCKET ("CLOSE" , socketid)

Parameters
socketid

The socket descriptor

Returned value
The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by
the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
int close(int socket);

594 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Code example

/* REXX EZARXR02 */
/*
 * This sample demonstrates the use of the CLOSE socket commands.
 * The program will open a STREAM socket, and if successful,
 * the socket will be closed.
 */
src = socket("INITIALIZE","MYSET01",10);
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET6","STREAM");
 if perror(src,"SOCKET") = 0 then do
 parse var src l_retcode l_sockid
 src = perror(socket("CLOSE",l_sockid),"CLOSE");
 end; /* SOCKET */
end; /* INITIALIZE */
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 140. CLOSE command example

CONNECT
A client application uses the CONNECT command to establish a connection between a local socket and a
remote socket.

The command supports both blocking and nonblocking sockets. When the socket is in blocking mode, the
function does not return until a connection with the remote peer is established or until an error is
received. When the socket is in nonblocking mode, the function returns immediately with either the 36
EINPROGRESS return code or an error.

The CONNECT command performs differently depending on the socket type:
Stream (TCP) sockets

If the application has not already issued an explicit bind, the CONNECT command completes the bind
of the socket. The API then attempts to establish a connection to the remote socket that is specified
by the name parameter. You can call the CONNECT command only once. Issuing additional CONNECT
commands results in a 56 EISCONN error.

Datagram (UDP) sockets
The CONNECT command enables an application to associate a socket with the socket name of a peer.
The socket then is considered to be a connected UDP socket. You can call the CONNECT command
multiple times with different peer names to change the socket association.

Rules:

• Using the CONNECT command on a UDP socket does not change the UDP protocol from a
connectionless to a connection-based protocol. The UDP socket remains connectionless. The primary
benefit of using connected UDP sockets is to limit communication with a single remote application.

• When a UDP socket becomes a connected UDP socket, it can no longer use the SENDTO and RECVFROM
commands. Connected UDP sockets use the socket commands READ, WRITE, SEND, or RECV to
communicate with the remote peer, instead of using the SENTO and RECVFROM commands.

Tips:

• For nonblocking sockets, use the SELECT command to determine when a connection has been
established. Test for the ability to write to the socket.

• A connected UDP socket can revert back to an unconnected UDP socket by calling CONNECT with 0 or
AF_UNSPEC specified in the domain field of the name parameter.

Chapter 14. REXX socket application programming interface 595

Format
SOCKET ("CONNECT" , socketid , name)

Parameters
socketid

The descriptor of the local socket.
name

Identifies the remote socket.

The format for the name parameter depends on the socket type:
AF_INET sockets (IPv4)

name = "domain portid ipaddress"
AF_INET6 sockets (IPv6)

name = "domain portid flowinfo ipaddress scopeid"
where

• The domain value is the decimal number 2 for AF_INET and the decimal number 19 for AF_INET6.
• The portid value is the port number.
• The ipaddress value is the IP address of the remote host. It must be an IPv4 address for AF_INET

and an IPv6 address for AF_INET6.
• The flowinfo value must be 0.
• The scopeid value identifies the interfaces that are applicable for the scope of the address that is
specified in the ipaddress field. For a link-local IP address, the scopeid field can specify a link index,
which identifies a set of interfaces. For all other scopes, the scopeid field must be set to 0. Setting
the scopeid field to 0 indicates that any address type and scope can be specified.

Returned value
The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by
the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

Tip: When a connection attempt is made with a nonblocking socket, the string 36 EINPROGRESS is
returned to the application. The program should check for this condition when using nonblocking sockets.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 1 EPERM
• 9 EBADF
• 35 EWOULDBLOCK
• 36 EINPROGRESS
• 37 EALREADY
• 47 EAFNOSUPPORT
• 48 EADDRINUSE
• 49 EADDRNOTAVAIL
• 51 ENETUNREACH
• 56 EISCONN
• 60 ETIMEDOUT
• 61 ECONNREFUSED

596 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
int connect(int socket, struct sockaddr *address, int address_len);

Code example

/* REXX EZARXR03 */
/*
 * This sample demonstrates the use of the INITIALIZE, SOCKET,
 * CONNECT, GETSOCKNAME, SEND, RECV, CLOSE and TERMINATE
 * socket commands.
 *
 * The program will INITIALIZE a socket set and create a STREAM
 * socket. If successful an attempt will be made to connect to
 * port 7 using the loopback address and 7 bytes of data will be
 * sent. The program will then wait for the data to be echoed
 * back.
 *
 * Port 7 is the well known port for the ECHO server. The ECHO
 * Server for the z/OS Communication Server is the MISCSERV. For
 * Information on setting up the MISCSERV see the IP Configuration
 * Reference.
 *
 * The example EZARXR01 can be modified to echo data back by adding
 * a SEND command after the RECV command. This is left as an exercise.
 *
 * GUIDELINE: It is generally recommended that a program loop around
 * the RECV command to ensure that all data is read off
 * the socket.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET","STREAM");
 if perror(src,"SOCKET") = 0 then do
 l_socketid = WORD(src,2);
 l_RMTname = "AF_INET 7 127.0.0.1";
 src = socket("CONNECT",l_socketid,l_RMTname);
 if perror(src,"CONNECT") = 0 then do
 src = socket("GETSOCKNAME",l_socketid);
 if perror(src,"GETSOCKNAME") = 0 then do
 l_LOCname = SUBWORD(src,2);
 Say "The local socket name is: "l_LOCName;
 src = socket("SEND",l_socketid,"*******");
 if perror(src,"SEND") = 0 then do
 src = socket("RECV",l_socketid);
 if perror(src,"RECV") = 0 then
 Say "Echoed data: " word(src,3);
 end; /* SEND*/
 end; /* GETSOCKNAME*/
 end; /* CONNECT */
 end; /* SOCKET */
 src = socket("CLOSE",l_socketid);
 src = perror(src,"CLOSE");
end; /* INITIALIZE */
src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 141. CONNECT command example

Chapter 14. REXX socket application programming interface 597

FCNTL
Use the FCNTL command to control the operating characteristics of a socket.

Format

SOCKET ("FCNTL" , socketid , fcmd

, BLOCKING

, fvalue

)

Parameters
socketid

The socket descriptor.
fcmd

The command to be run. The following commands are available:
F_SETFL

Sets the status flags for the socket
F_GETFL

Retrieves the status flags of the socket
fvalue

One of the following flags:
BLOCKING

Puts a socket into blocking mode. If the targeted socket is in nonblocking mode and there is no
data on the socket, issuing this command causes socket commands that support nonblocking
socket descriptors to return the 35 EWOULDBLOCK error message. By default, the fvalue
parameter is set to BLOCKING.

NON-BLOCKING
Puts a socket into nonblocking mode. The value FNDELAY is also accepted.

Returned value
The command returns a string that contains the return code. If the F_GETFL flag is issued, the string also
contains the flag. The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error
number that is set by the socket command. The return code 0 indicates that the requested socket
command was completed successfully.

The string 0 BLOCKING is an example of what this command might return.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 1 EPERM
• 9 EBADF
• 35 EWOULDBLOCK

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
int fcntl(int socket, int cmd, ...);

598 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Code example

/* REXX EXARXR04 */
/*
 * This sample demonstrates the use of the FCNTL
 * socket command.
 *
 * The program will open a STREAM socket and use the
 * FCNTL command to set the socket to NON-BLOCKING
 * mode.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET","STREAM");
 if perror(src,"SOCKET") = 0 then do
 l_socketid = WORD(src,2);
 src = socket("FCNTL",l_socketid,F_SETFL,"NON-BLOCKING");
 src = socket("FCNTL",l_socketid,F_GETFL);
 Say src;
 end; /* SOCKET */
 src = socket("CLOSE",l_socketid);
 src = perror(src,"CLOSE");
end;
src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 142. FCNTL command example

GETADDRINFO
Use the GETADDRINFO command to resolve host or service name information.

This command translates the name of a service location (host name) or a service name. The command
returns a set of NAME strings and associated information; this information can be used to create a socket
with which to address the specified service or to send a datagram to the specified service. For information
about the format of the NAME string, see “How structures are represented” on page 582.

Guideline: Use the application to cycle through each NAME string until a successful connection is
established. An example is provided in “Code example” on page 605.

Tip: You can use a resolver trace to determine why a resolver command failed. See z/OS Communications
Server: IP Diagnosis Guide.

Format
SOCKET ("GETADDRINFO" , node_service ,

flags

,

family

,

socktype

,

protocol

,

eflags

)

Parameters
node_service

This variable takes one of the following formats:
node ,

service

Chapter 14. REXX socket application programming interface 599

node

, service

where:
node

The host name or IP address. If the value of the node parameter is an IP address, you also must
issue the AI_NUMERICHOST flag. The value of the node parameter can be up to 255 bytes in
length.

Scope information can be appended to the host name, using the following format:

"node%scope information"

For example, you could set the node parameter to "MYNODE%23". For more information, see z/OS
Communication Server: IPv6 Network and Application Design Guide.

service
The TCP/IP service that is queried. If the value of the service parameter is a port number, you must
specify the AI_NUMERICSERV flag. The value of the service parameter can be up to 32 bytes in
length

flags
To specify multiple flags, code the flags parameter as a space-delimited string. The following flags are
supported:
AI_PASSIVE

Specifies how to fill the returned socket NAME string. If this flag is set, the returned NAME string
can be used with the BIND command to bind a socket for accepting new connection requests.

Rules:

• If the AI_PASSIVE flag is specified and the node parameter is not specified, the IP address
portion of the NAME string is set to either the IPv4 address (INADDR_ANY) or to the IPv6
unspecified address (in6addr_any).

• If the AI_PASSIVE flag is not specified, then the returned NAME string can be used with the
CONNECT or the SENDTO commands.

• If the AI_PASSIVE flag is not specified and the node parameter is not specified, the IP address
portion of the NAME string is set to the default loopback address: 127.0.0.1 (IPv4) or ::1 (IPv6).

If you issue the following command:

src = socket("GETADDRINFO",,54123,"AI_PASSIVE","AF_UNSPEC")

Then the following string is returned:

0 '' AF_INET6 54123 0 ::0 0 AF_INET 54123 0.0.0.0

See example 2 in “Code example” on page 605 for one method of how to use this flag.

AI_CANONNAMEOK
Specifies that the canonical name that corresponds to the node parameter is returned. The node
parameter must also be issued.

If you issue the following command:

src = socket("GETADDRINFO","chile",21,"AI_CANONNAMEOK")

Then the following string is returned:

0 host.department.com AF_INET 21 10.11.103.1

Tip: See “Code example” on page 605 for examples of how to use this flag.

600 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

AI_NUMERICHOST
If you specify this flag, the node parameter must be specified as an IP address, for example,
10.11.103.1. Otherwise, the command fails with a 1 EAI_NONAME return code.

If you issue the following command:

src = socket("GETADDRINFO","10.11.103.1",,"AI_NUMERICHOST")

Then the following string is returned:

0 '' AF_INET 0 10.11.103.1

AI_NUMERICSERV
If you specify this flag, you must specify the service parameter as a port number, for example,
1821. Otherwise, the command fails with a 1 EAI_NONAME return code.

If you issue the following command

src = socket("GETADDRINFO",,23,"AI_NUMERICSERV")

Then the following string is returned.

0 '' AF_INET6 23 0 ::1 0 AF_INET 23 127.0.0.1

AI_V4MAPPED
If you specify this flag and the value of the family parameter is AF_INET6 or AF_UNSPEC, the caller
accepts IPv4-mapped IPv6 addresses.

Rules:

• If the value of the family parameter is AF_INET6, a query for IPv4 addresses is made if the
AI_ALL flag is specified or if no IPv6 addresses are found. Any IPv4 addresses that are found are
returned as IPv4-mapped IPv6 addresses.

• If the value of the family parameter is AF_UNSPEC, queries are made for both IPv6 and IPv4
addresses. If IPv4 addresses are found and IPv6 is supported on the system, the IPv4
addresses are returned as IPv4-mapped IPv6 addresses.

• Otherwise, this flag is ignored.

If you issue the following command:

src = socket("GETADDRINFO","CHILE",,"AI_V4MAPPED AI_CANONNAMEOK");

Then the following string is returned:

0 host.department.com AF_INET6 0 0 ::FFFF:10.11.103.1 0

AI_ALL
If you specify this flag, the NAME strings that are returned depend on the value of the family
parameter.

Rules:

• If the value of the family parameter is AF_INET6, the AI_V4MAPPED flag must also be set to
indicate that both IPv4-mapped IPv6 addresses and IPv6 addresses are acceptable.

• If the value of the family parameter is AF_UNSPEC, AI_ALL is accepted, but has no impact on the
processing. No matter AI_ALL is specified or not, two queries are made. The first query is for
IPv6 addresses and if successful, the IPv6 addresses are returned. The second query is for IPv4
addresses:

– If the AI_V4MAPPED flag is specified and the system supports IPv6, the IPv4 addresses are
returned as IPv4-mapped IPv6 addresses.

– If the AI_V4MAPPED flag is not specified or the system does not support IPv6, the IPv4
addresses are returned.

Chapter 14. REXX socket application programming interface 601

• Otherwise, this flag is ignored.

If you issue the following command:

src = socket("GETADDRINFO","CHILE",,,
"AI_ALL AI_V4MAPPED AI_CANONNAMEOK",,
"AF_UNSPEC");

The following string is returned (all on one line):

0 CHILE.department.com AF_INET6 0 0 ::FFFF:10.11.103.1 0
 AF_INET6 0 0 2001:10:11:103::1 0

AI_ADDRCONFIG
If you specify this flag, the node is queried if the resolver determines that one of the following
conditions is true:

• The system is IPv6 enabled and has at least one IPv6 interface. In this case, the resolver makes
a query for AAAA DNS records (IPv6).

• The system is IPv4 enabled and has at least one IPv4 interface. In this case, the resolver makes
a query for A DNS records (IPv4).

The loopback address is not a valid interface for this flag.
AI_EXTFLAGS

If you specify this flag, the extended form of the getaddrinfo function is requested. The extended
form allows additional hints to be passed to the resolver to determine the order of destination
addresses that are returned. This flag affects only the order of IPv6 addresses that are returned, if
any. If AI_EXTFLAGS flag is specified, the eflags parameter must be specified.

family
Limits the returned information to a specific address family. The following families are supported:
AF_UNSPEC

Any protocol family. The value 0 is accepted also.
AF_INET

IPv4 families. The value 2 is accepted also.
AF_INET6

IPv6 families. The value 19 is accepted also.
socktype

Limits the returned information to a specific socket type. If no socket type is specified, the command
returns address information for all types. The following socket types are supported:

Type name Decimal value Description

SOCK_STREAM 1 Stream socket

SOCK_DGRAM 2 Datagram socket

SOCK_RAW 3 Raw-protocol interface

Consider the following points:

• If the value of the socktype parameter is set to any value other than SOCK_STREAM, SOCK_DGRAM,
or SOCK_RAW, the GETADDRINFO command fails with a 9 EAI_SOCKTYPE return code.

• If the value of the socktype parameter is SOCK_RAW, the value of the service parameter must be
numeric.

• If the value of the socktype parameter is set to SOCK_STREAM or SOCK_DGRAM, then the resolver
searches the services file for a service name.

If the socktype and protocol parameters are both specified as 0, then the GETADDRINFO command is
processed in the following way:

602 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• If the value of the service parameter is null or numeric, then any returned address information has
the default socktype value of SOCK_STREAM.

• If the value of the service parameter is a service name, for example, FTP, then the GETADDRINFO
command searches the appropriate services file twice. The first search uses SOCK_STREAM as the
protocol, and the second search uses SOCK_DGRAM as the protocol. There is no default socket-type
provision in this case.

If both the socktype and protocol parameters are specified as nonzero values, then the values must be
compatible, regardless of the value specified by the service parameter. In this case, compatible means
one of the following combinations of parameters:

• The socktype parameter is SOCK_STREAM and the protocol parameter is IPPROTO_TCP.
• The socktype parameter is SOCK_DGRAM and the protocol parameter is IPPROTO_UDP.
• The socktype parameter is SOCK_RAW, in which case the protocol parameter can have any value.

protocol
Limits the returned information to a specific protocol. The value 0 indicates that the caller accepts any
protocol. The following protocols are supported:

Protocol name Decimal value Description

IPPROTO_TCP 6 TCP

IPPROTO_UDP 16 UDP

Consider the following points:

• If the socktype parameter is 0 and the protocol parameter is not 0, the only acceptable input values
for the protocol parameter are IPPROTO_TCP and IPPROTO_UDP. If any other values are issued for
the protocol parameter, the GETADDRINFO command fails with a 7 EAI_BADFLAGS return code.

• If the protocol and socktype parameters are both specified as 0, then the GETADDRINFO command
is processed in the following way:

– If the service parameter value is null or numeric, then any returned address information assumes
that the socket type is SOCK_STREAM.

– If the service parameter is specified as a service name, for example, FTP, then the GETADDRINFO
command searches the applicable services file twice. The first search uses the protocol
SOCK_STREAM, and the second search uses the protocol SOCK_DGRAM. There is no default
socket type provision in this case.

• If both the protocol and socktype parameters are specified as nonzero values, the values must be
compatible, regardless of the value that is specified by the service parameter. In this context,
compatible means one of the following combinations of parameters:

– The socktype parameter is SOCK_STREAM and the protocol parameter is IPPROTO_TCP.
– The socktype parameter is SOCK_DGRAM and the protocol parameter is IPPROTO_UDP.
– The socktype parameter is SOCK_RAW, in which case the protocol parameter can have any value.

• If the lookup for the value specified by the service parameter fails (for example, the service name
does not appear in the applicable services file), then the GETADDRINFO command fails with the 8
EAI_SERVICE return code.

eflags
A fullword binary field that specifies the source IPv6 address selection preferences. If AI_EXTFLAGS
flag is specified in FLAGS, this field is required. To specify multiple eflags, code the eflags parameter
as a space-delimited string.

This field must have the value of 0 or of one or more of the following values:

Chapter 14. REXX socket application programming interface 603

IPV6_PREFER_SRC_HOME
Requests that resolver returns destination IPv6 addresses that can be reached by a home IPv6
source address before it returns destinations that can be reached by a care-of IPv6 source
address. This is the default behavior if AI_EXTFLAGS flag is not specified.

IPV6_PREFER_SRC_COA
Requests that resolver returns destination IPv6 addresses that can be reached by a care-of IPv6
source address before it returns destinations that can be reached by a home IPv6 source address.

IPV6_PREFER_SRC_PUBLIC
Requests that resolver returns destination IPv6 addresses that can be reached by a public IPv6
source address before it returns destinations that can be reached by a temporary IPv6 source
address.

IPV6_PREFER_SRC_TMP
Requests that the resolver returns destination IPv6 addresses that can be reached by a temporary
IPv6 source address before it returns destinations that can be reached by a public IPv6 source
address.

IPV6_PREFER_SRC_CGA
Requests that resolver returns destination IPv6 addresses that can be reached by a
cryptographically generated IPv6 source address before it returns destinations that can be
reached by a non-cryptographically generated IPv6 source address.

IPV6_PREFER_SRC_NONCGA
Requests that resolver returns destination IPv6 addresses that can be reached by a non-
cryptographically generated IPv6 source address before it returns destinations that can be
reached by a cryptographically generated IPv6 source address.

ZERO
No preferences are specified.

Any EFLAGS specification other than the value of 0 or one of the options listed above causes an
EINVALIDRXSOCKETCALL error to be returned.

If contradictory EFLAGS, for example, IPV6_PREFER_SRC_TMP and IPV6_PREFER_SRC_PUBLIC, are
specified, the GETADDRINFO call returns EINVALIDCOMBINATION.

Returned value
The command returns a string that contains the return code, canonical name, and a NAME string or list of
NAME strings. The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error
number that is set by the socket command. The return code 0 indicates that the requested socket
command was completed successfully.

The following string is an example of what is returned by the GETADDRINFO command:

0 RALEIGH.IBM.COM name1 name2 name3

In the example, 0 is the return code, RALEIGH.IBM.COM is the canonical name, and name1 name2
name3 is a list of NAME strings. Depending on the flags that were issued, these names can be IPv4 or
IPv6 values.

Tip: For a description of the format of a socket name, see “CONNECT” on page 595 or “BIND” on page
590.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 1 EAI_NONAME
• 2 EAI_AGAIN
• 5 EAI_FAIMLY
• 6 EAI_MEMORY

604 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• 7 EAI_BADFLAGS
• 8 EAI_SERVICE
• 9 EAI_SOCKTYPE
• 9 EBADF
• 35 EWOULDBLOCK

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2006 ESOCKETNOTALLOCATED

LE C/C++ equivalent
int getaddrinfo(const char *nodename, const char *servname,
 const struct addrinfo *hints, struct addrinfo **res);

Code example

/* REXX EZARXR05 */
/*
 * This sample demonstrates a use of the GETADDRINFO command.
 * It is possible that the GETADDRINFO command will return
 * more then one name address. The program shows one
 * technique that can be used to parse the information
 * returned. After a successful connection has been established
 * the program will sends data to a server listeneing on port
 * 54777. The program then waits for a reply.
 *
 * HINT: The program code provided under the IOCTL command can
 * be used as a server for this sample.
 *
 * GUIDELINE: It is generally recommended that a program loop around
 * the RECV command to ensure that all data is read off
 * the socket. This sample does not follow the guideline.
 */
src = socket("INITIALIZE","MYSET01",10);
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET6","SOCK_STREAM");
 if perror(src,"SOCKET") \= 0 then signal ENDPROGRAM
 parse var src l_retcode l_sockid
 /* **
 * Issue GETADDRINFO command. Request that all IPv6 address
 * information be returned, and if possible provide the
 * canon name. IPV4 addresses are to be mapped to
 * IPv6 mapped addresses. Names will be returned as AF_INET6
 * NAMES.
 * **/
 src = socket("GETADDRINFO","MVS150",54777,,
 "AI_ALL AI_CANONNAMEOK AI_NUMERICSERV",
 "AI_V4MAPPED","AF_INET6","SOCK_STREAM",,
 "IPPROTO_TCP");
 if perror(src,"GETADDRINFO") = 0 then do
 parse var src l_retcode l_canonname l_names
 l_LOCName = "AF_INET6 0 0 IN6ADDR_ANY 0";
 src = socket("BIND", l_sockid, l_LOCname);
 if perror(src,"BIND") \= 0 then signal ENDPROGRAM
 /* **
 * It is possible that GETADDRINFO returned multiple
 * name structures. Cycle through them until a
 * successful connection is achived or none are left.
 * **/
 l_done = "FALSE";
 l_connectOK = "FALSE";
 do while l_names \= '' | l_done = "FALSE"
 if word(l_names,1) = "AF_INET6" then do
 parse var l_names . l_port l_flow l_addr,
 l_scope l_names
 l_RMTname = "AF_INET6 "l_port" "l_flow" "l_addr,
 ||" "l_scope;

Chapter 14. REXX socket application programming interface 605

 end; /* AF_INET6 */
 else do
 parse var l_names . l_port l_addr l_names
 l_RMTname = "AF_INET "l_port" "l_addr;
 end; /* AF_INET */
 Say "Attempting connection using RMT NAME: ",
 l_RMTname;
 src = socket("CONNECT",l_sockid,l_RMTname);
 if perror(src,"CONNECT") = 0 then do
 Say "...Connected";
 l_connectOK = "TRUE";
 l_done = "TRUE";
 end; /* CONNECT */

 else do
 l_done = "TRUE";
 end;
 end; /* DO LOOP */
 if l_connectOK = "TRUE" then do
 l_data = time() "**** **** **** **** ";
 src = socket("GETSOCKNAME",l_sockid);
 Say "GETSOCKNAME: "src;
 src = socket("SEND",l_sockid,l_data);
 if perror(src,"SEND") = 0 then do
 src = socket("RECV",l_sockid);
 if perror(src,"RECV") = 0 then do
 parse var src . l_amtdata l_data
 Say "Received " l_amtdata " bytes from ",
 l_addr " on" port " l_port";
 Say "The received data is: "l_data;
 end; /* RECV */
 end; /* SEND */
 end; /* CONNECT OK */
 else do /* CONNECT not OK */
 say "No Connection to remote host could be",
 "establisthed";
 end;
 end; /* GETADDRINFO */
end; /* INITIALIZE */

ENDPROGRAM:
src=socket("CLOSE",l_sockid);
src=perror(src,"CLOSE");
src=socket("TERMINATE","MYSET01");
src=perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

/* REXX EZARXR32 */
/*
 * This example shows how to use the GETADDRINFO command
 * to obtain a list of NAME constructs suitable for
 * use with the BIND command using the well-known port 54123.
 * The addr fields of the NAME constructs returned will be
 * set to
 *
 * This example also shows how to use the SELECT command to
 * monitor listening sockets for for new connections.
 *
 * In the case of 2 name constructs being returned the
 * first successful bind will be used.
 *
 * HINT: To limit the NAME structures to a specific
 * Address family change AF_UNSPEC to either
 * AF_INET or AF_INET6
 *
 * HINT: Coding a hostname for the node paramter will result
 * in the ipaddress fields of the NAME constructs to
 * have a specific interface address assigned.
 *
 */

l_selectlist = '';
src = socket("INITIALIZE","MYSET01");
src = socket("GETADDRINFO",,54123,"AI_PASSIVE",

606 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 "AI_CANONNAMEOK","AF_UNSPEC");
parse var src l_retcode l_canname l_names
l_bindok = "FALSE";
Say "Canonname returned is: "l_canname;
do while l_names \= ''
 select
 when word(l_names,1) = "AF_INET" then do
 l_SockName = word(l_names,1) word(l_names,2),
 word(l_names,3)
 l_names = subword(l_names,4);
 end;
 when word(l_names,1) = "AF_INET6" then do
 l_SockName = word(l_names,1) word(l_names,2),
 word(l_names,3) word(l_names,4),
 word(l_names,5);
 l_names = subword(l_names,6);
 end;
 otherwise
 l_sockname = "unknown";
 end;
 src=socket("SOCKET",word(l_sockname,1),"STREAM");
 if word(src,1) = 0 then do
 l_socket = word(src,2);
 src = socket("BIND",l_socket1,l_sockname);
 if word(src,1) = 0 then do
 src = socket("LISTEN",l_socket);
 if word(src,1) = 0 then do
 Say "Listening on socket: "l_sockname;
 l_selectlist = l_selectlist" "l_socket;
 l_bindOK = "TRUE";
 end;
 end;
 end;
end;
if l_selectlist \= 0 then do
 Say "The following sockets will be monitored" l_selectlist;
 l_fdset = "READ "l_selectlist" WRITE EXCEPTION";
 src = socket("SELECT",l_fdset,0);
 if word(src,1) = 0 & word(src,2) \= 0 then do
 l_socklist = subword(src,3);
 do while l_socklist \= ''
 parse var l_socklist l_sockid l_socklist
 src = socket("ACCEPT",l_sockid);
 if word(src,1) = 0 then do
 l_newsock = word(src,2);
 /*
 * DO SOME STUFF WITH l_newsock
 *
 */
 src = socket("CLOSE",l_newsock);
 end;
 end;
 end;
 src = socket("CLOSE",word(l_selectlist,1));
 src = socket("CLOSE",word(l_selectlist,2));
end;
src = socket("TERMINATE","MYSET01");
exit word(src,1);

GETCLIENTID
Use the GETCLIENTID command to retrieve the client ID for the calling application. The client ID is the
identifier by which the calling application is known to the TCP/IP address space.

Tip: The client ID that is returned by the GETCLIENTID command can be used with the GIVESOCKET and
TAKESOCKET commands.

Format

SOCKET ("GETCLIENTID"

, AF_INET

, domain

)

Chapter 14. REXX socket application programming interface 607

Parameters
domain

The domain. This parameter is optional for IPv4, but it is required for IPv6. If this parameter is not
specified, by default, the domain parameter is set to AF_INET. The following domain values are
supported:

• AF_UNSPEC or 0
• AF_INET or 2
• AF_INET6 or 19

Returned value
The command returns a string that contains the return code and the application identifier. The return code
can be 0 or the REXX API error number. The return code 0 indicates that the requested socket command
was completed successfully.

The application identifier has the following format:

clientid = domain userid socketset

The following examples show what is returned for the specific address families:
IPv4

0 AF_INET IBMUSER SOCSET01
IPv6

0 AF_INET6 IBMUSER SOCSET01

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2013 EINVALIDCLIENTID

LE C/C++ equivalent
int getclientid(int domain, struct clientid *clientid);

608 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Code example

/* REXX EZARXR06 */
/*
 * This sample demonstrates the use of the GETCLIENTID
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") \= 0 then signal ENDPROGRAM;
src = socket("GETCLIENTID");
Say src;

ENDPROGRAM:
src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");

exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 143. GETCLIENTID command example

GETDOMAINNAME
Use the GETDOMAINNAME command to retrieve the name of the domain to which the current TCP/IP
stack belongs.

Tip: You can use a resolver trace to determine why a resolver command failed. See z/OS Communications
Server: IP Diagnosis Guide.

Format
SOCKET ("GETDOMAINNAME")

Parameters
This command has no parameters.

Returned value
The command returns a string that contains the return code and the domain, for example, 0
RALEIGH.IBM.COM.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error number can be returned:

• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Chapter 14. REXX socket application programming interface 609

Code example

/* REXX EZARXR07 */
/*
 * This sample demonstrates the use of the GETDOMAINNAME
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 Say socket("GETDOMAINNAME");
end;

src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 144. GETDOMAINNAME command example

GETHOSTBYADDR
Use the GETHOSTBYADDR command to resolve an IPv4 address to a host name.

This command uses a domain name system (DNS) server. If the IP address is not resolved by the DNS
server, then the resolver searches the local hosts tables. For information about the local host tables, see
z/OS Communications Server: IP Configuration Guide.

Restriction: This command does not support IPv6 addresses.

Tips:

• Use either the GETADDRINFO or GETNAMEINFO command to resolve a IPv6 address to a host name.
• You can use a resolver trace to determine why a resolver command failed. See z/OS Communications

Server: IP Diagnosis Guide.

Format
SOCKET ("GETHOSTBYADDR" , ipaddress

, domain

)

Parameters
ipaddress

The IP address of the remote host.
domain

The network domain to which the IP address belongs. The only supported domain is AF_INET or 2.

Returned value
This command returns a string that contains the return code and the host name, for example, 0
ABCD.RALEIGH.IBM.COM. The return code can be 0 or the REXX API error number. The return code 0
indicates that the requested socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE

610 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• 2017 EIPADDRNOTFOUND

LE C/C++ equivalent
struct hostent *gethostbyaddr(char *address,
 int address_len, int domain);

Code example

/* REXX EZARXR08 */
/*
 * This sample demonstrates the use of the GETHOSTBYADDR
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 Say socket("GETHOSTBYADDR","128.123.222.1");
end;

src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 145. GETHOSTBYADDR command example

GETHOSTBYNAME
Use the GETHOSTBYNAME command to resolve a host name to an IPv4 address.

This command uses a DNS server. Any trailing blanks are removed from the host name. If the host is
multi-homed, then this command returns a list of the space-delimited IP addresses that are associated
with the host name. If the host name is not resolved by the DNS server, then the resolver searches the
local hosts tables. For information about the local host tables, see z/OS Communications Server: IP
Configuration Guide.

Restriction: This command does not support IPv6 addresses.

Tips:

• Use either the GETADDRINFO or GETNAMEINFO command to resolve a IPv6 address to a host name.
• You can use a resolver trace to determine why a resolver command failed. See z/OS Communications

Server: IP Diagnosis Guide.

Format
SOCKET ("GETHOSTBYNAME" , hostname

Fully qualified hostname

)

Parameters
hostname

The name of the remote host. The parameter cannot be longer than 255 characters.
Fully qualified hostname

The fully qualified name of the host in the format hostname.domainname. The parameter cannot be
longer than 255 characters.

Chapter 14. REXX socket application programming interface 611

Returned value
This command returns string that contains the return code and one or more space-delimited IPv4
addresses, for example, 0 1.2.3.4 5.4.3.2 1.2.3.5. The return code can be 0 or the REXX API
error number. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2016 EHOSTNOTFOUND
• 2019 ENORECOVERY

LE C/C++ equivalent
struct hostent *gethostbyname(char *name);

Code example

/* REXX EZARXR09 */
/*
 * This sample demonstrates the use of the GETHOSTBYNAME
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 Say socket("GETHOSTBYNAME", "MYCOMPANY");
 Say socket("GETHOSTBYNAME", "MYCOMPANY.somewhere.com");
end;

src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 146. GETHOSTBYNAME command example

GETHOSTID
Use the GETHOSTID command to return the primary IPv4 address for the current host. The primary
address is the IP address of the default home address that is specified in the TCP/IP configuration file for
the stack with which the current socket set is associated.

Restriction: This command does not support IPv6 addresses.

Format
SOCKET ("GETHOSTID")

Parameters
This command has no parameters.

612 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Returned value
This command returns a string that contains the return code and the primary IPv4 address of the host, for
example, "0 10.11.103.1". The return code can be 0 or the REXX API error number. The return code 0
indicates that the requested socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2016 EHOSTNOTFOUND
• 2019 ENORECOVERY

LE C/C++ equivalent
int gethostid();

Code example

/* REXX EZARXR10 */
/*
 * This sample demonstrates the use of the GETHOSTID
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 say socket("GETHOSTID");
end;
src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 147. GETHOSTID command example

GETHOSTNAME
Use the GETHOSTNAME command to return the name of the host on which the application is running.

Format
SOCKET ("GETHOSTNAME")

Parameters
This command has no parameters.

Returned value
This command returns a string that contains the return code and the name of the host system, for
example, 0 MYHOST01. If the host name is longer than 256 bytes, it is truncated. The return code can be
0, a REXX socket API error number, or the REXX TCP/IP error number that is set by the socket command.
The return code 0 indicates that the requested socket command was completed successfully.

Chapter 14. REXX socket application programming interface 613

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error number can be returned:

• 2018 ETRYAGAIN

The following REXX socket API error number can be returned:

• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
rc = int gethostname(char *name, size_t namelen);

Code example

/* REXX EZARXR11 */
/*
 * This sample demonstrates the use of the GETHOSTNAME
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 src = socket("GETHOSTNAME");
 Say "Host name is: "WORD(src,2);
end;
src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 148. GETHOSTNAME command example

GETNAMEINFO
Use the GETNAMEINFO command to translate a socket address to a node name and service location.

This command can be used for both IPv4 or IPv6 socket addresses.

Tip: You can use a resolver trace to determine why a resolver command failed. See z/OS Communications
Server: IP Diagnosis Guide.

Format
SOCKET ("GETNAMEINFO" , name

,

flags

)

Parameters
name

An IPv4 or IPv6 NAME string. If the NAME string is an IPv4-mapped IPv6 address, then the
embedded IPv4 address is extracted; then, the lookup is performed on the IPv4 address. If the NAME
string is an IPv6 unspecified address, the lookup is not performed and the 1 EAI_NONAME error code
is returned.

The format for the name parameter depends on the socket type:

614 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

AF_INET sockets (IPv4)
name = "domain portid ipaddress"

AF_INET6 sockets (IPv6)
name = "domain portid flowinfo ipaddress scopeid"

where

• The domain value is the decimal number 2 for AF_INET and the decimal number 19 for AF_INET6.
• The portid value is the port number.
• The ipaddress value is the IP address of the remote host. It must be an IPv4 address for AF_INET

and an IPv6 address for AF_INET6.
• The flowinfo value must be 0.
• The scopeid value identifies the interfaces that are applicable for the scope of the address that is
specified in the ipaddress field. For a link-local IP address, the scopeid field can specify a link index,
which identifies a set of interfaces. For all other scopes, the scopeid field must be set to 0. Setting
the scopeid field to 0 indicates that any address type and scope can be specified.

If the scopeid field is specified and the destination is not a link-local address, the resolver ignores the
scopeid field.

flags
An optional parameter that specifies the type of information that is returned. Separate multiple flags
with spaces. If no flag is issued, the fully qualified host name is returned. The following flags are
supported:
NI_NOFQDN

Returns the host name of the fully qualified domain name.
NI_NUMERICHOST

Returns only the numeric form of the host address.
NI_NAMEREQD

Returns an error if the host name cannot be found.
NI_NUMERICSERV

Returns the numeric form of the service.
NI_DGRAM

Indicates that the service query is for a datagram socket. If this flag is not issued, the
GETNAMEINFO command assumes that the query is for a stream socket.

NI_NUMERICSCOPE
Returns only the numeric form of the scopeid interface index.

Do not specify both the NI_NUMERICHOST and the NI_NAMEREQD flags; otherwise, you get the
EAI_FAIL (3) error. See Appendix F, “GETNAMEINFO flags and returned information examples,” on
page 779 for examples of returned information when various combinations of flags are used.

Returned value
This command returns a string that contains the return code, the host name, and the service. The return
code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by the socket
command. The return code 0 indicates that the requested socket command was completed successfully.

If a link-local IPv6 address is passed as input and the value of the scopeid parameter is not 0, then scope
information is appended to the host name, using the format host name%scope information. For more
information about scope information and the GETNAMEINFO command, see z/OS Communications
Server: IPv6 Network and Application Design Guide.

The following string is an example of what is returned by the GETNAMEINFO command:

0 BOB01.THEWORLD.COM%23 echo

Chapter 14. REXX socket application programming interface 615

In the example, 0 is the return code, BOB01.THEWORLD.COM is the host name, 23 is the scope ID, and
echo denotes the service. The numeric scope information is returned only if the NI_NUMERICSCOPE flag
is issued.

For information about the format of the NAME string, see “How structures are represented” on page 582.
See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 1 EAI_NONAME
• EAI_FAIL
• 5 EAI_FAMILY
• 7 EAI_BADFLAGS

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
int getnameinfo(cons struct sockaddr *sa, socklen_t salen,
 char *host, socklen_t hostlen, char *serv, socklen_t servlen,
 int flags);

Code example

/* REXX EZARXR13 */
/*
 * This sample demonstrates the use of the GETNAMEINFO
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then
 Say socket("GETNAMEINFO", "AF_INET6 21 0 2000:197:11:103::1 0");
src = socket("TERMINATE","MYSET01");
src = perror(src,"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 149. GETNAMEINFO command example

GETPEERNAME
Use the GETPEERNAME command to return the name of the remote peer that is connected to the socket.

Format

SOCKET ("GETPEERNAME" , socketid)

Parameters

socketid
The socket descriptor

Returned value

This command returns a string that contains the return code and the name of the remote peer, for
example, 0 NAME. The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error

616 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

number that is set by the socket command. The return code 0 indicates that the requested socket
command was completed successfully.

For information about the format of the NAME string, see “How structures are represented” on page 582.
See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

Returned value

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 38 ENOTSOCK
• 45 EOPNOTSUPP
• 57 ENOTCONN

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent

int getpeername(int socket, struct sockaddr *name, int *namelen);

Code example

/* REXX EZARXR14 */
/*
 * This sample demonstrates the use of the GETPEERNAME
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET","STREAM");
 if perror(src,"SOCKET") = 0 then do
 l_socketid = word(src,2);
 l_RMTName = "AF_INET 7 127.0.0.1";
 src = socket("CONNECT",l_socketid,l_RMTName);
 if perror(src,"CONNECT") = 0 then do
 src = socket("GETPEERNAME",l_socketid);
 if perror(src,"GETPEERNAME") = 0 then do
 l_PeerName = Subword(src,2);
 say "The remote peer is: "l_PeerName;
 end;
 end;
 end;
 src = perror(socket("CLOSE",l_socketid),"CLOSE");
end;
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 150. GETPEERNAME command example

Chapter 14. REXX socket application programming interface 617

GETPROTOBYNAME
Use the GETPROTOBYNAME command to translate a network protocol name to a protocol number.

Format
SOCKET ("GETPROTOBYNAME" , protocolname)

Parameters
protocolname

The name of the network protocol

Returned value
This command returns a string that contains the return code and the protocol number, for example, 0 6.
The return code can be 0 or the REXX API error number. The return code 0 indicates that the requested
socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
struct protoent *getprotobyname(char name);

Code example

/* REXX EZARXR15 */
/*
 * This sample demonstrates the use of the GETPROTOBYNAME
 * socket command.
 */
if perror(socket("INITIALIZE","MYSET01"),"INITIALIZE") = 0,
 then do
 src = socket("GETPROTOBYNAME","TCP");
 Say "The TCP protocol is assigned the number of",
 WORD(src,2);
 end;
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 151. GETPROTOBYNAME command example

GETPROTOBYNUMBER
Use the GETPROTOBYNUMBER command to translate a network protocol number to a protocol name.

Format
SOCKET ("GETPROTOBYNUMBER" , protocolnumber)

618 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameters
protocolnumber

The number of the network protocol

Returned value
This command returns a string that contains the return code and the protocol name, for example, 0 TCP.
The return code can be 0 or the REXX API error number. The return code 0 indicates that the requested
socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
struct protoent *getprotobynumber(int proto);

Code example

/* REXX EZARXR16 */
/*
 * This sample demonstrates the use of the GETPROTOBYNUMBER
 * socket command.
 */
if perror(socket("INITIALIZE","MYSET01"),"INITIALIZE") = 0,
 then do
 src = socket("GETPROTOBYNUMBER","6");
 Say "The name assigned to protocol 6 is "WORD(src,2);
end;
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 152. GETPROTOBYNUMBER command example

GETSERVBYNAME
Use the GETSERVBYNAME command to retrieve a service and port number.

Format

SOCKET ("GETSERVBYNAME" , servicename

, TCP

, protocolname

)

Parameters
servicename

The service name.
protocolname

The name of a network protocol, for example, TCP or UDP. By default, the protocolname parameter is
set to TCP.

Chapter 14. REXX socket application programming interface 619

Returned value
This command returns a string containing the return code, service name, the port number that the service
is using, and the network protocol, for example, 0 FTP 21 TCP. The return code can be 0 or the REXX
API error number. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
struct servent *getservbyname(char *name, char *proto);

Code example

/* REXX EZARXR17 */
/*
 * This sample demonstrates the use of the GETSERVBYNAME
 * socket command.
 */
if perror(socket("INITIALIZE","MYSET01"),"INITIALIZE") = 0,
 then do
 src = socket("GETSERVBYNAME","FTP");
 Say "The FTP service is assigned "SUBWORD(src,2);
end;
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 153. GETSERVBYNAME command example

GETSERVBYPORT
Use the GETSERVBYPORT command to translate a port number to the name of the service that is using
the port.

Format

SOCKET ("GETSERVBYPORT" , portid

, TCP

, protocolname

)

Parameters
portid

The port number of the service
protocolname

The name of a network protocol, for example, TCP or UDP. By default, the protocolname parameter is
set to TCP.

620 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Returned value
This command returns a string that contains the return code, service name, the port number that the
service is using, and the network protocol, for example, 0 FTP 21 TCP. The return code can be 0 or the
REXX API error number. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
struct servent *getservbyport(int port, char *proto);

Code example

/* REXX EZARXR18 */
/*
 * This sample demonstrates the use of the GETSERVBYPORT
 * socket command.
 */
if perror(socket("INITIALIZE","MYSET01"),"INITIALIZE") = 0,
 then do
 src = socket("GETSERVBYPORT","21");
 Say "Port 21 is using service "SUBWORD(src,2);
end;
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 154. GETSERVBYPORT command example

GETSOCKNAME
Use the GETSOCKNAME command to retrieve the name of a bound socket.

Stream sockets are not assigned a name until after a successful BIND, CONNECT, or ACCEPT command is
completed.

Tip: Use this command to discover the port number that is assigned to a socket after the socket has been
implicitly bound, for example, after a CONNECT command has been completed.

Format
SOCKET ("GETSOCKNAME" , socketid)

Parameters
socketid

The socket descriptor

Chapter 14. REXX socket application programming interface 621

Returned value
This command returns a string that contains the return code and the NAME string of the bound socket, for
example, 0 AF_INET6 7 0 2001:197:11:103::1 0. The return code can be 0, a REXX socket API
error number, or the REXX TCP/IP error number that is set by the socket command. The return code 0
indicates that the requested socket command was completed successfully.

For information about the format of the NAME string, see “How structures are represented” on page 582.
See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 38 ENOTSOCK
• 45 EOPNOTSUPP
• 57 ENOTCONN

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
int getsockname(int socket, struct sockaddr *name, int *namelen);

622 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Code example

/* REXX EZARXR19 */
/*
 * This sample demonstrates the use of the GETSOCKNAME
 * socket command. After the remote peer is obtained
 * send is echoed to the remote server.
 *
 * GUIDELINE: It is generally recommended that a program loop around
 * the RECV command to ensure that all data is read off
 * the socket. This sample does not follow the guideline.
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET","STREAM");
 if perror(src,"SOCKET") = 0 then do
 l_socketid = WORD(src,2);
 l_RMTname = "AF_INET 7 127.0.0.1";
 src = socket("CONNECT",l_socketid,l_RMTname);
 if perror(src,"CONNECT") = 0 then do
 src = socket("GETSOCKNAME",l_socketid);
 if perror(src,"GETSOCKNAME") = 0 then do
 l_LOCname = SUBWORD(src,2);
 Say "The local socket name is: "l_LOCName;
 end;
 src = socket("SEND",l_socketid,"*******");
 if perror(src,"SEND") = 0 then do
 src = socket("RECV",l_socketid);
 if perror(src,"RECV") = 0 then
 Say "Echoed data: " word(src,3);
 end;
 end;
 end;
end;
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 155. GETSOCKNAME command example

GETSOCKOPT
Use the GETSOCKOPT command to retrieve the active socket options that were set by the SETSOCKOPT
command.

You can specify multiple options with this command; however, at least one option is required.

Format

SOCKET ("GETSOCKOPT" , socketid , levelname ,

 optname

)

Parameters
socketid

The local socket descriptor.
levelname

The protocol level. The following protocol levels are supported:
IPPROTO_TCP

Retrieve the socket options that are set at the TCP layer

Chapter 14. REXX socket application programming interface 623

IPPROTO_IP
Retrieve the IPv4 socket options that are set at the IP layer

IPPROTO_IPV6
Retrieve the IPv6 socket options that are set at the IP layer

SOL_SOCKET
Retrieve the socket options that are set at the socket layer

optname
The option to be retrieved. The options that can be retrieved depend on the value of the levelname
parameter.

The following rules apply:

• Options that begin with SO_ require the SOL_SOCKET protocol level.
• Options that begin with TCP_ require the IPPROTO_TCP protocol level.
• Options that begin with IP_ require the IPPROTO_IP protocol level.
• Options that begin with IPV6_ require the IPPROTO_IPV6 protocol level.

The following values are supported for the optname parameter:
IP_MULTICAST_IF

(IPv4-only) Retrieves the IPv4 interface address that is used to send outbound multicast
datagrams from the socket application. When you specify this option, the GETSOCKOPT command
returns a string that contains the return code and interface address, for example, 0
10.11.103.1.

IP_MULTICAST_LOOP
(IPv4-only) Determines what occurs when datagrams are sent to a group to which the sending
host belongs. If this option is enabled, the IP layer loops back a copy of multicast datagrams for
local delivery. By default, this option is enabled. When you specify this option, the GETSOCKOPT
command returns either 1 (enabled) or 0 (disabled).

IP_MULTICAST_TTL
(IPv4-only) Retrieves the IP time-to-live of outgoing multicast datagrams. By default, this option is
set to the binary value '01'x, which means that multicast is available to the local subnet only.
When you specify this option, the GETSOCKOPT command returns a string that contains the return
code and a value in the range 0-255, for example, 0 227.

IPV6_ADDR_PREFERENCES
(AF_INET6 only) Retrieves the IPv6 address preferences to be used when selecting the source
address.The IPV6_ADDR_PREFERENCES flags that are returned can be one or more of the
following values:
IPV6_PREFER_SRC_HOME

A home IPv6 address is preferred over a care-of IPv6 address.
IPV6_PREFER_SRC_COA

A care-of IPv6 address is preferred over a home IPv6 address.
IPV6_PREFER_SRC_TMP

A temporary IPv6 address is preferred over a public IPv6 address.
IPV6_PREFER_SRC_PUBLIC

A public IPv6 address is preferred over a temporary IPv6 address.
IPV6_PREFER_SRC_CGA

A cryptographically generated IPv6 address is preferred over a non-cryptographically
generated IPv6 address.

IPV6_PREFER_SRC_NONCGA
A non-cryptographically generated IPv6 address is preferred over a cryptographically
generated IPv6 address.

624 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IPV6_MULTICAST_HOPS
(IPv6-only) Retrieves the hop limit used for outgoing multicast packets. When you specify this
option, the GETSOCKOPT command returns a string that contains the return code and the hop
limit, which is a number in the range 0-255.

IPV6_MULTICAST_IF
(IPv6-only) Retrieves the index of the IPv6 interface that is used to send outbound multicast
datagrams from the socket application. When you specify this option, the GETSOCKOPT command
returns a string that contains the return code and the IPv6 interface index, for example, 0 1523.

IPV6_MULTICAST_LOOP
(IPv6-only) Determines what occurs when datagrams are sent to a group to which the sending
host belongs. If this option is enabled, the IP layer loops back a copy of multicast datagrams for
local delivery. By default, this option is enabled. When you specify this option, the GETSOCKOPT
command returns either 1 (enabled) or 0 (disabled).

IPV6_UNICAST_HOPS
(IPv6-only) Retrieves the hop limit used for outgoing unicast IPv6 packets. When you specify this
option, the GETSOCKOPT command returns a string that contains the return code and the hop
limit, which is a number in the range 0-255.

IPV6_V6ONLY
(IPv6-only) Determines whether the socket is restricted to sending or receiving IPv6 packets only.
By default, a socket is not restricted. When you specify this option, the GETSOCKOPT command
returns a string that contains the return code and a number: 1 (enabled) or 0 (disabled).

SO_ASCII
(REXX only) Determines whether all incoming data is translated from ASCII to EBCDIC, and
whether all outgoing data is translated from EBCDIC to ASCII. This option returns a string that
contains the error code and either ON (enabled) or OFF (disabled). If the option is enabled, the
name of the translation table is returned also. The following string is an example of what might be
returned: 0 ON MYTRANTB.

The translation tables are searched in the following order:

1. user_prefix.subtaskid.TCPXLBIN
2. user_prefix.userid.TCPXLBIN
3. system_prefix.STANDARD.TCPXLBIN
4. system_prefix.RXSOCKET.TCPXLBIN
5. Internal tables

The following descriptions apply:

• The user_prefix value is either the user ID or the job name of the REXX program.
• The system_prefix value is either TCPIP or the DATASETPREFIX value from the hlq.TCPIP.DATA.

You can change the system_prefix value to match your site convention.
• The subtaskid value is the name of the socket set.
• The userid value is the user ID under which the REXX EXEC is running.

When the internal tables are used, the data is converted in the following way:

Chapter 14. REXX socket application programming interface 625

--
ASCII	second hex digit of byte of ASCII data															
to	---															
EBCDIC	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	37	2D	2E	2F	16	05	25	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	3C	3D	32	26	18	19	3F	27	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	40	4F	7F	7B	5B	6C	50	7D	4D	5D	5C	4E	6B	60	4B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	7A	5E	4C	7E	6E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	7C	C1	C2	C3	C4	C5	C6	C7	C8	C9	D1	D2	D3	D4	D5
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	D7	D8	D9	E2	E3	E4	E5	E6	E7	E8	E9	4A	E0	5A	5F
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	79	81	82	83	84	85	86	87	88	89	91	92	93	94	95
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	97	98	99	A2	A3	A4	A5	A6	A7	A8	A9	C0	6A	D0	A1
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	20	21	22	23	24	15	06	17	28	29	2A	2B	2C	09	0A
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
ASCII	9	30	31	1A	33	34	35	36	08	38	39	3A	3B	04	14	3E
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	41	42	43	44	45	46	47	48	49	51	52	53	54	55	56
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	58	59	62	63	64	65	66	67	68	69	70	71	72	73	74
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	76	77	78	80	8A	8B	8C	8D	8E	8F	90	9A	9B	9C	9D
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	9F	A0	AA	AB	AC	AD	AE	AF	B0	B1	B2	B3	B4	B5	B6
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	B8	B9	BA	BB	BC	BD	BE	BF	CA	CB	CC	CD	CE	CF	DA
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	DC	DD	DE	DF	EA	EB	EC	ED	EE	EF	FA	FB	FC	FD	FE
--

Figure 156. ASCII to EBCDIC

--
EBCDIC	second hex digit of byte of EBCDIC data															
to	---															
ASCII	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	9C	09	86	7F	97	8D	8E	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	9D	85	08	87	18	19	92	8F	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	80	81	82	83	84	0A	17	1B	88	89	8A	8B	8C	05	06
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	90	91	16	93	94	95	96	04	98	99	9A	9B	14	15	9E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	20	A0	A1	A2	A3	A4	A5	A6	A7	A8	5B	2E	3C	28	2B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	26	A9	AA	AB	AC	AD	AE	AF	B0	B1	5D	24	2A	29	3B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	2D	2F	B2	B3	B4	B5	B6	B7	B8	B9	7C	2C	25	5F	3E
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	BA	BB	BC	BD	BE	BF	C0	C1	C2	60	3A	23	40	27	3D
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	C3	61	62	63	64	65	66	67	68	69	C4	C5	C6	C7	C8
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
EBCDIC	9	CA	6A	6B	6C	6D	6E	6F	70	71	72	CB	CC	CD	CE	CF
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	D1	7E	73	74	75	76	77	78	79	7A	D2	D3	D4	D5	D6
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	D8	D9	DA	DB	DC	DD	DE	DF	E0	E1	E2	E3	E4	E5	E6
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	7B	41	42	43	44	45	46	47	48	49	E8	E9	EA	EB	EC
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	7D	4A	4B	4C	4D	4E	4F	50	51	52	EE	EF	F0	F1	F2
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	5C	9F	53	54	55	56	57	58	59	5A	F4	F5	F6	F7	F8
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	30	31	32	33	34	35	36	37	38	39	FA	FB	FC	FD	FE
--

Figure 157. EBCDIC to ASCII

626 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SO_BROADCAST
(REXX only) Determines whether a program can send broadcast messages over the socket to
destinations that can receive datagram messages. By default, this option is disabled. When you
specify this option, the GETSOCKOPT command returns a string that contains the return code and
a number: 1 (enabled) or 0 (disabled).

Restriction: This option has no meaning for stream sockets. It is valid only for datagram sockets.

SO_DEBUG
(REXX only) Determines whether debug information is recorded. By default, this option is
disabled. When you specify this option, the GETSOCKOPT command returns a string that contains
the return code and a number: 1 (enabled) or 0 (disabled).

Restriction: This option is valid only for stream sockets.

SO_DONTROUTE
Determines whether normal routing determination is bypassed for outgoing packets on the socket.
When you specify this option, the GETSOCKOPT command returns a string that contains the return
code and a number: 1 (enabled) or 0 (disabled).

Restriction: When a packet is sent, if the local interface cannot be determined from the
destination address, the 51 ENETUNREACH error message is returned.

SO_EBCDIC
(REXX only) Determines whether data is translated to and from EBCDIC. This option is ignored by
EBCDIC hosts. When you specify this option, the GETSOCKOPT command returns a string that
contains the return code and either ON (enabled) or OFF (disabled). If the option is enabled, the
name of the translation table is returned also.

Restriction: This option has no effect on the data that is processed by the socket library.

SO_ERROR
Retrieves information about pending errors on the socket or other errors that are not explicitly
returned by any socket commands. The error status is cleared after each call. When you specify
this option, the GETSOCKOPT command returns a string that contains the return code and the
most recent error, for example, 0 36.

SO_KEEPALIVE
Determines if the keep alive mechanism periodically sends a packet on an otherwise idle
connection for a stream socket. When enabled, if the remote TCP/IP does not respond to the
packet or to retransmissions of the packet, the connection is terminated with the ETIMEDOUT
error . By default, this option is disabled. When you specify this option, the GETSOCKOPT
command returns a string that contains the return code and a number: 1 (enabled) or 0 (disabled).

Tip: The site administrator can enable the global keep-alive mechanism by specifying the
INTERVAL parameter on the TCPCONFIG statement in the TCP/IP stack profile data set,
TCPIP.PROFILE.

SO_LINGER
Determines how TCP/IP processes data that has not been transmitted when the CLOSE command
is issued for the socket. When this option is enabled and the CLOSE command is issued, the calling
program is blocked until either the data is successfully transmitted or the connection times out.
When this option is disabled and the CLOSE command is issued, the CLOSE command returns
without blocking the caller; then TCP/IP continues to attempt to send data for a specified time,
which usually provides sufficient time to complete the data transfer. By default, this option is
disabled. When you specify this option, the GETSOCKOPT command returns a string that contains
the return code and either 1 (enabled) or 0 (disabled), for example, 0 1.

Restrictions:

• Using the SO_LINGER option does not guarantee that a data transfer will be completed, because
TCP/IP waits only for the amount of time that is specified by SETSOCKOPT command.

• This option is valid only for stream sockets.

Chapter 14. REXX socket application programming interface 627

SO_OOBINLINE
Determines whether out-of-band data is available to the RECV or RECVFROM commands. When
this option is enabled, out-of-band data is placed in the normal data input queue as it is received;
this data is then available to RECV or RECVFROM commands, even if the OOB flag is not set. When
this option is disabled, out-of-band data is placed in the priority data input queue as it is received;
this data is then available to RECV or RECVFROM commands only if the OOB flag is set. When you
specify this option, the GETSOCKOPT command returns a string that contains the return code and
a number: 1 (enabled) or 0 (disabled).

Restriction: This option is valid only for stream sockets.

SO_RCVBUF
Retrieves the size of the data portion of the TCP/IP receive buffer. The size of the receive buffer is
protocol specific and is based on the following values:

• (TCP socket) The TCPRCVBufrsize keyword on the TCPCONFIG statement in the PROFILE.TCPIP
data set.

• (UDP socket) The UDPRCVBufrsize keyword on the UDPCONFIG statement in the
PROFILE.TCPIP data set.

• (Raw socket) The default size of 65535.

When you specify this option, the GETSOCKOPT command returns a string that contains the return
code and either the size of the receive buffer or 0 (disabled).

SO_RCVTIMEO
Reports the timeout value for receive-type functions. This option returns a string that contains the
number of seconds followed by the number of microseconds. These values specify the length of
time to wait for a receive-type function to complete. Returns a value in the range 0 – 2 678 400
(equal to 31 days) for the number of seconds. Returns a value in the range 0 – 1 000 000 (equal to
1 second) for the number of microseconds. If a receive-type function has blocked for this length of
time without receiving data, it returns with an errno set to EWOULDBLOCK. The value 0 (the
default) indicates that a receive-type function does not time out.

The following receive-type commands are supported:

• READ
• RECV
• RECVFROM

SO_REUSEADDR
Determines whether local addresses are reused. Enabling this option alters the normal algorithm
that is used with the BIND command. The normal BIND algorithm permits each Internet address
and port combination to be bound only once. If the address and port already have been bound, a
subsequent BIND command fails with the 48 EADDRINUSE error message . When this option is
enabled, the following situations are supported:

• A server can bind the same port multiple times. Each invocation either must use a different local
IP address, or it must use a wildcard address (INADDR_ANY or in6addr_any) only one time for
each port.

• A server with active client connections can be restarted and can bind to its port without having
to close all of the client connections.

• For datagram sockets, multicasting is supported so that multiple BIND commands can be made
to the same class D address and port number.

By default, this option is disabled. When you specify this option, the GETSOCKOPT command
returns a string that contains the return code and a number: 1 (enabled) or 0 (disabled).

Tip: If you want multiple servers that bind to INADDR_ANY or IN6ADDR_ANY to listen on the
same port number, use the SHAREPORT option on the PORT statement in TCPIP.PROFILE.

628 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SO_SNDBUF
Determines the size of the data portion of the TCP/IP send buffer. The size of the send buffer is
protocol specific and is based on the following values:

• (TCP socket) The TCPSENDBufrsize keyword on the TCPCONFIG statement in the
PROFILE.TCPIP data set.

• (UDP socket) The UDPSENDBufrsize keyword on the UDPCONFIG statement in the
PROFILE.TCPIP data set.

• (Raw socket) The default size of 65535.

When you specify this option, the GETSOCKOPT command returns a string that contains the return
code and the size of the send buffer.

SO_SNDTIMEO
Reports the timeout value for send-type functions. This option returns a string that contains the
number of seconds followed by the number of microseconds. These values specify the length of
time to wait for a send-type function to complete. Returns a value in the range 0 – 2 678 400
(equal to 31 days) for the number of seconds. Returns a value in the range 0 – 1 000 000 (equal to
1 second) for the number of microseconds. If a send-type function has blocked for this length of
time without receiving data, it returns with an errno set to EWOULDBLOCK. The value 0 (the
default) indicates that a send-type function does not time out.

The following send-type commands are supported:

• SEND
• SENDTO
• WRITE

SO_TYPE
Retrieves the socket type. When you specify this option, the GETSOCKOPT command returns a
string that contains the return code and a number: 1 (SOCK_STREAM), 2 (SOCK_DATAGRAM), or 3
(SOCK_RAW).

TCP_KEEPALIVE
Determines whether a socket-specific timeout value (in seconds) is used instead of a
configuration-specific value, when keep alive timing is active for the socket. When enabled, the
socket-specific timeout value remains in effect until either the socket is closed or it is reset by a
SETSOCKOPT command. When you specify this option, the GETSOCKOPT command returns a
string that contains the return code and either the timeout value or 0 (disabled). For more
information about the socket option parameters, see TCP_KeepAlive socket option inz/OS
Communications Server: IP Programmer's Guide and Reference.

Tip: The site administrator can enable the global keep-alive mechanism by specifying the
INTERVAL parameter on the TCPCONFIG statement in the TCP/IP stack profile data set,
TCPIP.PROFILE.

TCP_NODELAY
Determines whether the data that is sent over the socket is subject to the Nagle algorithm (RFC
896). When this option is enabled, TCP waits to send small amounts of data until the
acknowledgment for the previous data sent is received. When this option is disabled, TCP sends
data when it is presented. When you specify this option, the GETSOCKOPT command returns a
string that contains the return code and a number: 1 (enabled) or 0 (disabled).

TCP_MAXSEG
(IPPROTO_TCP protocol only) Retrieves the maximum segment size for a TCP send. When you
specify this option, the GETSOCKOPT command returns a string that contains the return code and
either the maximum segment size or 0 (disabled).

Chapter 14. REXX socket application programming interface 629

Returned value
The command returns a string that contains the return code and the option value. The return code can be
0, a REXX socket API error number, or the REXX TCP/IP error number that is set by the socket command.
The return code 0 indicates that the requested socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 22 ENOTSOCK
• 38 ENOTSOCK
• 42 ENOPROTOOPT
• 45 EOPNOTSUPP

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
int getsockopt(int socket, int level, int option_name, char
 *option_value, int *option_len);

630 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Code example

/* REXX EZARXR20 */
/*
 * This sample demonstrates the use of the GETSOCKOPT
 * and SETSOCKOPT commands.
 *
 * The program opens a STREAM socket and connects to port 7
 * (echo server) using the loop back address. Before sending
 * data the program issues the SETSOCKOPT command to set the
 * sockets send buffer to 32000 bytes. Data is then sent to
 * and recevied. After the data is received the GETSOCKOPT
 *
 * GUIDELINE: It is generally recommended that a program loop around
 * the RECV command to ensure that all data is read off
 * the socket. This sample does not follow the guideline.
 *
 */
src = socket("INITIALIZE","MYSET01");
if perror(src,"INITIALIZE") \= 0 then signal ENDPROGRAM;
src = socket("SOCKET","AF_INET","STREAM");
if perror(src,"SOCKET") = 0 then do
 l_socketid = WORD(src,2);
 src = socket("GETSOCKOPT",l_socketid,"SOL_SOCKET",,
 "SO_SNDBUF");
 if perror(src,"GETSOCKOPT") = 0 then do
 Say "Current socket send buffer size is",
 word(src,2);
 if word(src,2) < 32000 then do
 Say "Increasing the socket send buffer size",
 "to 320000";
 src = socket("SETSOCKOPT",l_socketid,,
 "SOL_SOCKET","SO_SNDBUF",32000);
 /* **
 * Data can be sent even if command fails
 * so just post an message if an error occurs.
 * **/
 src = perror(src,"SETSOCKOPT");
 end;
 l_RMTname = "AF_INET 7 127.0.0.1";
 src = socket("CONNECT",l_socketid,l_RMTname);
 if perror(src,"CONNECT") = 0 then do
 src = socket("SEND",l_socketid,"*******");
 if perror(src,"RECV","SEND") = 0 then do
 src = socket("RECV",l_socketid);
 if perror(src,"RECV") = 0 then
 Say "Echoed data: " word(src,3);
 end;
 end;
 src = perror(socket("CLOSE",l_socketid),"CLOSE");
end;
end;
ENDPROGRAM:
src = perror(socket("TERMINATE","MYSET01"),"CLOSE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 158. GETSOCKOPT command example

GIVESOCKET
Use the GIVESOCKET command to transfer a socket descriptor to another application that is running on
the same host.

The other application can use the TAKESOCKET command to take the socket. If the socket is closed
before an application can take it, then the socket is reset. Any stream socket can be given.

Restriction: A socket given by the GIVESOCKET command can be taken only by a process that issues the
TAKESOCKET command with the same address family.

Chapter 14. REXX socket application programming interface 631

Guideline: The application that issues the GIVESOCKET command can use the SELECT command to test
for a socket exception condition. The exception condition indicates that the socket has been successfully
taken by another application. After the socket has been successfully taken, the application that issued the
GIVESOCKET command can safely close the socket. For example, when a server accepts a new
connection, the server issues the GIVESOCKET command and then monitors the socket for an exception
condition using the SELECT command. The server subtask issues the TAKESOCKET command. After the
subtask takes the socket, the server issues the CLOSE command and waits for a new connection request.

Format
SOCKET ("GIVESOCKET" , socketid , clientid)

Parameters
socketid

The socket descriptor.
clientid

The client ID of the application. The clientid parameter uses the following format:

"domain jobname subtaskid"

where:
domain

The address family of the socket. The following domains are supported:

• AF_INET or 2
• AF_INET6 or 19

jobname
This optional field specifies the name of the address space that will issue the TAKESOCKET
command. If this field is not specified, any address space can take the socket.

Guideline: To prevent possible security exposures, always specify the jobname field.

subtaskid
This optional field specifies the name of the active socket set. It can be specified only if the
jobname field is specified also. If the subtaskid field is specified but the value is not the name of
the active socket set, then the name of the active socket set is used. If the subtaskid field is not
specified, by default the name of the active socket set is used.

Consider the following situation: The GETCLIENTID command returns the following string:
AF_INET RUNC1 TTLSCXXX. If the application issues the GIVESOCKET command using the
clientid parameter value of "AF_INET RUNC1 BBBB", BBBB is replaced with TTLSCXXXX, because
TTLSCXXXX is the name of the active socket set .

Returned value
The command returns a string that contains the return code. The return code can be 0, a REXX socket API
error number, or the REXX TCP/IP error number that is set by the socket command. The return code 0
indicates that the requested socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error number can be returned:

• 9 EBADF

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL

632 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
int givesocket(int d, struct clientid *clientid);

Code example
See the EZARXS04 REXX sample in the SEZAINST file for an example of using the GIVESOCKET
command.

INET6ISSRCADDR
Use the INET6ISSRCADDR command to indicate whether an input IPV6 socket address matches an
address that is defined to the stack, which conforms to one or more input IPV6_ADDR_PREFERENCES
flags.

A client or server program can use the INET6ISSRCADDR command when it strictly requires the IP
addresses that it uses to have one or more specific attributes before allowing network activity. Such a
program can perform the following actions:

1. (Optional) Issue the SETSOCKOPT macro with option IPV6_ADDR_PREFERENCES to set source IP
address selection preferences for the socket.

2. Issue the BIND2ADDRSEL command to bind a socket to a local IP address. The BIND2ADDRSEL
command attempts to assign a local IP address that matches the IPv6_ADDR_PREFERENCES flags
that are specified with the SETSOCKOPT command, but does not guarantee that the local IP address
that it selects satisfies all preferences.

3. Issue the GETSOCKNAME command to obtain the local IP address that is bound to the socket.
4. Issue the INET6ISSRCADDR command to verify whether the local IP address has the correct

attributes.

The command returns a string that contains the return code and the result. The return code can be 0, a
REXX socket API error number, or the REXX TCP/IP error number that is set by the socket command. The
return code 0 indicates that the requested socket command was completed successfully and indicates
one of the following results:
TRUE

The IP address is an address that is known to the TCP/IP stack and satisfies the preference flags.
FALSE

The IP address is an address known to the TCP/IP stack but does not satisfy the preference flags.

You can specify more than one IPV6_ADDR_PREFERENCES flags on this command. All flags must be
satisfied for the result to be TRUE. Some IPV6_ADDR_PREFERENCES flags are contradictory. If you
specify contradictory flags on a single command invocation, the result is FALSE.

Format
SOCKET ("INET6ISSRCADDR" , name , flags)

Parameters
name

The socket address that is to be tested.

name = "domain portid flowinfo ipaddress scopeid"

Chapter 14. REXX socket application programming interface 633

where:

• The domain value must be the decimal number 19 or AF_INET6.
• The portid value is not used by the INET6ISSRCADDR command.

Requirement: You must specify a decimal numeral between 0 and 65535 for the portid value.
• The flowinfo value is not used by the INET6ISSRCADDR command.

Requirement: You must specify a decimal numeral between 0 and 2147483647 for the flowinfo
value.

• The ipaddress value is the IP address to be tested.

Rule: You can specify an IPv6 address or an IPv4-mapped IPv6 address.
• The scopeid value identifies the interfaces that are applicable for the scope of the address that is
specified in the ipaddress field. For a link-local IP address, the scopeid field can specify a link index,
which identifies a set of interfaces. For all other scopes, the scopeid field must be set to 0.

flags
A space-delimited string that contains one or more of the following values:
IPV6_PREFER_SRC_HOME

Tests whether the IP address is a home address. Any valid address that is known to the TCP/IP
stack satisfies this flag.

IPV6_PREFER_SRC_COA
Tests whether the IP address is a care-of address. This type of address is not supported and the
command always returns FALSE if this flag is specified.

IPV6_PREFER_SRC_PUBLIC
Tests whether the IP address is a public address.

IPV6_PREFER_SRC_TMP
Tests whether the IP address is a temporary address.

IPV6_PREFER_SRC_CGA
Tests whether the IP address is a cryptographically generated address. This type of address is not
supported and the command always returns FALSE if this flag is specified.

IPV6_PREFER_SRC_NONCGA
Tests whether the IP address is not cryptographically generated. Any valid address that is known
to the TCP/IP stack satisfies this flag.

Any flags specification that contains values other than 0 or the options listed above causes an
EINVALIDRXSOCKETCALL error to be returned.

Tip: Some of these flags are contradictory. For example:

• The flag IPV6_PREFER_SRC_HOME contradicts the flag IPV6_PREFER_SRC_COA.
• The flag IPV6_PREFER_SRC_CGA contradicts the flag IPV6_PREFER_SRC_NONCGA.
• The flag IPV6_PREFER_SRC_TMP contradicts the flags IPV6_PREFER_SRC_PUBLIC.

Result: If you specify contradictory flags on the macro, the result is FALSE.

Returned value
The command returns a string that contains the return code and the result. The return code can be 0, a
REXX socket API error number, or the REXX TCP/IP error number that is set by the socket command. The
return code 0 indicates that the requested socket command was completed successfully. The result is
TRUE if the IP address is an address that is known to the TCP/IP stack and satisfies the preference flags,
or FALSE if the IP address is an address that is known to the TCP/IP stack but does not satisfy the
preference flags.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

634 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The following REXX TCP/IP error numbers can be returned:

• 1 EPERM
• 22 EINVAL
• 47 EAFNOSUPPORT
• 49 EADDRNOTAVAIL

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 006 ESOCKETNOTALLOCATED

LE C/C++ equivalent
short inet6_is_srcaddr(struct sockaddr_in6 *srcaddr, uint32_t flags);

INITIALIZE
Use the INITIALIZE command to preallocate a socket set.

A socket set is a number of preallocated sockets available to a single REXX application. You can define
multiple socket sets for one session, but only one socket set can be active at a time. The INITIALIZE
command must be issued before any socket services are requested.

Guideline: When multiple socket sets are initialized, the last socket set that is initialized becomes the
active socket set. Before closing a socket belonging to a specific socket set, you must ensure that the
socket set that owns the socket is the active set. Otherwise, the CLOSE command fails.

Format

SOCKET ("INITIALIZE"

"INITIALISE"

, subtaskid

, 40

, maxdesc

, service

)

Parameters
subtaskid

The name of the socket set. This parameter can be 1-8 characters in length; it cannot contain blanks.
maxdesc

The number of sockets descriptors that can be opened in this socket set. By default, this parameter is
set to 40.

service
The name of the TCP/IP service. This is the job name of an active TCP/IP stack. The name of the
TCP/IP service must match the name of an active stack.

Result: If service is not specified on the INITIALIZE command, it defaults to the TCPIPJOBNAME that
is specified in the Resolver input used for this application. If TCPIPJOBNAME is not specified either, it
defaults to TCPIP.

Restrictions:

• In a CINET environment, if the service name does not match the name of an active TCP/IP stack, the
INITIALIZE command fails with the 1004 EIBMIUCVERR return code.

Chapter 14. REXX socket application programming interface 635

• In an INET environment, any service name is accepted. However, the service name is changed to
*INET if the service name does not match the name INET that is the TYPE operand specified on the
FILESYSTYPE statement, which is defined in the BPXPARMxx PARMLIB member. The *INET service
name indicates to the caller that a UNIX INET environment exists.

Returned value
The command returns a string that contains the return code, the name of the socket set, the number of
socket descriptors that can be opened, and the name of the TCP/IP services, for example, 0 MYTASK 40
TCPSVT. The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number
that is set by the socket command. The return code 0 indicates that the requested socket command was
completed successfully.

For information about the format of the NAME string, see “How structures are represented” on page 582.
See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 22 EINVAL
• 38 ENOTSOCK
• 45 EOPNOTSUPP
• 1004 EIBMIUCVERR

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2003 ESUBTASKINVALID
• 2004 ESUBTASKALREADYACTIVE2012 EINVALIDNAME

Tip: If the 2003 ESUBTASKINVALID error code is returned, issue the TERMINATE command and then
reissue the INITIALIZE command. If the command continues to fail, verify that the value of service
parameter is applicable for the system.

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Code example
The example code described in “GETADDRINFO” on page 599 can be used to experiment with the
INITIALIZE command in a CINET environment.

IOCTL
Use the IOCTL command to perform control functions on sockets.

Format
SOCKET ("IOCTL" , socketid , icmd

, ivalue

, idata

)

636 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameters
socketid

The socket descriptor.
icmd

The control function. The following commands are supported:
FIONBIO

Enables or disables blocking mode. When the ivalue parameter is set to ON, the socket is set to
nonblocking mode. When the ivalue parameter is set to OFF, the socket is in blocking mode. The
command returns a string that contains the return code.

FIONREAD
Requests the number of bytes on the receive queue that are ready for reading. The command
returns a string that contains the return code and the number of bytes that are ready for reading.

SIOCATMARK
Determines whether the current location in the input data points to out-of-band data. The
command returns a string that contains the return code and YES or NO. YES indicates that there is
out-of-band data.

SIOCGIFADDR
Obtains a network interface address. The ivalue parameter must specify the name of the network
interface, for example, LOGETH13. The network interface name can be 1-16 characters in length.
The command returns a string that contains the return code and the network interface address,
which has the following format: interface domain port ipaddress.

Restriction: This function is valid only for IPv4 interfaces.

SIOCGIFBRDADDR
Obtains the network broadcast address of an interface. The ivalue parameter must specify the
name of the network interface, for example, LOGETH13. The network interface name can be 1-16
characters in length. The command returns a string that contains the return code and the network
broadcast address, which has the following format: Hinterface domain port ipaddress.

Restriction: This function is valid only for IPv4 interfaces.

SIOCGIFCONF
Obtains the list of the interfaces that are defined to the system. The ivalue parameter must specify
the maximum number of interfaces to be returned. The command returns a string that contains
the return code and a list of interfaces, which has the following format: interface domain
port ipaddress

Restriction: Only IPv4 interface information is returned.

Tip: You can parse the information in the following way:

Drop st.
l_retcode = socket("IOCTL",l_sockid,"SIOCGIFCONF",10);
parse var l_retcode l_rc l_iflist
i=0;
do until l_iflist = ""
i=i+1;
parse var l_iflist st.i.interface st.i.domain st.i.port,
st.i.address l_iflist
st.i.name = st.i.domain st.i.port st.i.address;
end;
st.0 = i;

SIOCGIFDSTADDR
Obtains the network destination address of an interface. The ivalue parameter must specify the
name of the network interface, for example, LOGETH13. The network interface name can be 1-16
characters in length. The command returns a string that contains the return code and the network
destination address, which has the following format: interface domain port ipaddress

Restriction: This function is valid only for IPv4 interfaces.

Chapter 14. REXX socket application programming interface 637

SIOCGIFMTU
Obtains the network MTU (maximum transmission unit) of an interface. The ivalue parameter must
specify the name of the network interface, for example, LOGETH13. The network interface name
can be 1-16 characters in length. The command returns a string that contains the return code, the
interface name, and the numeric MTU value.

Restriction: This function is valid only for IPv4 interfaces.

SIOCGIFNAMEINDEX
Obtains a list of all interface names and device indexes that are defined to the system. This list
includes loopback addresses, but excludes VIPA addresses. The command returns a string that
contains the return code and a list of interfaces, which have the following format:
interface_index interface_name.

Tip: You can parse the information in the following way:

DROP st.
l_retcode = socket(“IOCTL”,1,”SIOCGIFNAMEINDEX”);
i = 0;
do until l_retcode = ‘'
 i=i+1;
 parse var l_retcode st.i.interfindex st.i.name l_retcode;
end;

SIOCGIFFLAGS
Obtains the network interface flags of an interface. The ivalue parameter must specify the link
name of the interface, for example, LOGETH13. The command returns a string that contains the
return code, the interface name, the flags in four hexadecimal digits, and the symbolic names of
the flags.

The following string is an example of what is returned by the SIOCGIFFLAGS function:
0 LOOPBACK 0049 IFF_UP IFF_LOOPBACK IFF_RUNNING

Restriction: This function is valid only for IPv4 interfaces.

SIOCGIFMETRIC
Obtains the network routing metric of an interface. The ivalue parameter must specify the link
name of the interface, for example, LOGETH13. The command returns a string that contains the
return code, interface name, and routing metric.

Restriction: This function is valid only for IPv4 interfaces.

SIOCGIFNETMASK
Obtains the network mask of an interface. The ivalue parameter must specify the interface
name, for example, LOGETH13. The command returns a string that contains the return code,
interface name, and a socket NAME with the network mask, for example, 0 LOFETH13 AF_INET
0 255.255.240.0.

For more information about the format of the NAME string, see “How structures are represented”
on page 582.

Restriction: This function is valid only for IPv4 interfaces.

SIOCGIPMSFILTER
Obtains a list of the IPv4 source addresses from the stack for a specified interface and multicast
group. The ivalue parameter must be a space-delimited string that contains an IPv4 multicast
address, an IPv4 interface address, and the number of addresses to be returned, for example,
"224.224.224.1 176.11.16.103 5". If the number of addresses to be returned is set to 0, all
source filters are returned. The command returns a string that contains the return code, filter
mode (either MCAST_INCLUDE or MCAST_EXCLUDE), number of IPV4 source addresses that are
returned, and the IPv4 source addresses. Depending on the filter mode, source addresses are
included or excluded.

The following string is an example of what is returned by the SIOCGIPMSFILTER function:
0 MCAST_INCLUDE 2 10.11.103.1 176.11.16.103

638 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SIOCGMSFILTER
Obtains a list of the IPv4 or IPv6 source addresses for the specified interface index and multicast
group. The ivalue parameter must be a space-delimited string that contains an interface index, a
socket name for the multicast address, and the number of addresses to be returned, for example,
"34 AF_INET 21 224.224.224.1 5". If the number of addresses to be returned is set to 0, all
source addresses are returned. The command returns a string that contains the return code, filter
mode (either MCAST_INCLUDE or MCAST_EXCLUDE), the number of source addresses that are
returned, and a list of the source-socket name groups.

The following string is an example of what is returned by the SIOCGMSFILTER function:
0 MCAST_INCLUDE 1 AF_INET 21 176.11.16.103

In the example, AF_INET 12 176.11.16.103 is the source-socket name.

For more information about the format of the NAME string, see “How structures are represented”
on page 582 or the BIND or CONNECT commands.

SIOCGPARTNERINFO
Provides an interface for an application to retrieve security information about its partner. The
ivalue parameter must be a space-delimited string that contains a request type and a timeout
value in the range 0 – 60.

The request type is one of the following values:

• PI_REQTYPE_CONNTYPE, CONNTYPE, C, or 0
• PI_REQTYPE_PARTNER_USERID, USERID, U, or 1

The command returns a string that contains the return code and the output data.

The return code is either 0 or -1, with 0 indicating successful completion and -1 indicating that an
error occurred.

The output data includes the following information:

• Status

The status indicates the type of information that is returned, which includes connection routing
information that can be followed by partner user ID information. If the partner user ID
information is not returned, or only the address-space user ID is returned, the appropriate user
ID fields are set to 0.

• Connection type (8 hexadecimal digits)
• Length of the returned address-space user ID
• Returned address space user ID
• Length of the returned task-level user ID
• Returned task-level user ID
• Additional error code and the text version of the error (if the return code is -1)

The following string is an example of the output data for a successful command:
0 3 0000000E 5 USER1 0 0

In this example, 0 is the return code, 3 is the PI_STATUS (indicating that the connection routing
information and the partner user ID are returned), 0000000E is the connection routing value
(indicating PI_CONNTYPE_SAME_CLUSTER, PI_CONNTYPE_SAME_IMAGE, and
PI_CONNTYPE_INTERNAL), 5 is the length of the returned address space user ID, USER1 is the
returned address space user ID, and 0 0 indicates that there is no task-level user ID.

If an error occurs, the output data is similar to the following example:
-1 1 0000000E 0 0 0 0 (73 ETIME Timer expired

In this example, -1 is the return code, 1 is the PI_STATUS (indicates that the connection routing
information is returned), 0000000E is the connection routing value (indicates
PI_CONNTYPE_SAME_CLUSTER, PI_CONNTYPE_SAME_IMAGE, and PI_CONNTYPE_INTERNAL),

Chapter 14. REXX socket application programming interface 639

0 0 0 0 indicates that no user ID information is returned, 73 is the error code, and ETIME
Timer expired is the error description.

For more information about using the SIOCGPARTNERINFO IOCTL, see z/OS Communications
Server: IP Programmer's Guide and Reference.

SIOCSAPPLDATA
Associates user-defined data with a socket descriptor. This data can be used to identify socket
endpoints for network-management applications or tools such as Netstat or SMF. The ivalue
parameter is a string that contains the user-defined data; it can be up to 40 bytes in length. The
command returns an error code.

Guideline: The content of this field is determined by the application that owns the connection.
See application-specific documentation for explanations of the layout, format, and meaning of this
field. Typically, the field contains printable EBCDIC characters, although some applications might
include binary data.

The application data is displayed by the following items only when the TCP connection has
application data associated with it:

• Netstat reports. The information is displayed on the ALL/-A report. If the APPLDATA modifier is
used, the information also is displayed on the ALLConn/-a and COnn/-c reports.

• The SMF 119 TCP connection termination record. For more information, see z/OS
Communications Server: IP Programmer's Guide and Reference.

• Network management applications. For more information, see z/OS Communications Server: IP
Programmer's Guide and Reference.

SIOCSIPMSFILTER
Sets the list of the IPv4 source addresses and the filter mode for an interface and multicast group.
The ivalue parameter must be a space-delimited string that contains an IPv4 multicast address,
an IPv4 interface address, filter mode, the number of IPv4 source addresses to be added, and the
list of IPv4 source addresses, for example:

224.224.224.1 176.11.16.103 MCAST_INCLUDE 2 48.11.16.103
 176.11.16.103

The filter mode is one of the following values:
Include

MCAST_INCLUDE, INCLUDE, I, or 0
Exclude

MCAST_EXCLUDE, EXCLUDE, E, or 1

The maximum number of source addresses is 64. If the interface address is 0.0.0.0, then the
stack selects the default IPv4-multicast interface address. The command returns a string that
contains the return code.

SIOCSMSFILTER
Sets a list of the IPv4 or IPv6 source addresses and the filter mode for an interface and multicast
group. The ivalue parameter must be a space-delimited string that contains an interface index, the
socket address name for the multicast address, the filter mode, the number of source address
names, and a list of the source address names, for example:

34 AF_INET6 56504 0 FF02::67:69 0 MCAST_INCLUDE 1 2001:10:11:103::1

The filter mode is one of the following values:
Include

MCAST_INCLUDE, INCLUDE, I, or 0
Exclude

MCAST_EXCLUDE, EXCLUDE, E, or 1

640 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The maximum number of source addresses is 64. If the interface index is 0, then the stack selects
an interface. The command returns a string that contains the return code.

For more information about the format of the NAME string, see “How structures are represented”
on page 582.

SIOCSPARTNERINFO
The SIOCSPARTNERINFO IOCTL sets an indicator to retrieve the partner security credentials
during connection setup and saves the information. In this way, an application can issue a
SIOCGPARTNERINFO IOCTL without suspending the application or at least minimizing the time to
retrieve the information. The ivalue parameter must be set to PI_REQTYPE_SET_PARTNERDATA,
PARTNERDATA, P, or 1. The command returns a string that contains the return code.

For more information about using the SIOCSPARTNERINFO IOCTL, see z/OS Communications
Server: IP Programmer's Guide and Reference.

SIOCTTLSCTL
Queries or controls Application Transparent Transport Layer Security (AT-TLS) for a TCP stream
socket connection. If the socket is in blocking mode, this function blocks during the initial
handshake. If the socket is in nonblocking mode, it returns the 36 EWOULDBLOCK error. See the
Application Transparent TLS information in z/OS Communications Server: IP Programmer's Guide
and Reference for more information.

Unless the ivalue parameter is set to QUERYONLY, the application must be mapped to an AT-TLS
policy and the parameter ApplicationControlled must be set to ON. The ivalue parameter can have
the following values:
QUERYONLY

Requests security information about the current socket. This request can be issued by any
application, regardless of the value of the ApplicationControlled parameter. If the socket is not
mapped to an AT-TLS policy and the socket is in a writable state, issuing this command causes
AT-TLS to try to locate and assign a policy. The command returns a string that contains status
information about the security level of the connection.

QUERYHOST
Queries the partner certificate to validate that the certificate matches the host name. The
idata parameter must specify the host name. This request returns one of the following values:
0

Host name validation succeeded. The host name in the partner certificate matches the
value of the idata parameter.

1
Validation status unknown. This value is returned if no partner certificate is present. This
can occur for servers if client authentication is not enabled in the policy.

2
Host name validation failed. The host name in the partner certificate did not match the
value of the idata parameter.

3
Host name validation failed with an unexpected gsk_validate_hostname value.

4
Host name validation failed with an unexpected gsk_decode_certificate value.

QUERYRULENAME
Queries the TTLSRule name that is mapped to the connection. This request returns the
TTLSRule name or *N/A*, if no mapping exists.

QUERYGROUPACTIONNAME
Queries the TTLSGroupAction name that is mapped to the connection. This request returns
the TTLSGroupAction name or *N/A*, if no mapping exists.

Chapter 14. REXX socket application programming interface 641

QUERYENVIRONMENTACTIONNAME
Queries the TTLSEnvironmentAction name that is mapped to the connection. This request
returns the TTLSEnvironmentAction name or *N/A*, if no mapping exists.

QUERYCONNECTIONACTIONNAME
Queries the TTLSConnectionAction name that is mapped to the connection. This request
returns the TTLSConnectionAction name or *N/A*, if no mapping exists.

QUERYSESSIONID
Obtains the session identifier for the SSL session.

QUERYSESSIONTOKEN
Obtains a token for the SSL session. The token represents the AT-TLS environment and session
identifier for the secure connection.

INITCONNECTION
Initializes a secure SSL connection using the role that is defined by the Handshake parameter
in the mapped policy. When this command is successful, it returns a string that contains status
information about the security level of the connection.

INITCONNHSTIMEOUT
Initializes a secure SSL connection using the role that is defined by the Handshake parameter
in the mapped policy. The Handshake parameter must be set to Server or
ServerWithClientAuth. If the SSL handshake times out before receiving data from the client,
SSL is stopped on the connection and the TCP connection remains established. Using this
command is equivalent to requesting TTLS_INIT_CONNECTION and
TTLS_ALLOW_HSTIMEOUT.

INITCONNECTIONWITHTOKEN
Initializes a secure SSL connection by using the role that is defined by the Handshake
parameter in the mapped policy, and sets a token for the SSL session. When this command is
issued successfully, it returns a string that contains status information about the security level
of the connection.

The idata parameter must contain 3 input values delimited by a single space, for example, "0 1
tokenstring".

• The first input value determines whether the TCP connection stays alive if the SSL
handshake times out. A value of 0 or OFF indicates that the TCP connection does not stay
alive. A value of 1 or ON indicates that the TCP connection stays alive.

• The second input value determines whether the application requires that the SSL session ID
should be reused. A value of 0 or OFF indicates the session ID is not reused. A value or 1 or
ON indicates that the session ID is reused.

• The third input value is the token for the SSL session. It represents the AT-TLS environment
and session identifier for the secure connection. The token must be obtained previously by a
QUERYSESSIONTOKEN call.

RESETSESSION
For a connection secured with TLSv1.2 or earlier TLS/SSL versions, resets the session ID so
that it is not reused by another connection. For a connection secured with TLSv1.3, deletes all
session tickets for the session so that they are not reused by another connection. When this
command is successful, it returns a string that contains status information about the security
level of the connection.

RESETCIPHER
Resets the cipher that is used for the secure session, updating the encryption key. For TLSv1.2
and earlier TLS/SSL versions, a renegotiation is done. If the session ID times out or has been
reset, a full handshake is performed. Otherwise, a short handshake is performed.

For TLSv1.3, the encryption key is updated and a Key Update message is sent to the session
partner. The message requests that the session partner also update its encryption key.

When this command is successful, it returns a string that contains status information about
the security level of the connection.

642 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RESETWRITECIPHER
For a connection secured with TLSv1.3, resets the write cipher used for the secure session,
updating the encryption key. The encryption key is updated and a Key Update message is sent
to the session partner. The message does not request that the session partner update its
encryption key. When this command is successful, it returns a string that contains status
information about the security level of the connection.

SENDSESSIONTICKET
For a connection secured with TLSv1.3, requests that the server generate and send a session
ticket to the client for use resuming the session later. When this command is successful, it
returns a string that contains status information about the security level of the connection.

STOPCONNECTION
Stops SSL security on the connection. The TCP connection remains established. Future sends
and receives are not encrypted.

If an error occurs, the SIOCTTLSCTL function returns an error code. Unless otherwise specified in
the ivalue parameter, if the command is completed, the SIOCTTLSCTL function returns a string
that contains the following information:

• Return code
• Policy status
• Connection status
• Security type
• SSL protocol
• Negotiated cipher that can be presented in 2 bytes
• Client user ID if available
• FIPS status
• Four-byte negotiated cipher
• Four-byte negotiated TLSv1.3 key share

For example, the following string is an example of what is returned by the SIOCTTLSCTL function:
0 5 2 2 0300 05 userid 01 0005 *NA*

In the example, 0 is the return code, 5 is the policy status, 2 is the connection status, the second 2
is the security type, 0300 is the SSL protocol, the second 05 is the negotiated cipher, userid is the
user ID that is associated with the client's certificate in the SAF database, 01 is the FIPS 140
status, and 0005 is the four-byte negotiated cipher, and *NA* indicates that the key share is not
applicable.

The policy status is one of the following values:
1

AT-TLS function is off. The TCP/IP address space is not enabled to support AT-TLS.
2

No AT-TLS policy is defined for the connection.
3

A policy is defined for the connection, but AT-TLS is not enabled for the connection.
4

A policy is defined for the connection, and AT-TLS is enabled for the connection.
5

A policy is defined for the connection, and both AT-TLS and the ApplicationControlled
parameter are enabled for this connection.

The connection status is one of the following values:
1

The connection is not secure.

Chapter 14. REXX socket application programming interface 643

2
The connection handshake is in progress.

3
The connection is secure.

The security type is one of the following values:
0

Unknown. The connection is not secure.
1

Client.
2

Server.
3

Server with client authentication and authentication type set to PASSTHRU.
4

Server with client authentication and authentication type set to FULL.
5

Server with client authentication and authentication type set to REQUIRED.
6

Server with client authentication and authentication type set to SAFCheck.

The SSL protocol is one of the following values:
0000

Unknown. The connection is not secure.
0200

SSL Version 2.
0300

SSL Version 3.
0301

TLS Version 1.0
0302

TLS Version 1.1
0303

TLS Version 1.2
0304

TLS Version 1.3

The value FF indicates that the cipher has not been negotiated. SSL Version 2 cipher suites are 1
character. SSL Version 3 and TLS ciphers are 2 or 4 characters. The value 4X indicates that the
cipher cannot be represented in 2 bytes. The 2-byte cipher must be obtained from the 4-byte
cipher field. See the TTLSCipherParms statement description in z/OS Communications Server: IP
Configuration Reference for additional cipher values.

The client user ID value is either the user ID that is associated with the client's certificate in the
SAF database, or the character string **NONE** that indicates that the client ID is unknown.

The FIPS 140 status is one of the following values:
00

No FIPS 140 support
01

FIPS 140 On support
02

FIPS 140 Level1 support

644 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

03
FIPS 140 Level2 support

04
FIPS 140 Level3 support

If the cipher is not negotiated, the 4-byte cipher value is *NA*; otherwise, the 4-byte value of the
negotiated cipher is returned. See the TTLSCipherParms statement description in z/OS
Communications Server: IP Configuration Reference for additional cipher values.

When the negotiated protocol is TLSv1.3 (0304), the 4-byte value is the negotiated key share. See
the ClientKeyShareGroups parameter in the TTLSSignatureParms statement in z/OS
Communications Server: IP Configuration Reference for key share values. Otherwise, the field is
NA.

Rule: When using AT-TLS application control, you must ensure that no outstanding data resides in
the socket receive buffers for the application. If data exists when AT-TLS is enabled, the
negotiation will fail. To flush the receive buffers, you can issue a nonblocking RECV command on
the socket before you issue the IOCTL command.

Tips:

• For TCP/IP socket error information concerning this command, see the Application Transparent
TLS information in z/OS Communications Server: IP Programmer's Guide and Reference.

• For information about SSL error numbers, see z/OS Cryptographic Services System SSL
Programming.

ivalue
Additional information that is needed to run the requested command. The value of the ivalue
parameter can be either input or output; it is independent of the icmd parameter.

idata
Additional information that is needed to run the requested command. The value of the idata
parameter can be either input or output; it is independent of the icmd and ivalue parameter.

Returned value
The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by
the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 6 ENXIO
• 22 EINVAL
• 41 EPROTOTYPE
• 45 EOPNOTSUPP
• 54 ECONNRESET

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED
• 2023 EICWTNOINPUTDATA
• 2024 EICWTINVALIDTIMEOUT
• 2025 EICWTINVALIDREUSE

Chapter 14. REXX socket application programming interface 645

• 2026 EICWTINVALIDTOKEN

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Code example
See the EZARXS05 REXX sample in the SBLSCLI0 file for an example of using the IOCTL command.

LISTEN
Use the LISTEN command to determine whether a socket is ready to accept client connection requests.

The LISTEN command applies only to stream sockets. The LISTEN command performs two actions:

1. The command completes the bind process, if it has not already been done explicitly.
2. Creates a connection request queue (the backlog queue). New connections received by the stack for

this socket are placed on the backlog queue. The application then can issue the ACCEPT command to
process these pending connections. If the backlog queue is full, the stack rejects new connection
requests.

Guideline: Applications that issue the LISTEN command should bind to a well-known port using
INADDR_ANY or IN6ADDR_ANY. If the LISTEN command completes the bind for IPv4, the socket is
bound to AF_INET 0 INADDR_ANY. If the LISTEN command completes the bind for IPv6, the socket is
bound to AF_INET 0 0 IN6ADDR_ANY 0.

Format

SOCKET ("LISTEN" , socketid

, 10

, backlog

)

Parameters
socketid

The socket descriptor
backlog

The number of pending connection requests. This parameter can have a value in the range 0 to the
maximum number that is specified by the SOMAXCONN parameter in the TCPIP profile. If the backlog
parameter is set to 0, 1, or 2, then the backlog queue uses the default value of 2. If the backlog
parameter is not specified, by default it is set to 10.

Returned value
The command returns a string that contains the return code. The return code can be 0, a REXX socket API
error number, or the REXX TCP/IP error number that is set by the socket command. The return code 0
indicates that the requested socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 22 EINVAL,
• 38 ENOTSOCK,
• 45 EOPNOTSUPP,

646 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2006 ESOCKETNOTALLOCATED
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Code example
See “ACCEPT” on page 588 for an example of how to use the LISTEN command.

READ
Use the READ command to read data on the specified socket. The maximum amount of data to be read is
specified by the maxlength parameter. If the socket is in blocking mode and data is not available on the
socket, the command blocks until data arrives.

Consider the following additional information:

• If the socket is a stream socket and the length of the data returned is 0, the remote peer has closed its
side of the connection.

• If the socket is a connected datagram socket, the command returns data up to the length specified by
the maxlength parameter. The remainder of the datagram is discarded. To ensure that the entire
datagram is received, set the maxlength parameter to 65535 or greater.

Guidelines:

• For stream sockets, data is processed as streams of information with no boundaries separating the
data. The application provides record management. Applications should place the command in a loop
until all the data has been received.

• For nonblocking sockets, use the SELECT command to determine whether there is data to be read on
the socket.

Tip: If the SO_ASCII socket option is enabled, then the data received is translated from EBCDIC to ASCII.

Format

SOCKET ("READ" , socketid

, 10 000

, maxlength

)

Parameters
socketid

The socket descriptor.
maxlength

The maximum amount of data (in bytes) to be returned. The maxlength parameter can be a number in
the range 0-100 000. By default, this parameter is set to 10 000.

Returned value
The command returns a string that contains the return code, the maximum length of the data returned,
and the data, for example, 0 19 This is sample data. The return code can be 0, a REXX socket API

Chapter 14. REXX socket application programming interface 647

error number, or the REXX TCP/IP error number that is set by the socket command. The return code 0
indicates that the requested socket command was completed successfully. The data length 0 indicates
that the connection was closed by the remote peer.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 4 EITNR
• 5 EIO
• 9 EBADF
• 22 EINVAL
• 35 EWOULDBLOCK
• 38 ENOTSOCK
• 45 EOPNOTSUPP
• 54 ECONNRESET
• 57 ENOTCONN
• 60 ETIMEDOUT

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
ssize_t read(int fs, void *buf, size_t N);

Code example

/* REXX EZARXR21 */
/*
 * This sample demonstrates the use of the READ and RECV
 * socket commands.
 *
 * To use the READ command, set the variable g_RECVCMD equal to "READ"
 * to use the RECV command, set the variable g_RECVCMD equal to "RECV"
 *
 * The program creates a listening socket and then goes into a
 * loop and blocks on the accept command. When a new connection is
 * ACCEPTED the program will issue the READ or RECV command until
 * the connection is terminated.
 *
 * If the data received is the string "DONE", then the
 * program will close the accepted socket and wait for a new
 * connection request.
 */
g_RECVCMD = "READ"
src = socket("INITIALIZE","MYSET01",10);
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET6","STREAM");
 if perror(src,"SOCKET") = 0 then do
 parse var src . l_sockid
 l_name6 = "AF_INET6 54004 0 ::0 0";
 src = socket("BIND", l_sockid, l_name6);
 if perror(src,"BIND") = 0 then do
 src = socket("LISTEN", l_sockid);
 if perror(src,"LISTEN") = 0 then do
 say "Listening on socket "l_sockid;
 do forever
 src = socket("ACCEPT", l_sockid);
 if perror(src,"ACCEPT") = 0 then do

648 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 parse var src . l_newsockid . ;
 l_datalen = -1;
 l_Done = "FALSE";
 l_totallen = 0;
 l_packet = "";
 /* **
 * Loop around RECV|READ command until all data has
 * has been received and the client closes the
 * connection.
 * **/
 do until l_datalen = 0 | l_done = "TRUE"
 src = socket(g_RECVCMD,l_newsockid,512);
 if perror(src,g_RECVCMD) = 0 then do
 parse var src l_retcode l_datalen l_data
 if l_datalen > 0 then do
 l_totallen = l_totallen + l_datalen;
 if l_packet = "" then do
 l_packet = l_data;
 if l_packet = "DONE" then
 l_done = "TRUE";
 end;
 else l_packet = l_packet||l_data;
 end;

 else do
 /* ***************************************
 * A data length of zero indicates the
 * connection has been closed by the
 * remote side
 * ***************************************/
 Say "Connection has been closed",
 "received "l_totallen" bytes";
 l_done = "TRUE";
 end;
 end;
 else do
 l_done = "TRUE";
 end;
 end; /* DO READ */
 src = socket("CLOSE",l_newsockid);
 src = perror(src,"CLOSE");
 end; /* ACCEPT */
 end; /* DO FOREVER */
 end;
 end;
 end;
end; /* INITIALIZE */
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 159. READ command example

RECV
Use the RECV command to receive data on a specified socket. The RECV command can be issued only
against connected sockets.

Consider the following additional information:

• If the socket is in blocking mode and data is not available, the command blocks until data arrives. If the
socket is in nonblocking mode and data is not available, the command returns the 35 EWOULDBLOCK
error code.

• If the socket is a stream socket and the length of the data returned is 0, the remote peer has closed its
side of the connection.

• If the socket is a connected datagram socket, the command returns data up to the length specified by
the maxlength parameter. The remainder of the datagram is discarded. To ensure that the entire
datagram is received, set the maxlength parameter to 65535 or greater.

Guidelines:

Chapter 14. REXX socket application programming interface 649

• For stream sockets, data is processed as streams of information with no boundaries separating the
data. The application provides record management. Applications should place the command in a loop
until all the data has been received.

• For nonblocking sockets, use the SELECT command to determine whether there is data to be read on
the socket.

Tip: If the SO_ASCII socket option is enabled, then the data received is translated from EBCDIC to ASCII.

Format

SOCKET ("RECV" , socketid

, 10 000

, maxlength , recvflags

)

Parameters
socketid

The socket descriptor.
maxlength

The maximum amount of data (in bytes) to be returned. The maxlength parameter can be a number in
the range 0-100 000. By default, this parameter is set to 10 000.

recvflags
An optional parameter. Specifies the following receive flags:
MSG_OOB, OOB

Receive out-of-band data (stream sockets only). Even if the OOB flag is not set, out-of-band data
can be read if the SO_OOBINLINE option is set for the socket.

MSG_PEEK, PEEK
Peek at the data, but do not destroy data. If the peek flag is set, the next receive operation will
read the same data.

MSG_WAITALL, WAITALL
Requests that the function block until the full amount of data requested can be returned (stream
sockets only). The function may return a smaller amount of data if the connection is terminated,
an error is pending, or SO_RCVTIMEO is set and the timer expired for the socket.

Returned value
The command returns a string that contains the return code, the maximum length of the data returned,
and the data, for example, 0 19 This is sample data. The return code can be 0, a REXX socket API
error number, or the REXX TCP/IP error number that is set by the socket command. The return code 0
indicates that the requested socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 4 EITNR
• 5 EIO
• 9 EBADF
• 22 EINVAL
• 35 EWOULDBLOCK
• 38 ENOTSOCK
• 45 EOPNOTSUPP

650 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• 54 ECONNRESET
• 57 ENOTCONN
• 60 ETIMEDOUT

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
int recv(int socket, char *buffer, int length, int flags);

Code example
See “ACCEPT” on page 588 or “READ” on page 647. To use the RECV command, substitute the command
RECV for the command READ.

RECVFROM
Use the RECVFROM command to receive data on the specified socket.

If the number of bytes is less than the number of bytes requested, the command returns the number of
bytes that are available. If the socket is in blocking mode and data is not available on the socket, the
command blocks until data arrives. When the socket is in nonblocking mode and data is not available, the
command returns the 35 EWOULDBLOCK return code .

Consider the following additional information:

• If the socket is a stream socket and the length of the data returned is 0, the remote peer has closed its
side of the connection.

• If the socket is a datagram socket, the command returns data up to the length specified by the
maxlength parameter. The remainder of the datagram is discarded. If the socket is a datagram socket
and the amount of data returned is 0, a datagram packet was received with no data.

Guidelines:

• Use the RECV command for stream and connected UDP sockets. For stream sockets, data is processed
as streams of information with no boundaries separating the data. Applications should place the
RECVFROM command in a loop until all the data has been received.

• If the socket is a datagram socket, the RECVFROM command returns the name of the remote partner. If
the socket is a stream socket, use the command GETPEERNAME to determine the name of the remote
partner.

• Use the SELECT command to determine whether there is data to be read on the socket.

Tip: If the SO_ASCII socket option is enabled, then the data received is translated from EBCDIC to ASCII.

Format

SOCKET ("RECVFROM" , socketid

, 10 000

, maxlength

, recvflags

)

Chapter 14. REXX socket application programming interface 651

Parameters
socketid

The socket descriptor.
maxlength

The maximum amount of data (in bytes) to be returned. The maxlength parameter can be a number in
the range 0-100 000. By default, this parameter is set to 10 000.

recvflags
An optional parameter. Specifies the following receive flags:
MSG_OOB, OOB

Receive out-of-band data (stream sockets only). Even if the OOB flag is not set, out-of-band data
can be read if the SO_OOBINLINE option is set for the socket.

MSG_PEEK, PEEK
Peek at the data, but do not destroy data. If the peek flag is set, the next receive operation will
read the same data.

MSG_WAITALL, WAITALL
Requests that the function block until the full amount of data requested can be returned (stream
sockets only). The function may return a smaller amount of data if the connection is terminated,
an error is pending, or SO_RCVTIMEO is set and the timer expired for the socket.

Returned value
The command returns a string that contains the return code, a NAME string, the maximum length of the
data returned, and the data. The return code can be 0, a REXX socket API error number, or the REXX
TCP/IP error number that is set by the socket command. The return code 0 indicates that the requested
socket command was completed successfully.

The following list are examples of what is returned by the RECVFROM command.
IPv4 socket

0 AF_INET 54004 10.1.2.3 19 This is sample data
IPv6 socket

0 AF_INET6 54004 0 2001:10:1:2::3 0 19 This is sample data
In the examples, 0 is the return code, AF_INET 54004 10.11.103.1 or AF_INET6 54004 0
2001:10:1:2::3 0 is the socket name of the remote partner, 19 is the length of the data received, and
This is sample data is the data that was received on the socket.

For information about the format of the NAME string, see “How structures are represented” on page 582.
See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 4 EITNR
• 5 EIO
• 9 EBADF
• 22 EINVAL
• 35 EWOULDBLOCK
• 38 ENOTSOCK
• 45 EOPNOTSUPP
• 54 ECONNRESET
• 57 ENOTCONN
• 60 ETIMEDOUT

The following REXX socket API error numbers can be returned:

652 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
int recvfrom(int socket, char *buffer, int length, int flags,
struct sockaddr *address, int *address_length);

Code example

/* REXX EZARXR21 */
/*
 * This sample demonstrates the use of the READ and RECV
 * socket commands.
 *
 * To use the READ command, set the variable g_RECVCMD equal to "READ"
 * to use the RECV command, set the variable g_RECVCMD equal to "RECV"
 *
 * The program creates a listening socket and then goes into a
 * loop and blocks on the accept command. When a new connection is
 * ACCEPTED the program will issue the READ or RECV command until
 * the connection is terminated.
 *
 * If the data received is the string "DONE", then the
 * program will close the accepted socket and wait for a new
 * connection request.
 */
g_RECVCMD = "READ"
src = socket("INITIALIZE","MYSET01",10);
if perror(src,"INITIALIZE") = 0 then do
 src = socket("SOCKET","AF_INET6","STREAM");
 if perror(src,"SOCKET") = 0 then do
 parse var src . l_sockid
 l_name6 = "AF_INET6 54004 0 ::0 0";
 src = socket("BIND", l_sockid, l_name6);
 if perror(src,"BIND") = 0 then do
 src = socket("LISTEN", l_sockid);
 if perror(src,"LISTEN") = 0 then do
 say "Listening on socket "l_sockid;
 do forever
 src = socket("ACCEPT", l_sockid);
 if perror(src,"ACCEPT") = 0 then do
 parse var src . l_newsockid . ;
 l_datalen = -1;
 l_Done = "FALSE";
 l_totallen = 0;
 l_packet = "";
 /* **
 * Loop around RECV|READ command until all data has
 * has been received and the client closes the
 * connection.
 * **/
 do until l_datalen = 0 | l_done = "TRUE"
 src = socket(g_RECVCMD,l_newsockid,512);
 if perror(src,g_RECVCMD) = 0 then do
 parse var src l_retcode l_datalen l_data
 if l_datalen > 0 then do
 l_totallen = l_totallen + l_datalen;
 if l_packet = "" then do
 l_packet = l_data;
 if l_packet = "DONE" then
 l_done = "TRUE";
 end;
 else l_packet = l_packet||l_data;
 end;
 else do

 /* ***************************************
 * A data length of zero indicates the
 * connection has been closed by the
 * remote side
 * ***************************************/
 Say "Connection has been closed",

Chapter 14. REXX socket application programming interface 653

 "received "l_totallen" bytes";
 l_done = "TRUE";
 end;
 end;
 else do
 l_done = "TRUE";
 end;
 end; /* DO READ */
 src = socket("CLOSE",l_newsockid);
 src = perror(src,"CLOSE");
 end; /* ACCEPT */
 end; /* DO FOREVER */
 end;
 end;
 end;
end; /* INITIALIZE */
src = perror(socket("TERMINATE","MYSET01"),"TERMINATE");
exit 0;

/* This routine returns -1 if the first word if arg 1 is not zero */
perror: if word(arg(1),1) = 0 then return 0; else
 Say arg(2) "Error : "arg(1);
 return -1;

Figure 160. READ command example

RESOLVE
Use the RESOLVE command to resolve a host name or an IP address.

Format

SOCKET ("RESOLVE" , ipaddress

hostname

fullhostname

, 30

, timeout

)

Parameters
ipaddress

The IPv4 address of the system in dotted decimal format.
hostname

The host name, for example, BOB01. The maximum length is 255 characters.
Fullhostname

The fully qualified host name, for example, BOB01.THEWORLD.COM. The maximum length is 255
characters.

timeout
The resolver timeout value. By default, this is set to 30 seconds.

Returned value
The command returns a string that contains the return code, the IP address, and the host name. The
return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by the
socket command. The return code 0 indicates that the requested socket command was completed
successfully.

The following string is an example of what is returned by the RESOLVE command:
0 10.201.202.1 BOB01.THEWORLD.COM

In the example, 0 is the return code, 10.201.202.1 is the host IP address, and BOB01.THEWORLD.COM is
the host name.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

654 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

The following REXX TCP/IP error number can be returned:

• 22 EINVAL

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2012 EINVALIDNAME
• 2016 EHOSTNOTFOUND

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Code example

/* REXX EZARXR23 */
/*
 * This sample demonstrates the use of the RESOLVE
 * socket command.
 */
src = socket("INITIALIZE","MYSET01");
src = socket("RESOLVE","your.hostname.here");
if word(src,1) = 0 then do
 Say "The host name is "WORD(src,3)
 Say "The IP Address is "WORD(src,2);
end;
src = socket("TERMINATE","MYSET01");
exit 0;

Figure 161. RESOLVE command example

SELECT
Use the SELECT command to monitor groups of sockets to determine when one or more of the sockets is
ready for a read operation, is ready for a write operation, or has an exception pending.

Guidelines:

• A close on the other side of a socket connection is reported not as an exception but as a read event,
which returns 0 bytes of data.

• When the CONNECT command is called with a socket descriptor in nonblocking mode, set up
completion is reported as a write event on the socket.

• The SELECT command returns an exception pending when either a connection is reset or when a
TAKESOCKET command is completed for a socket that was previously given using the GIVESOCKET
command.

Format
SOCKET ("SELECT" , fdset

, timeout

)

Parameters
fdset

Specifies the set of socket descriptors to be monitored for activity. The fdset parameter is a string in
the following format:

"READ" rdlist "WRITE" wrlist "EXCEPTION" exlist

Chapter 14. REXX socket application programming interface 655

where:

• The rdlist value is a space-delimited list of sockets to be monitored for reading.
• The wrlist value is a space-delimited list of sockets to be monitored for writing.
• The exlist value is a space-delimited list of sockets to be monitored for exceptions.

To specify that all sockets are monitored, set the value of the rdlist, wrlist, or exlist string to an asterisk
(*).

For example, if you want to monitor the sockets with files descriptors 1, 2, and 3 to determine when
the socket has data to be read, issue the following command:

SOCKET("SELECT","READ 1 2 3 WRITE EXCEPTION",120);

This code example also sets a timeout parameter of 120 seconds.

To specify that no sockets are monitored, issue the following command:

SOCKET("SELECT","READ WRITE EXCEPTION",);

timeout
A positive integer that indicates the maximum length of time (in seconds) that the SELECT command
will monitor the sockets. If no timeout parameter is specified, the sockets are monitored indefinitely.

Returned value
The command returns a string that contains the return code, the number of ready sockets, and
information about the ready sockets. The return code can be 0, a REXX socket API error number, or the
REXX TCP/IP error number that is set by the socket command. The return code 0 indicates that the
requested socket command was completed successfully.

The following string is an example of what is returned by the SELECT command:
0 2 READ 1 3 WRITE EXCEPTION

In this example, 0 is the return code, 2 is the number of ready sockets, and 1 and 3 are the sockets that
ready for READ operations. There are no sockets ready for WRITE operations or sockets with pending
exceptions.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 22 EINVAL
• 38 ENOTSOCK
• 45 EOPNOTSUPP

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

656 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Code example

/* REXX EZARXR24 */
/*
 * This is an example of a function command that can be used to
 * to determine if a connection is available. This procedure
 * would be called before calling the ACCEPT command.
 *
 * Two arguments are passed. The p_listensocketlist is a
 * list of 1 or more space-delimited socket descriptors to be
 * monitored. The p_timeout value is how long the SELECT
 * command should wait before returning.
 *
 * The monitored sockets can be BLOCKING or NON-BLOCKING
 * sockets.
 *
 * Example usage:
 *
 * INITIALIZE a socket set.
 * open a SOCKET descriptor.
 * BIND the socket to a well known port.
 * set the socket to passive mode using the LISTEN command.
 * LOOP:
 * Call the IsConnectionAvailable function
 * If a connection is available, ACCEPT the connection
 * and continue processing. Otherwise, do some other work,
 * and loop.
 *
 * Function Usage:
 * l_retcode = IsConnectionAvailable(l_sockid,60);
 *
 * The function will return one of the following:
 * - The list of socket descriptors that have
 * connections pending.
 *
 * - The string "TIMEOUT". This indicates the select command
 * timed out before any connections arrived.
 *
 * - the string "ERROR". This indicates an ERROR occurred
 * when the SELECT command was issued.
 */
IsConnectionAvailable: PROCEDURE
Parse arg p_listensocketlist, p_timeout
l_fdset = "READ "p_listensocketlist" WRITE EXCEPTION";
l_retvalue = SOCKET("SELECT",l_fdset,p_timeout);
parse var l_retvalue l_retcode l_numSockets;
if l_retcode = 0 then do
 if l_numsocket > 0 then do
 parse value l_retvalue with 'READ' l_sockidrdlist 'WRITE' .;
 parse value l_retvalue with 'WRITE' l_sockidwrlist 'EXCEPTION' .
 parse value l_retvalue with 'EXCEPTION' l_sockidexlist;
 l_retcode = l_sockidrdlist;
 end
 else do
 Say "Select command timed out";
 l_retcode = "TIMEOUT"
 end;
end;
else do
 l_retcode = "ERROR";
end;
return l_retcode;

Figure 162. SELECT command example

Tip: See the IOCTL command for another example on how to use SELECT command.

SEND
Use the SEND command to send an outgoing message on the connected socket.

When the socket is a TCP socket, the following conditions apply:

• If the socket is in blocking mode and if the total amount of data to be sent cannot be processed by the
stack when the command is issued, the command blocks until the data can be sent.

Chapter 14. REXX socket application programming interface 657

• If the socket is in nonblocking mode and if the total amount of data to be written cannot be processed
by the stack when the command is issued, the command returns the number of bytes that were
successfully written. If none of the data can be written, the command returns the value -1 and the 35
EWOULDBLOCK error message .

When the socket is a connected UDP socket, the SEND command either is completed or failed. A
connected UDP socket does not return the 35 EWOULDBLOCK error message .

Guideline: Place the SEND command in a loop to ensure that all the data is written. For a TCP socket, a
partial write operation might occur regardless of whether the socket is in blocking or nonblocking mode. A
partial write operation occurs when the stack copies some but not all of the application data:

• If a partial write operation occurs on a socket in blocking mode, the blocking socket is interrupted. The
return value contains the number of bytes written, and the return code contains the reason for the
interruption. In such cases, consider ending the connection.

• If a partial write operation occurs on a socket in nonblocking mode, the return value indicates the
number of bytes that were successfully sent. If this number is less than the number of bytes specified
on the SEND command, repeat the SEND command until all data is written. The blocking condition can
last for a long time, so use other strategies to ensure that the application does not remain in a busy loop
sending data.

Tips:

• Use the SELECT command to determine whether a socket is ready to send additional data. To do so, test
the socket for a WRITE event.

• If the SO_ASCII socket option is enabled, then the data received is translated from EBCDIC to ASCII.

Format
SOCKET ("SEND" , socketid , data

, sendflags

)

Parameters
socketid

The socket descriptor.
data

The data to be sent.
sendflags

Optional flags that specify how the data is sent. The following flags are supported:
MSG_OOB

Sends the data out-of-band. Out-of-band data is supported only for stream sockets created in the
AF_INET domain. The values OOB or OUT_OF_BAND are supported also.

MSG_DONTROUTE
Specifies that the data is routed by the calling program. The value DONTROUTE is supported also.

Returned value
The command returns a string that contains the return code and the amount of data sent, for example, 0
19. The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is
set by the socket command. The return code 0 indicates that the requested socket command was
completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 4 EINTR

658 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• 9 EBADF
• 5 EIO
• 22 EINVAL
• 32 EPIPE
• 35 EWOULDBLOCK
• 38 ENOTSOCK
• 40 EMSGSIZE
• 45 EOPNOTSUPP
• 54 ECONNRESET
• 57 ENOTCONN

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
int send(int socket, char *buffer, int length, int flags);

Code example
See the EZARXS03 REXX sample in the SBLSCLI0 file for an example of using the SEND command.

SENDTO
Use the SENDTO command to send an outgoing message on a socket descriptor. This command differs
from the SEND command in that it includes the destination address as a parameter.

This command is used primarily to send data using connectionless protocols such as UDP or RAW. Use the
SENDTO command to send datagrams on a UDP socket regardless of whether the socket is connected.

Guidelines:

• For TCP or connected UDP sockets, use the SEND command.
• If the SO_ASCII socket option is enabled, then the data received is translated from EBCDIC to ASCII.

Format
SOCKET ("SENDTO" , socketid , data ,

sendflags

,

name)

Parameters
socketid

The socket descriptor.
data

The data to be sent.
sendflags

Optional flags that specify how the data is sent. The following flag is supported:

Chapter 14. REXX socket application programming interface 659

MSG_DONTROUTE
Do not route the data. Routing is handled by the calling program. The DONTROUTE value is
supported also.

name
The socket name of the remote host to which the data is sent.

The format for the name parameter depends on the socket type:
AF_INET sockets (IPv4)

name = "domain portid ipaddress"
AF_INET6 sockets (IPv6)

name = "domain portid flowinfo ipaddress scopeid"
where

• The domain value is the decimal number 2 for AF_INET and the decimal number 19 for AF_INET6.
• The portid value is the port number.
• The ipaddress value is the IP address of the remote host. It must be an IPv4 address for AF_INET

and an IPv6 address for AF_INET6.
• The flowinfo value must be 0.
• The scopeid value identifies the interfaces that are applicable for the scope of the address that is
specified in the ipaddress field. For a link-local IP address, the scopeid field can specify a link index,
which identifies a set of interfaces. For all other scopes, the scopeid field must be set to 0. Setting
the scopeid field to 0 indicates that any address type and scope can be specified.

Returned value
The command returns a string that contains the return code and an integer that specifies the amount of
data that was sent, for example, 0 192. The return code can be 0, a REXX socket API error number, or the
REXX TCP/IP error number that is set by the socket command. The return code 0 indicates that the
requested socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 4 EINTR
• 9 EBADF
• 5 EIO
• 22 EINVAL
• 32 EPIPE
• 35 EWOULDBLOCK
• 38 ENOTSOCK
• 40 EMSGSIZE45 EOPNOTSUPP
• 54 ECONNRESET
• 57 ENOTCONN

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED

660 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

LE C/C++ equivalent
int sendto(int socket, char *buffer, int length, int flags, struct sockaddr
 *address, int address_len);

Code example
See “RECVFROM” on page 651 for an example of using the SENDTO command.

SETSOCKOPT
Use the SETSOCKOPT command to set socket options.

Format
SOCKET ("SETSOCKOPT" , socketid , levelname , optname ,

optvalue)

Parameters
socketid

The socket descriptor.
levelname

The protocol level. The following protocol levels are supported:
IPPROTO_TCP

Set socket options at the TCP layer
IPPROTO_IP

Set IPv4 socket options at the IP layer
IPPROTO_IPV6

Set IPv6 socket options at the IP layer
SOL_SOCKET

Set socket options at the socket layer
optname

The option or options. The following rules apply:

• Options that begin with SO_ require the SOL_SOCKET protocol level.
• Options that begin with TCP_ require the IPPROTO_TCP protocol level.
• Options that begin with IP_ require the IPPROTO_IP protocol level.
• Options that begin with IPV6_ require the IPPROTO_IPV6 protocol level.
• Options that begin with MCAST require the IPPROTO_IP or IPPROTO_IPV6 protocol level.

The following values are supported for the optname parameter:
IP_ADD_MEMBERSHIP

(IPV4-only) Enables an application to join a multicast group on a specific interface. Applications in
a multicast group can receive multicast datagrams. An application can join multiple multicast
groups on the same interface or the same multicast group on multiple interfaces, but only one
interface address can be specified with a single command. The optvalue parameter must be a
string that contains the multicast address followed by the interface address on which the
application wants to receive multicast datagrams, for example, "224.224.224.1 10.11.13.4". This
command returns the return code or error number.

Tip: Use the IOCTL command with the SIOCGIFADDR option to determine the interface address.

Chapter 14. REXX socket application programming interface 661

IP_ADD_SOURCE_MEMBERSHIP
(IPV4-only) Enables an application to join a multicast group on a specific interface and a specific
source address. The optvalue parameter must be a string that contains the multicast address, the
interface address, and the source address, for example, "224.224.224.1 10.11.16.103
10.11.107.1". The source address represents a filter; the application receives multicast packets
only if the source address matches the source address filter for the multicast group.

This command returns the return code or error number.

Restrictions:

• Only one interface address can be specified with a single call.
• The stack supports up to 64 source address filters for each multicast-group interface pair. If the

number of filters exceeds the maximum, ENOBUFS is returned.
• You can specify only a single source address with each call. If you want to join a multicast group

and receive data from two different source addresses, then issue the SETSOCKOPT command
twice.

Guideline: Applications that want to receive multicast datagrams need to join multicast groups.
Use this option when the application wants to receive multicast packets on a specific group from
one or more senders

IP_BLOCK_SOURCE
(IPV4-only) Enables an application to block multicast packets that are sent from a specific
address. The application must have previously joined the multicast group. The optvalue parameter
must be a string that contains the multicast address, source address, and interface address, for
example, "224.224.224.1 10.11.16.103 10.11.107.1". This option returns 0 if it is successfully
completed; otherwise, it returns the error number.

IP_DROP_MEMBERSHIP
(IPV4-only) Enables an application to exit a multicast group. If source filtering is enabled, all
source filters are deleted. The optvalue parameter must be a string that contains the multicast
address and the interface address, for example, "224.224.224.1 10.11.13.4". This option returns
0 if it is successfully completed; otherwise, it returns the error number.

IP_DROP_SOURCE_MEMBERSHIP
(IPV4-only) Enables an application to leave a multicast-source multicast group. The application
will no longer receive multicast packets from the group. The optvalue parameter must be a string
that contains the multicast address, source address, and interface address, for example,
"224.224.224.1 10.11.13.4 10.11.107.1". This option returns 0 if it is successfully completed;
otherwise, it returns the error number.

IP_MULTICAST_IF
(IPV4-only) Sets the IPv4 interface address that is used to send outbound multicast datagrams.
Multicast datagrams can be sent only on one interface at a time. The optvalue parameter is the IP
address of the interface. This option returns 0 if it is successfully completed; otherwise, it returns
the error number.

IP_MULTICAST_LOOP
(IPV4-only) Controls whether a multicast datagram is looped back on the outgoing interface by
the IP layer for local delivery when datagrams are sent to a group to which the sending host
belongs. By default, loopback is enabled. The optvalue parameter must be one of the following
values: 0 (disabled) or 1 (enabled). This option returns 0 if it is successfully completed; otherwise,
it returns the error number.

IP_MULTICAST_TTL
(IPV4-only) Sets the IP time-to-live of outgoing multicast datagrams. By default, this is set to 1;
multicast is available only to the local subnet. The optvalue parameter must be an integer in the
range 1 - s255.

IP_UNBLOCK_SOURCE
(IPV4-only) Enables an application to unblock a previously blocked source address for an IPv4
multicast group. Only one interface address can be specified with a single call. The optvalue

662 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

parameter must be a string that contains the multicast address, source address, and interface
address, for example, "224.224.224.1 10.11.103.1 10.11.107.1". This option returns 0 if it is
successfully completed; otherwise, it returns the error number.

IPV6_ADDR_PREFERENCES
(AF_INET6 only) Sets the IPv6 address preferences to be used when selecting the source address.
The following are the valid IPV6_ADDR_PREFERENCES flags:
IPV6_PREFER_SRC_HOME

A home IPv6 address is preferred over a care-of IPv6 address.
IPV6_PREFER_SRC_COA

A care-of IPv6 address is preferred over a home IPv6 address.
IPV6_PREFER_SRC_TMP

A temporary IPv6 address is preferred over a public IPv6 address.
IPV6_PREFER_SRC_PUBLIC

A public IPv6 address is preferred over a temporary IPv6 address.
IPV6_PREFER_SRC_CGA

A cryptographically generated IPv6 address is preferred over a non-cryptographically
generated IPv6 address.

IPV6_PREFER_SRC_NONCGA
A non-cryptographically generated IPv6 address is preferred over a cryptographically
generated IPv6 address.

You can specify a single flag or multiple flags that are separated by blanks.

Results:

• Combining contradictory flags, such as IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA, results in error code 2020 (EINVALIDCOMBINATION).

• The stack could assign a source IP address that does not conform to one or more of the
IPV6_ADDR_PREFERENCES flags that you have set.

IPV6_JOIN_GROUP
(IPv6-only) Enables an application to join a multicast group on a specific interface. Only
applications that want to receive multicast datagrams need to join multicast groups. An
application can join multiple multicast groups on the same interface, or it can join the same
multicast group on multiple interfaces. The optvalue parameter must be a string that contains the
multicast address and the index of the interface on which the application wants to receive
multicast datagrams, for example, "FF02:225:9:10::11 3". If the interface index is set to 0, the
stack will chose the local address. This option returns 0 if it is successfully completed; otherwise,
it returns the error number.

Guideline: Use the SIOCGIFNAMEINDEX function of the IOCTL command to determine the index
number for an interface.

Restriction: Only one interface address can be specified in a single call. A multicast address can
be associated with a real interface only.

IPV6_LEAVE_GROUP
(IPv6-only) Enables an application to leave a multicast group. The optvalue parameter must be a
string that contains the multicast address and the interface address, for example,
"FF02:225:9:10::11 3". The optvalue parameter must match the original IPV6_JOIN_GROUP
parameters; for example, if the interface index specified for the IPV6_JOIN_GROUP was 0, then 0
also must be specified as the interface index for IPV6_LEAVE_GROUP command. This option
returns 0 if it is successfully completed; otherwise, it returns the error number.

IPV6_MULTICAST_HOPS
(IPv6-only) Sets the hop limit that is used for outgoing multicast packets. The optvalue parameter
is optional; if it is not issued, the hop limit is set to 1.

The optvalue parameter can have the following values:

Chapter 14. REXX socket application programming interface 663

-1
The default value for the stack is used.

0-255
The hop limit.

This option returns 0 if it is successfully completed; otherwise, it returns the error number.

Restriction: To set the hop limit value to be greater than the TCP/IP default value, a REXX-
application user ID must have superuser authority.

IPV6_MULTICAST_IF
(IPv6-only) Sets the index of the IPv6 interface that is used to send outbound multicast
datagrams from the socket application. The optvalue parameter must specify the interface index
number, for example, 34. This option returns 0 if it is successfully completed; otherwise, it returns
the error number.

IPV6_MULTICAST_LOOP
(IPv6-only) Controls whether a multicast datagram is looped back on the outgoing interface by the
IP layer for local delivery when datagrams are sent to a group to which the sending host belongs.
By default, multicast datagrams are looped back. The optvalue parameter must be one of the
following values: 0 (disabled) or 1 (enabled). This option returns 0 if it is successfully completed;
otherwise, it returns the error number.

IPV6_UNICAST_HOPS
(IPv6-only) Sets the hop limit that is used for outgoing unicast IPv6 packets. The optvalue
parameter is optional; if it is not issued, the hop limit is set to 1.

The optvalue parameter can have the following values:
-1

The default value for the stack is used.
0-255

The hop limit.

This option returns 0 if it is successfully completed; otherwise, it returns the error number.

Restriction: An application must be APF authorized to set the hop limit value to be greater than
the TCP/IP default value. This option is not valid when used in CICS applications. CICS
applications cannot run as APF authorized.

IPV6_V6ONLY
(IPv6-only) Restricts a socket to sending and receiving IPv6 packets only. By default, a socket is
not restricted. The optvalue parameter must be one of the following values: 0 (disabled) or 1
(enabled). This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

MCAST_BLOCK_SOURCE
Enables an application to block multicast packets from a specific source address. The multicast
group must have been previously joined. The optvalue parameter must be a string that contains
the interface index, the multicast address, and the source address. Specify the multicast address
and source address using the NAME string. The following string is an example of what might be
coded for the optvalue parameter:

"45 AF_INET6 54666 0 FF02::32:1 0 AF_INET6 0 0 2001:10:11:107::1 0"

For more information about the format of the NAME string, see “How structures are represented”
on page 582. This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

Tip: This option is valid for both IPv4 and IPv6.

MCAST_JOIN_GROUP
Enables an application to join a multicast group on a specific interface. Only applications that want
to receive multicast datagrams need to join multicast groups. The optvalue parameter must be a

664 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

string that contains the interface index and a multicast address. Specify the multicast address
using the socket address name format. The following string is an example of what you can code for
the optvalue parameter:

"45 AF_INET 1234 224.224.224.1"

For more information about the format of the NAME string, see “How structures are represented”
on page 582. This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

Tip: This option is valid for both IPv4 and IPv6.

MCAST_JOIN_SOURCE_GROUP
Enables an application to join a source multicast group on a specific interface and source address.
Only applications that want to receive multicast datagrams need to join source multicast groups.
The optvalue parameter must be a string that contains the interface index, the multicast address,
and the source address. Specify the multicast address and source address the using socket
address name format. The following string is an example of what you can code for the optvalue
parameter:

"45 AF_INET6 1234 0 FF02::123:1 0 AF_INET6 0 0 2001:10:11:107::1 0"

For more information about the format of the NAME string, see “How structures are represented”
on page 582. This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

Tip: This option is valid for both IPv4 and IPv6.

MCAST_LEAVE_GROUP
Enables an application to leave a multicast group or to leave all source multicast groups. The
optvalue parameter must be a string that contains the interface index and the multicast address;
specify the multicast address using the socket address name format. The following string is an
example of what you can code for the optvalue parameter:

"45 AF_INET6 1234 0 FF02::123:1 0"

For more information about the format of the NAME string, see “How structures are represented”
on page 582. This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

Tip: This option is valid for both IPv4 and IPv6.

MCAST_LEAVE_SOURCE_GROUP
Enables an application to leave a source multicast group. The optvalue parameter must be a string
that contains the interface index, the multicast address, and the source address. Specify the
multicast address and source address using the socket address name format. The following string
(all on one line) is an example of what you can code for the optvalue parameter:

"45 AF_INET6 1234 0 FF02::123:1 0 AF_INET6 1234 0
 2001:10:11:103::1 0"

For more information about the format of the NAME string, see “How structures are represented”
on page 582. This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

Tip: This option is valid for both IPv4 and IPv6.

MCAST_UNBLOCK_SOURCE
Enables an application to unblock multicast packets that are sent from a specific address. The
multicast group must have been previously blocked. The optvalue parameter must be a string that
contains the interface index, the multicast address, and the source address. Specify the multicast

Chapter 14. REXX socket application programming interface 665

address and source address using the socket address name format. The following string is an
example of what you can code for the

optvalue

parameter:

"45 AF_INET6 1234 0 FF02::123:1 0 AF_INET6 1234 0 2001:10:11:103::1 0"

For more information about the format of the NAME string, see “How structures are represented”
on page 582. This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

Tip: This option is valid for both IPv4 and IPv6.

Restriction: Only one source address can be specified in a call.

SO_ASCII
(REXX only) Enables all incoming data to be translated from ASCII to EBCDIC, and all outgoing
data to be translated from EBCDIC to ASCII. The optvalue parameter must be one of the following
values: 0 (disabled) or 1 (enabled). This option returns a string that contains the error code and
either ON (enabled) or OFF (disabled). If the option is enabled, the name of the translation table is
returned also. The following string is an example of what might be returned: 0 ON MYTRANTB.

The translation tables are searched in the following order:

1. user_prefix.subtaskid.TCPXLBIN
2. user_prefix.userid.TCPXLBIN
3. system_prefix.STANDARD.TCPXLBIN
4. system_prefix.RXSOCKET.TCPXLBIN
5. Internal tables

The following descriptions apply:

• The user_prefix value is either the user ID or the job name of the REXX program.
• The system_prefix value is either TCPIP or the DATASETPREFIX value from the hlq.TCPIP.DATA.

You can change the system_prefix value to match your site convention.
• The subtaskid value is the name of the socket set.
• The userid value is the user ID under which the REXX EXEC is running.

When the internal tables are used, the data is converted in the following way:

666 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

--
ASCII	second hex digit of byte of ASCII data															
to	---															
EBCDIC	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	37	2D	2E	2F	16	05	25	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	3C	3D	32	26	18	19	3F	27	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	40	4F	7F	7B	5B	6C	50	7D	4D	5D	5C	4E	6B	60	4B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	7A	5E	4C	7E	6E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	7C	C1	C2	C3	C4	C5	C6	C7	C8	C9	D1	D2	D3	D4	D5
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	D7	D8	D9	E2	E3	E4	E5	E6	E7	E8	E9	4A	E0	5A	5F
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	79	81	82	83	84	85	86	87	88	89	91	92	93	94	95
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	97	98	99	A2	A3	A4	A5	A6	A7	A8	A9	C0	6A	D0	A1
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	20	21	22	23	24	15	06	17	28	29	2A	2B	2C	09	0A
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
ASCII	9	30	31	1A	33	34	35	36	08	38	39	3A	3B	04	14	3E
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	41	42	43	44	45	46	47	48	49	51	52	53	54	55	56
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	58	59	62	63	64	65	66	67	68	69	70	71	72	73	74
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	76	77	78	80	8A	8B	8C	8D	8E	8F	90	9A	9B	9C	9D
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	9F	A0	AA	AB	AC	AD	AE	AF	B0	B1	B2	B3	B4	B5	B6
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	B8	B9	BA	BB	BC	BD	BE	BF	CA	CB	CC	CD	CE	CF	DA
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	DC	DD	DE	DF	EA	EB	EC	ED	EE	EF	FA	FB	FC	FD	FE
--

Figure 163. ASCII to EBCDIC

--
EBCDIC	second hex digit of byte of EBCDIC data															
to	---															
ASCII	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	9C	09	86	7F	97	8D	8E	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	9D	85	08	87	18	19	92	8F	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	80	81	82	83	84	0A	17	1B	88	89	8A	8B	8C	05	06
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	90	91	16	93	94	95	96	04	98	99	9A	9B	14	15	9E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	20	A0	A1	A2	A3	A4	A5	A6	A7	A8	5B	2E	3C	28	2B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	26	A9	AA	AB	AC	AD	AE	AF	B0	B1	5D	24	2A	29	3B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	2D	2F	B2	B3	B4	B5	B6	B7	B8	B9	7C	2C	25	5F	3E
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	BA	BB	BC	BD	BE	BF	C0	C1	C2	60	3A	23	40	27	3D
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	C3	61	62	63	64	65	66	67	68	69	C4	C5	C6	C7	C8
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
EBCDIC	9	CA	6A	6B	6C	6D	6E	6F	70	71	72	CB	CC	CD	CE	CF
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	D1	7E	73	74	75	76	77	78	79	7A	D2	D3	D4	D5	D6
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	D8	D9	DA	DB	DC	DD	DE	DF	E0	E1	E2	E3	E4	E5	E6
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	7B	41	42	43	44	45	46	47	48	49	E8	E9	EA	EB	EC
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	7D	4A	4B	4C	4D	4E	4F	50	51	52	EE	EF	F0	F1	F2
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	5C	9F	53	54	55	56	57	58	59	5A	F4	F5	F6	F7	F8
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	30	31	32	33	34	35	36	37	38	39	FA	FB	FC	FD	FE
--

Figure 164. EBCDIC to ASCII

Chapter 14. REXX socket application programming interface 667

SO_BROADCAST
Enables a program to send broadcast messages over the socket to destinations that can receive
datagram messages. By default, this option is disabled. The optvalue parameter must be one of
the following values: 0 (disabled) or 1 (enabled). This option returns 0 if it is successfully
completed; otherwise, it returns the error number.

Restriction: This option is not valid for stream sockets.

SO_DEBUG
(REXX only) Control whether debugging information is recorded. By default, this option is disabled.
The optvalue parameter must be either ON (enabled) or OFF (disabled). This option returns 0 if it
is successfully completed; otherwise, it returns the error number. This option is valid only for
stream sockets.

SO_DONTROUTE
Bypasses normal routing algorithms for outgoing packets on the socket. If the local interface
cannot be determined, when a packet is sent using one of the SEND commands, then the 51
ENETUNREACH error number is returned. This option returns either 1 (enabled) or 0 (disabled).

SO_EBCDIC
(REXX only) Enables data to be translated to and from EBCDIC. This option is ignored by EBCDIC
hosts. The optvalue parameter must be either ON (enabled) or OFF (disabled). This option returns
a string that contains the error code and either ON (enabled) or OFF (disabled). If the option is
enabled, the name of the translation table is returned also. The following string is an example of
what might be returned:

0 ON MYTRANTB

SO_KEEPALIVE
Sets the keep alive mechanism to periodically send a packet on an otherwise idle connection for a
stream socket. By default, this option is disabled. When enabled, if the remote TCP/IP does not
respond to the packet or to retransmissions of the packet, then the connection is terminated with
the ETIMEDOUT error. The optvalue parameter must be one of the following values: 0 (disabled) or
1 (enabled). This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

Tip: You also can enable the keep alive mechanism by modifying the TCPIP.PROFILE file.

SO_LINGER
Specifies how TCP/IP processes data that has not been transmitted when the CLOSE command is
issued for the socket. When this option is enabled and the CLOSE command is issued, the calling
program is blocked until either the data is successfully transmitted or the connection times out.
When this option is disabled and the CLOSE command is issued, the CLOSE command returns
without blocking the caller; then, TCP/IP continues to attempt to send data for a specified time,
which usually provides sufficient time to complete the data transfer. By default, this option is
disabled.

The optvalue parameter is a string in the following format:

linger = "onoff lingertime"

where

• The onoff value is either 0 (disabled) or 1 (enabled).
• The lingertime value is the number of seconds that TCP/IP tries to send data after the CLOSE

command is issued.

This option returns 0 if it is successfully completed; otherwise, it returns the error number.

Restrictions:

• Using the SO_LINGER option does not guarantee that a data transfer will be completed, because
TCP/IP waits only the amount of time that is specified.

• This option is valid only for stream sockets.

668 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Guidelines:

• Avoid setting a linger time of 0. If you set the linger time to 0, the connection stops rather than
closing in an orderly manner. This results in a RESET segment being sent to the connection
partner. If the aborting socket is in nonblocking mode, the CLOSE command is processed as
though no linger option is set.

• Enable the SO_LINGER option only when necessary.

SO_OOBINLINE
Controls whether out-of-band data is received. When this option is enabled, out-of-band data is
placed in the normal data input queue as it is received; this data is then available to RECV or
RECVFROM commands, even if the OOB flag is not set. When this option is disabled, out-of-band
data is placed in the priority data input queue as it is received; this data is then available to RECV
or RECVFROM commands only if the OOB flag is set. By default, this option is disabled. The
optvalue parameter must be one of the following values: 0 (disabled) or 1 (enabled). This option
returns 0 if it is successfully completed; otherwise, it returns the error number.

Restriction: This option is valid only for stream sockets.

SO_RCVBUF
Controls the size of the data portion of the TCP/IP receive buffer. The size of the receive buffer is
protocol specific and is based on the following values:

• (TCP socket) The TCPRCVBufrsize keyword on the TCPCONFIG statement in the PROFILE.TCPIP
data set.

• (UDP socket) The UDPRCVBufrsize keyword on the UDPCONFIG statement in the
PROFILE.TCPIP data set.

• (Raw socket) The default size 65535.

The optvalue parameter must be either 0 (disabled) or a positive integer that specifies the size of
the TCP/IP receive buffer. If you disable this option, the default system setting is used.This option
returns 0 if it is successfully completed; otherwise, it returns the error number.

SO_RCVTIMEO
Sets the maximum length of time that a receive-type function can wait before it completes You
can specify the number of seconds and microseconds that indicate the length of time to wait for a
receive-type function to complete. If a receive-type function has blocked for this much time
without receiving data, it returns with the errno EWOULDBLOCK. The value 0 (the default)
indicates that a receive-type function does not time out. The optvalue parameter must be a string
that contains the number of seconds followed by the number of microseconds. The GETSOCKOPT
command returns the return code or error number. Specify a value in the range 0 – 2 678 400
(equal to 31 days) for the number of seconds. Specify a value in the range 0 – 1 000 000 (equal to
1 second) for the number of microseconds. Although you can specify the number of microseconds,
the internal TCP/IP timers that are used to implement this function have a granularity of
approximately 100 milliseconds. The following receive type commands are supported:

• READ
• RECV
• RECVFROM

SO_REUSEADDR
Controls whether local addresses are reused. Enabling this option alters the normal algorithm that
is used with the BIND command. The normal BIND algorithm permits each Internet address and
port combination to be bound only once. If the address and port already have been bound, a
subsequent BIND command fails with the 48 EADDRINUSE error. When this option is enabled, the
following situations are supported:

• A server can bind the same port multiple times, if each invocation uses a different local IP
address and the wildcard address INADDR_ANY is used only one time for each port.

• A server with active client connections can be restarted and can bind to its port without having
to close all of the client connections.

Chapter 14. REXX socket application programming interface 669

• For datagram sockets, multicasting is supported so that multiple BIND commands can be made
to the same class D address and port number.

By default, this option is disabled. The optvalue parameter must be one of the following values: 0
(disabled) or 1 (enabled). This option returns 0 if it is successfully completed; otherwise, it returns
the error number.

Tip: If you want to permit multiple servers to bind to INADDR_ANY or IN6ADDR_ANY and listen
on the same port, use the SHAREPORT option on the PORT statement in TCPIP.PROFILE.

SO_SNDBUF
Controls the size of the data portion of the TCP/IP send buffer. The size of the send buffer is
protocol specific and is based on the following values:

• (TCP socket) The TCPSENDBufrsize keyword on the TCPCONFIG statement in the
PROFILE.TCPIP data set.

• (UDP socket) The UDPSENDBufrsize keyword on the UDPCONFIG statement in the
PROFILE.TCPIP data set.

• (Raw socket) The default size 65535.

The optvalue parameter must be either 0 (disabled) or a positive integer that specifies the size of
the TCP/IP send buffer. If you disable this option, the default system setting is used. This option
returns 0 if it is successfully completed; otherwise, it returns the error number.

SO_SNDTIMEO
Sets the maximum length of time that a send-type function can remain blocked before it
completes. You can specify the number of seconds and microseconds that indicate the length of
time to wait for a send-type function to complete. If a send-type function has blocked for this
length of time, the function returns with a partial count or with an errno set to EWOULDBLOCK if
no data is sent. The value 0 (the default) indicates that a send type function does not time out. The
optvalue parameter must be a string that contains the number of seconds followed by the number
of microseconds. The GETSOCKOPT command returns the return code or error number. Specify a
value in the range 0 – 2 678 400 (equal to 31 days) for the number of seconds. Specify a value in
the range 0 – 1 000 000 (equal to 1 second) for the number of microseconds. While the number of
microseconds can be specified, the internal TCP/IP timers that are used to implement this
function have a granularity of approximately 100 milliseconds. The following send-type
commands are supported:

• SEND
• SENDTO
• WRITE

TCP_KEEPALIVE
Specifies whether a socket-specific timeout value (in seconds) is used instead of a configuration-
specific value, when keep alive timing is active for the socket. When enabled, the socket-specific
timeout value remains in effect until either the socket is closed or it is reset by a SETSOCKOPT
command. The optvalue parameter must be either 0 (disabled) or the keep alive value. This option
returns a string that contains the return code and the keep alive value. If the option is disabled,
the keep alive value is 0. For more information about the socket option parameters, see
TCP_KeepAlive socket option inz/OS Communications Server: IP Programmer's Guide and
Reference.

Tip: The site administrator can enable the global keep-alive mechanism by specifying the
INTERVAL parameter on the TCPCONFIG statement in the TCP/IP stack profile data set,
TCPIP.PROFILE.

TCP_NODELAY
Specifies whether the data that is sent over the socket is subject to the Nagle algorithm (RFC 896).
When this option is enabled, TCP waits to send small amounts of data until the acknowledgment
for the previous data sent is received. When this option is disabled, TCP sends data when it is
presented. The optvalue parameter must be one of the following values: 0 (disabled) or 1

670 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

(enabled). This option returns 0 if it is successfully completed; otherwise, it returns the error
number.

optvalue
Additional information that is needed to run the requested command.

Returned value
The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by
the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 22 EINVAL
• 38 ENOTSOCK
• 42 ENOPROTOOPT
• 45 EOPNOTSUPP
• 60 ETIMEDOUT

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
int setsockopt(int socket, int level, int option_name, char *option_value,
 int *option_length);

Code example
See the EZARXS01 REXX sample in the SEZAINST file for an example of using the SETSOCKOPT
command.

SHUTDOWN
Use the SHUTDOWN command to shut down all or part of a duplex connection.

Format

SOCKET ("SHUTDOWN" , socketid

, BOTH

, how

)

Parameters
socketid

The socket descriptor of the connected socket.
how

Specifies which operations are to be ended. The following parameters are supported:

Chapter 14. REXX socket application programming interface 671

BOTH
Ends further send and receive operation on the socket. By default, this is the value of the how
parameter. The value 2 is supported also.

SEND
Ends further send operations on the socket. The following values are supported also: 1, TO,
SENDING, WRITE, WRITING.

READ
Ends further receive operations on the socket. The following values are supported also: 0, FROM,
READING, RECEIVE, RECEIVING.

Returned value
The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by
the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 22 EINVAL
• 38 ENOTSOCK
• 45 EOPNOTSUPP

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
long shutdown(int *s, int how);

Code example
See the EZARXS02 REXX sample in the SEZAINST file for an example of using the SHUTDOWN command.

SOCKET
Use the SOCKET command to open a socket descriptor in the active socket set.

Restriction: If the socket type is SOCK_RAW or RAW, the user ID associated with the REXX socket
application must have z/OS UNIX System Services superuser authority. The user ID must have the UID
value 0 or have read access to the BPX.SUPERUSER security profile. An application can attempt to obtain
superuser authority by issuing the z/OS UNIX System Services SYSCALLS command: address syscall
'SETEUID 0'. If this command fails, the user ID does not have the authorization needed to run the
program; contact your security administrator.

672 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Format

SOCKET ("SOCKET"

, AF_INET

, domain

, STREAM

, type

, 0

, protocol

)

Parameters
domain

The address family of the socket. The supported families are AF_INET (2) and AF_INET6 (19). By
default, the domain parameter is set to AF_INET.

type
An optional parameter that specifies the type of socket to be created. By default, this parameter is set
to STREAM. The following values are supported:

• STREAM or SOCK_STREAM
• DATAGRAM or SOCK_DATAGRAM
• RAW or SOCK_RAW

protocol
An optional parameter that specifies the protocol that is requested. By default, the value to which this
parameter is set depends on the type parameter. The default protocol for stream sockets is TCP. The
default protocol for datagram sockets is UDP. There is no default for RAW sockets. To enable the stack
to select the applicable protocol, set the protocol parameter to 0.

The following protocols are supported:
Stream sockets

IPPROTO_TCP or TCP
Datagram sockets

IPPROTO_UDP or UDP
RAW sockets

• IPPROTO_IP or IP
• IPPROTO_IPV6 or IPV6
• IPPROTO_ICMP or ICMP
• IPPROTO_ICMPV6 or ICMPV6
• IPPROTO_RAW or RAW

Returned value
The command returns a string that contains the return code and the new socket descriptor, for example, 0
6. The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set
by the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 22 EINVAL

Chapter 14. REXX socket application programming interface 673

• 38 ENOTSOCK
• 45 EOPNOTSUPP
• 139 EPERM

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2007 EMAXSOCKETSREACHED

LE C/C++ equivalent
int socket(int *domain, int type, int protocol);

Code example

/* REXX EZARXR26 */
/*
 * This sample demonstrates the use of the SOCKET
 * socket command.
 *
 * HINT: See other socket command descriptions for
 * additional examples.
 */
src=SOCKET("INITIALIZE","MYSET01",20);
src=SOCKET("SOCKET","AF_INET","STREAM")
parse var src l_retcode l_socketid
if l_retcode = 0 then do
 Say "Socket Created Successfully. Socket descriptor is" l_socketid;
 src=SOCKET("CLOSE",l_socketid);
 parse var src l_retcode .
 if l_retcode = 0 then
 say "Socket "l_socketid" closed successfully";
 else do
 say "Close of socket "l_socketid" failed.";
 say src;
 end;
end;
else do
 Say "Socket not created."
 Say "..."src;
end;
x=SOCKET("TERMINATE","MYSET01");
exit;

Figure 165. SOCKET command example

SOCKETSET
Use the SOCKETSET command to retrieve the name of the active socket set. If you specify the name of a
socket set as a parameter, then that socket set becomes the active socket set.

Format
SOCKET ("SOCKETSET"

, subtaskid

)

Parameters
subtaskid

The name of a socket set that was created with the INITIALIZE command

674 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Returned value
The command returns a string that contains the return code and the name of the active socket set, for
example, 0 MYSET. The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error
number that is set by the socket command. The return code 0 indicates that the requested socket
command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error number can be returned:

• None

The following REXX socket API error number can be returned:

• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Code example

/* REXX EZARXR27 */
/*
 * This sample demonstrates the use of the SOCKSET
 * socket command.
 */
src=socket("INITIALIZE","MYSET");
src=Socket("SOCKETSET");
Say src;
src=socket("TERMINATE","MYSET");
exit 0;

Figure 166. SOCKETSET command example

SOCKETSETLIST
Use the SOCKETSETLIST command to list the names of all available socket sets that are currently defined
by the application.

Rule: All sockets sets are created with the INITIALIZE command.

Format
SOCKET ("SOCKETSETLIST")

Parameters
This command has no parameters.

Returned value
If socket sets are defined, this command returns a string that contains 0 and names of the socket sets
that are available to the application, for example, 0 subtask1 subtask2. If no socket sets are defined,
0 is returned.

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Chapter 14. REXX socket application programming interface 675

Code example

/* REXX EZARXR28 */
/*
 * This program demonstrates the use of the SOCKSETLIST
 * socket command. The program will initialize two socket
 * sets and then issue the SOCKSETLIST command to obtain
 * some information.
 */
src1=SOCKET("INITIALIZE","MYSET01",10);
Say "RC of INITIALIZATION of MYSET01 = "src1"
src2=SOCKET("INITIALIZE","MYSET02",29);
Say "RC of INITIALIZATION of MYSET02 = "src2"
src=SOCKET("SOCKETSETLIST");
parse var src l_retcode l_socketsets;
Say "Socket sets available are: "l_socketsets;
src=SOCKET("TERMINATE","MYSET01");
src=SOCKET("TERMINATE","MYSET02");
EXIT 0;

Figure 167. SOCKETSETLIST command example

SOCKETSETSTATUS
Use the SOCKETSETSTATUS command to list information about a socket set.

Format
SOCKET ("SOCKETSETSTATUS"

, subtaskid

)

Parameters
subtaskid

An optional parameter that specifies the name of the socket set. If this parameter is not specified,
then the SOCKETSETSTATUS command returns the status of the active socket set.

Returned value
The command returns a string that contains the return code, the name of the socket set, the state of the
socket set, the number of sockets that are available for use, and the number of sockets that currently are
being used. The return code can be 0 or the REXX API error number. The return code 0 indicates that the
requested socket command was completed successfully.

The state of a socket set is one of the following values:
CONNECTED

Indicates that the socket set has been initialized with the INITIALIZE command
SEVERED

Indicates that the socket set has been initialized using the INITIALIZE command, but a problem
exists with the socket set

FREE
Indicates that the socket set has not been initialized

The following string is an example of what is returned by the SOCKETSETSTATUS command:
0 MYSET Connected Free 15 Used 1

In the example, 0 is the return code, MYSET is the name of the socket set, CONNECTED is the status of the
socket set, 15 is the number of the free sockets, and 1 is the number of sockets that are in use.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error number can be returned::

676 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Code example

/* REXX EZARXR29 */
/*
 * This sample demonstrates the use of the SOCKSETSTATUS
 * socket command. Error checking is not performed for the
 * socket commands as the intent is to show what the command
 * will return when multiple INITIALIZE commands are
 * issued.
 */
x1=socket("INITIALIZE","MYTEST",15);
x2=socket("SOCKETSET");
x3=socket("SOCKETSETSTATUS");
x4=socket("SOCKET","AF_INET");
parse var x4 l_retcode l_x4_socketid;
if l_retcode = 0 then do
 x5=socket("SOCKETSETSTATUS");
 Say "FIRST INITIALIZE command:"
 Say " INITIALIZE = "x1;
 Say " SOCKETSET = "x2;
 Say " SOCKETSETSTATUS = "x3;
 Say " SOCKET = "l_retcode l_x4_socketid;
 Say " SOCKETSETSTATUS = "x5;
 Say "*** END";
 y1=socket("INITIALIZE","REXXSET",15);
 y2=socket("SOCKETSET");
 y3=socket("SOCKETSETSTATUS");
 y4=socket("SOCKETSETSTATUS","MYTEST");
 y5=socket("SOCKET","AF_INET");
 parse var y5 l_retcode l_y5_socketid;
 if l_retcode = 0 then do
 y6=socket("SOCKETSETSTATUS");
 Say "SECOND INITIALIZE command:"
 Say " INITIALIZE = "y1;
 Say " SOCKETSET = "y2;
 Say " SOCKETSETSTATUS = "y3;
 Say " SOCKETSETSTATUS = "y4;
 Say " SOCKET = "l_retcode l_y5_socketid
 Say " SOCKETSETSTATUS = "y6;
 Say "*** END";
 rc2=socket("CLOSE",l_y5_socketid);
 say "rc2 = "rc2;
 xx=socket("SOCKETSETSTATUS","MYTEST");
 end;
 rc1=socket("CLOSE",l_x4_socketid);
 Say "rc1 = "rc1;
end;
x=socket("TERMINATE","MYTEST");
x=socket("TERMINATE","REXXSET");
exit;

Figure 168. SOCKETSETSTATUS command example

TAKESOCKET
Use the TAKESOCKET command to take a socket descriptor that is passed from another program using
the GIVESOCKET command. A socket descriptor can be taken by an application only when the socket is in
the same address family.

Guidelines: An application that issues the TAKESOCKET command needs to know both the client ID of
the application that issued the GIVESOCKET command and the socket descriptor that was passed. REXX
provides several techniques that can be used to pass this information to the application that issues the
TAKESOCKET command:

• When the application that issues the GIVESOCKET command also will be the application to issue the
TAKESOCKET command, the client ID and socket descriptor can be passed between the routines that

Chapter 14. REXX socket application programming interface 677

are responsible for the two commands using standard REXX programming techniques. In this situation,
consider setting the socket to nonblocking mode to permit additional socket processing to occur as
needed. Use the SELECT command to determine when a socket is ready or when an exception occurred.
Use this technique primarily during application development. If the socket descriptor is never given to a
different application or subtask, avoid using the GIVESOCKET or TAKESOCKET commands.

• When the application that will take the socket descriptor is running in a different address space,
consider using the following methods to pass the information:

– Pass the clientid value through the program startup parameters or by using an external input stream
– Use the z/OS UNIX System Services SYSCALLS interface and named pipes

Format
SOCKET ("TAKESOCKET" , clientid , socketid)

Parameters
clientid

Identifies the application that issued the GIVESOCKET command. The clientid parameter has the
following format:

clientid = “domain jobname substaskid”

All three fields are required:
domain

The address family of the socket. The supported families are AF_INET (2) and AF_INET6 (19).
jobname

The job name of the application that issued the GIVESOCKET command.
substaskid

The name of the socket set used by the application that issued the GIVESOCKET command.
socketid

The socket descriptor that was given by the application that issued the GIVESOCKET command.

Returned value
The command returns a string that contains the return code and the socket descriptor, for example, 0 1.
The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is set by
the socket command. The return code 0 indicates that the requested socket command was completed
successfully.

Tip: The 13 EACCESS return code indicates that the application that issued the TAKESOCKET command
is not authorized to take the socket descriptor. The jobname field of the clientid parameter for the
GIVESOCKET command must match the jobname field of the clientid parameter for the TAKESOCKET
command.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 9 EBADF
• 13 EACCESS
• 22 EINVAL
• 38 ENOTSOCK
• 45 EOPNOTSUPP

The following REXX socket API error numbers can be returned:

678 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED
• 2012 EINVALIDNAME

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Code example
See the EZARXS06 REXX sample in the SEZAINST file for an example of using the TAKESOCKET
command.

TERMINATE
Use the TERMINATE command to close all sockets in the specified socket set and to release the socket
set.

A socket set is a number of preallocated sockets available to a single application. You can define multiple
socket sets for one session, but only one socket set can be active at a time. When the active socket set is
released, the next socket set in the stack becomes the active socket set.

Format
SOCKET ("TERMINATE"

, subtaskid

)

Parameters
subtaskid

An optional parameter that specifies the name of the socket set. If this parameter is not specified,
then the active socket set is released.

Returned value
The command returns a string that contains the return code and the name of the socket set, for example,
0 MYTASKID. The return code can be 0 or the REXX API error number. The return code 0 indicates that
the requested socket command was completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Chapter 14. REXX socket application programming interface 679

Code example

/* REXX EZARXR30 */
/*
 * This sample demonstrates the use of the TERMINATE
 * socket command.
 */
src = socket("INITIALIZE","MYSET01",10);
if word(src,1) = 0 then say "INITIALIZE SUCCESSFUL";
src = socket("TERMINATE", "MYSET01");
say "TERMINATE = " src;
exit 0;

Figure 169. TERMINATE command example

VERSION
Use the VERSION command to retrieve the name, version number, and version date of the REXX socket
library.

Format
SOCKET ("VERSION")

Parameters
This command has no parameters.

Returned value
The command returns a string that contains the return code, version name, version number, and version
date, for example, 0 REXX/SOCKETS z/OS V1R9 April 20, 2006. A return code of 0 indicates that
the requested socket command was completed successfully.

LE C/C++ equivalent
This command has no LE C/C++ equivalent.

Code example

/* REXX EZARXR31 */
/*
 * This sample demonstrates the use of the VERSION
 * socket command.
 */
src = socket("VERSION");
say "Version = " src;
exit 0;

Figure 170. VERSION command example

WRITE
Use the WRITE command to send an outgoing message on the connected socket. The WRITE command is
similar to the SEND command, except that the WRITE command does not support the control flags that
are available with the SEND command.

When the socket is a TCP socket, the following conditions apply:

• If the socket is in blocking mode and the total amount of data to be sent cannot be processed by the
stack when the command is issued, then the command blocks until the data can be sent.

680 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• If the socket is in nonblocking mode and the total amount of data to be written cannot be processed by
the stack when the command is issued, then the command returns the number of bytes that were
successfully written. If none of the data can be written, the command returns the value -1 and the 35
EWOULDBLOCK error code.

When the socket is a connected UDP socket, the WRITE command either is completed or fails. A
connected UDP socket does not return the 35 EWOULDBLOCK error code.

Restriction: The WRITE command does not support send flags.

Guidelines: Place the WRITE command in a loop to ensure that all the data is written. For a TCP socket, a
partial write operation might occur regardless of whether the socket is in blocking or nonblocking mode. A
partial write operation occurs when the stack copies some but not all of the application data:

• If a partial write operation occurs on a socket in blocking mode, the blocking socket is interrupted. The
return value contains the number of bytes written, and the return code contains the reason for the
interruption. In such cases, consider ending the connection.

• If a partial write operation occurs on a socket in nonblocking mode, the return value indicates the
number of bytes that were successfully sent. If this is less than the number of bytes specified on the
WRITE command, repeat the WRITE operation until all data is written. The blocking condition might last
for a long time, so consider other strategies to ensure that the application does not remain in a busy
loop sending data.

Tips:

• Use the SELECT command to determine whether a socket is ready to send additional data. To do so, test
the socket for a WRITE event.

• If the SO_ASCII socket option is enabled, then the data received is translated from EBCDIC to ASCII.

Format
SOCKET ("WRITE" , socketid , data)

Parameters
socketid

The socket descriptor
data

The string to be sent

Returned value
The command returns a string that contains the return code and the length of the data string, for example,
0 19. The return code can be 0, a REXX socket API error number, or the REXX TCP/IP error number that is
set by the socket command. The return code 0 indicates that the requested socket command was
completed successfully.

See Appendix B, “Socket call error return codes,” on page 745 for additional information about the
numeric error codes that are returned by this command.

The following REXX TCP/IP error numbers can be returned:

• 4 EINTR
• 9 EBADF
• 5 EIO
• 22 EINVAL
• 32 EPIPE
• 35 EWOULDBLOCK
• 38 ENOTSOCK

Chapter 14. REXX socket application programming interface 681

• 40 EMSGSIZE
• 45 EOPNOTSUPP
• 54 ECONNRESET
• 57 ENOTCONN

The following REXX socket API error numbers can be returned:

• 2001 EINVALIDRXSOCKETCALL
• 2005 ESUBTASKNOTACTIVE
• 2009 ESOCKETNOTDEFINED

LE C/C++ equivalent
ssize_t send(int socket, const void *buffer, size_t length, int flags);

Code example
See the SEND command. Substitute the command WRITE for the command SEND.

REXX socket sample programs
This section provides information about the sample programs that show how to use the REXX socket API.
These programs are provided as is.

Overview of REXX sample programs
The sample programs and the jobs that you can use to run them are located in the SEZAINST file.

The following information applies to the batch jobs:

• The batch job REXXAPI runs standalone socket EXECs and TCP/IP clients.
• The batch job REXXAPIS runs TCP/IP servers.
• The batch job REXXAPIT runs the subtask that is required to test the REXAPI04 program.

Table 21. REXX socket sample programs

Name REXX EXEC
MVS batch
job APIs demonstrated Notes

EZARXS01 REXAPI01 REXXAPI INITIALIZE
SOCKET
GETSOCKOPT
SETSOCKOPT
CONNECT
GETSOCKNAME
SEND
RECV
TERMINATE

Client, requires server
REXAPI05

682 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 21. REXX socket sample programs (continued)

Name REXX EXEC
MVS batch
job APIs demonstrated Notes

EZARXS02 REXAPI02 REXXAPI INITIALIZE
SOCKET
CONNECT
GETSOCKNAME
SEND
RECV
SHUTDOWN
TERMINATE

Client, requires server
REXAPI05

EZARXS03 REXAPI03 REXXAPI INITIALIZE
SOCKET
CONNECT
IOCTL
SEND
RECV
CLOSE
TERMINATE

Client, uses server
REXAPI05 or
REXAPI04
demonstrating AT-TLS

EZARXS04 REXAPI04 REXXAPIS INITIALIZE
SOCKET
BIND
LISTEN
ACCEPT
GETCLIENTID
GIVESOCKET
SELECT
CLOSE

Server, not enabled for
AT-TLS

EZARXS05 REXAPI05 REXXAPIS INITIALIZE
SOCKET
BIND
LISTEN
ACCEPT
IOCTL
SEND
RECV
CLOSE
TERMINATE

Server, supports AT-TLS

EZARXS06 REXAPI06 REXXAPIT INITIALIZE
TAKESOCKET
GETPEERNAME
RECV
SEND
CLOSE
TERMINATE

Child server subtask

Chapter 14. REXX socket application programming interface 683

Table 21. REXX socket sample programs (continued)

Name REXX EXEC
MVS batch
job APIs demonstrated Notes

EZARXRSC RSCLIENT REXXAPI INITIALIZE
GETHOSTID
SOCKET
GETHOSTNAME
CONNECT
WRITE
READ
TERMINATE
SOCKETSETSTATUS

IPv4 client

EZARXR6C R6CLIENT REXXAPI INITIALIZE
GETHOSTID
SOCKET
GETHOSTNAME
GETADDRINFO
CONNECT
WRITE
READ
TERMINATE
SOCKETSETSTATUS

IPv6 client

EZARXRSS RSSERVER REXXAPIS INITIALIZE
GETHOSTID
SOCKET
BIND
LISTEN
IOCTL
SELECT
ACCEPT
RECV
CLOSE
SEND
TERMINATE
SETSOCKETSTATUS

IPv4 server

EZARXR6S R6SERVER REXXAPIS INITIALIZE
GETHOSTNAME
GETADDRINFO
SOCKET
BIND
LISTEN
IOCTL
SELECT
ACCEPT
GETNAMEINFO
RECV
CLOSE
SEND
TERMINATE
SETSOCKETSTATUS

IPv6 server

684 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 21. REXX socket sample programs (continued)

Name REXX EXEC
MVS batch
job APIs demonstrated Notes

EZARXJ01 n/a REXXAPI MVS sample job control MVS job control for
REXXAPI

EZARXJ02 n/a REXXAPIS MVS sample job control MVS job control for
REXXAPIS

EZARXJ03 n/a REXXAPIT MVS sample job control MVS job control for
REXXAPIT

The REXX-EXEC RSCLIENT sample program for IPv4
The client sample program is a REXX socket program that shows you how to use the commands that are
provided by the REXX sockets API. The program connects to the server sample program and receives
data, which is displayed on the screen. It uses sockets in blocking mode.

After parsing and testing the input parameters, the RSCLIENT EXEC program obtains a socket set using
the INITIALIZE command and a socket using the SOCKET command. The program then connects to the
server and writes the user ID, the node ID, and the number of lines requested on the connection to the
server. It reads data in a loop; the data is displayed on the screen until the data length is 0, which
indicates that the server has closed the connection. If an error occurs, the client program lists the return
code, determines the status of the socket set, and ends the socket set.

The server adds the EBCDIC new-line character to the end of each record, and the client uses this
character to determine the start of a new record. If the connection is abnormally closed, the records that
were partially received are not displayed.

The REXX-EXEC RSSERVER sample program for IPv4
The server sample program shows an example of how to use sockets in nonblocking mode. The program
waits for connect requests from client programs, accepts the requests, and then sends the data. The
sample can handle multiple client requests in parallel processing.

The server program sets up a socket to accept connection requests from clients and then waits in a loop
for events reported by the SELECT command. If a socket event occurs, it is processed. A read event can
occur on the original socket for accepting connection requests and on sockets for accepted socket
requests. A write event can occur only on sockets for accepted socket requests.

A read event on the original socket for connection requests means that a connection request from a client
occurred. Read events on other sockets indicate that there is either data to receive or that the client has
closed the socket. Write events indicate that the server can send more data. The server program sends
only one line of data in response to a write event.

The server program keeps a list of sockets to which it wants to write. It keeps this list to avoid unwanted
socket events. The TCP/IP protocol is not designed for one single-threaded program communicating on
many different sockets, but for multithread applications where one thread processes only the events that
originate from a single socket.

The REXX-EXEC R6CLIENT sample program for IPv6
The client sample program is a REXX socket program that shows you how to use the commands that are
provided by the REXX sockets API. The program connects to the server sample program and receives
data, which is displayed on the screen. It uses sockets in blocking mode.

After parsing and testing the input parameters, the R6CLIENT EXEC sample program obtains a socket set
using the INITIALIZE command and a socket using the SOCKET command. The program then connects to
the server and writes the user ID, the node ID, and the number of lines requested on the connection to
the server. It reads data in a loop; the data is displayed on the screen until the data length is 0, which

Chapter 14. REXX socket application programming interface 685

indicates that the server has closed the connection. If an error occurs, the client program lists the return
code, determines the status of the socket set, and ends the socket set.

The server adds the EBCDIC new-line character to the end of each record, and the client uses this
character to determine the start of a new record. If the connection is abnormally closed, the partially
received records are not displayed.

The REXX-EXEC R6SERVER sample program for IPv6
The server sample program shows an example of how to use sockets in nonblocking mode. The program
waits for connect requests from client programs, accepts the requests, and then sends data. The sample
can handle multiple client requests in parallel processing.

The server program sets up a socket to accept connection requests from clients and waits in a loop for
events that are reported by the SELECT command. If a socket event occurs, it is processed. A read event
can occur on the original socket for accepting connection requests and on sockets for accepted socket
requests. A write event can occur only on sockets for accepted socket requests.

A read event on the original socket for connection requests means that a connection request from a client
occurred. Read events on other sockets indicate that there is either data to receive or that the client has
closed the socket. Write events indicate that the server can send more data. The server program sends
only one line of data in response to a write event.

The server program keeps a list of sockets to which it wants to write. It keeps this list to avoid unwanted
socket events. The protocol is not designed for one single-threaded program communicating on many
different sockets, but for multithread applications where one thread processes events only from a single
socket.

AT-TLS security definitions for REXX samples
When Application Transparent Transport Layer Security (AT-TLS) is enabled on the TCP/IP stack, you must
define the REXX sample applications to the Policy Agent.

The user must supply the necessary key rings. For information about creating certificates and key rings,
see the TLS/SSL security information in z/OS Communications Server: IP Configuration Guide. These AT-
TLS security definitions assume that the REXXAPI and REXXAPIS sample jobs are being used.

Running the REXX sample programs
This topic describes how to run the REXX sample programs.

Procedure
To run the REXX sample programs, complete the following steps:
1. Uncomment the MVS job control EXEC card.
2. Run the REXX EXEC.

Testing the GIVESOCKET and TAKESOCKET commands
This topic describes how to test the GIVESOCKET and TAKESOCKET commands using the sample
programs.

Procedure
To test the GIVESOCKET and TAKESOCKET commands, complete the following steps:
1. Uncomment REXAPI04 from the job REXXAPIS and submit the sample job control to the JES reader.
2. Submit job REXXAPI using REXAPI03.
3. Submit REXXAPIT.

686 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

REXXAPIT assumes that the socket being passed is 3 and that the client ID is AF_INET6 REXAPI
TCPSVT.

Chapter 14. REXX socket application programming interface 687

688 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Chapter 15. Pascal application programming
interface

This information describes the Pascal language for IPv4 socket application program interface (API) that is
provided with TCP/IP. This interface allows programmers to write application programs that use the TCP,
UDP, and IP layers of the TCP/IP protocol suite. Topics include:

• Software requirements
• Data structures
• Using procedure calls
• Pascal return codes
• Procedure calls
• Sample Pascal program

To use the Pascal language API, you should have experience in Pascal language programming and be
familiar with the principles of internetwork communication.

Your program uses procedure calls to initiate communication with the TCP/IP address space. Most of
these procedure calls return with a code that indicates success or the type of failure incurred by the call.
The TCP/IP address space starts asynchronous communication by sending you notification.

Note: The Pascal API is not enhanced for IPv6 support.

Steps for Pascal language API procedure calls
This topic describes the steps of writing the Pascal program.

Before you begin
To use the Pascal language API, you should have experience in Pascal language programming and be
familiar with the principles of internetwork communication.

Procedure
Perform the following steps to write the Pascal program.
1. Start TCP/UDP/IP service (BeginTcpIp).

2. Specify the set of notifications that TCP/UDP/IP can send you (Handle).

3. Establish a connection (TcpOpen, UdpOpen, RawIpOpen, and TcpWaitOpen).

Note: If using TcpOpen, communication must wait for the appropriate notification of connection.

4. Transfer a data buffer to or from the TCP/IP address space (TcpSend, TcpFSend, TcpWaitSend,

TcpReceive, TcpFReceive, TcpWaitReceive, UdpSend, UdpNReceive, RawIpSend, UdpReceive, and
RawIpReceive).

Notes:

a. TcpWaitReceive and TcpWaitSend are synchronous calls.
b. TcpFSend and TcpSend are the asynchronous ways of sending data on a TCP connection. Both

procedures return to your program immediately. TcpSend does not wait under any circumstance.

© Copyright IBM Corp. 2000, 2020 689

c. TcpSend and TcpFSend differ in how they handle the situation when TCP/IP address space has
insufficient buffer space to accept the data being sent.

d. In the case of insufficient buffer space, TCP/IP responds to TcpSend with the return code
NObufferSPACE. This return code is sent back to the application. It is the application's
responsibility to wait for BUFFERspaceAVAILABLE notification and resend the data.

e. In the case of TcpFSend with insufficient buffer space, the PASCAL API blocks until buffer space
becomes available or an error is detected. This is the only condition under which TcpFSend blocks.

5. Check the status returned from TCP/IP in the form of notifications (GetNextNote).

6. Repeat the data transfer operations (Steps 4 and 5) until the data is exhausted.

7. Terminate the connection (TcpClose, UdpClose, and RawIpClose).

Note: If you are using TcpClose, you must wait for the connection to terminate.

8. Terminate the communication service (EndTcpIp).

Results
You know you are done when control is returned to you. Control is returned, in most instances, after the
initiation of your request. When appropriate, some procedures have alternative wait versions that return
only after request completion.

Example

A sample program is supplied with TCP/IP. See “Sample Pascal program” on page 730, for a listing of
the sample program.

Pascal language API software requirements
To develop programs in Pascal that interface directly to the TCP, UDP, and IP protocol boundaries, you
must have the IBM VS Pascal Compiler and Library (5668-767).

Pascal API header files
The following list shows the headers used by Pascal applications:

• cmclien
• cmcomm
• cminter
• cmresglb

Pascal language API compatibility considerations
Unless noted in z/OS Communications Server: New Function Summary, an application program that is
compiled and link edited on a release of z/OS Communications Server IP can be used on higher level
releases. That is, the API is upward compatible.

Application programs that are compiled and link edited on a release of z/OS Communications Server IP
cannot be used on older releases. That is, the API is not downward compatible.

690 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Pascal language API data structures
Programs containing Pascal language API calls must include the appropriate data structures. The data
structures are declared in CMCOMM and CMCLIEN. To include these data sets in your program source,
enter:

 %include CMCOMM
 %include CMCLIEN

Additional include statements are required in programs that use certain calls. The following list shows the
members that need to be included for the various calls:

• CMRESGLB for GetHostResol
• CMINTER for GetHostNumber, GetHostString, IsLocalAddress, and IsLocalHost

The load modules are in the SEZACMTX data set. Include this data set in your SYSLIB concatenation when
you are creating a load module to link an application program. You must specify SEZACMTX before the
Pascal libraries when linking TCP/IP programs.

Connection state
ConnectionState is the current state of the connection. See Figure 171 on page 691 for the Pascal
declaration of the ConnectionStateType data type. ConnectionStateType is used in StatusInfoType and
NotificationInfoType. It defines the client program view of the state of a TCP connection, in a form more
readily usable than the formal TCP connection state defined by RFC 793. See Table 22 on page 692 for
the mapping between TCP states and ConnectionStateType.

 ConnectionStateType =
 (
 CONNECTIONclosing,
 LISTENING,
 NONEXISTENT,
 OPEN,
 RECEIVINGonly,
 SENDINGonly,
 TRYINGtoOPEN
);

Figure 171. Pascal declaration of connection state type

CONNECTIONclosing
Indicates that no more data can be transmitted on this connection, because it is going through the
TCP connection closing sequence.

LISTENING
Indicates that you are waiting for a foreign site to open a connection.

NONEXISTENT
Indicates that a connection no longer exists.

OPEN
Indicates that data can go either way on the connection.

RECEIVINGonly
Indicates that data can be received, but cannot be sent on this connection, because the client has
done a TcpClose.

SENDINGonly
Indicates that data can be sent out, but cannot be received on this connection, because the foreign
application has done a TcpClose or equivalent.

TRYINGtoOPEN
Indicates that you are trying to contact a foreign site to establish a connection.

Chapter 15. Pascal application programming interface 691

Table 22 on page 692 lists the TCP connection states.

Table 22. TCP connection states

TCP State ConnectionStateType

CLOSED NONEXISTENT

LAST-ACK, CLOSING, TIME-WAIT If there is incoming data that the client program has not
received, then RECEIVINGonly, otherwise
CONNECTIONclosing.

CLOSE-WAIT If there is incoming data that the client program has not
received, then OPEN, otherwise SENDINGonly.

ESTABLISHED OPEN

FIN-WAIT-1, FIN-WAIT-2 RECEIVINGonly

LISTEN LISTENING

SYN-SENT, SYN-RECEIVED TRYINGtoOPEN

Connection information record
The connection information record is used as a parameter in several of the procedure calls. It enables you
and the TCP/IP program to exchange information about the connection. The Pascal declaration is shown
in Figure 172 on page 692.

 StatusInfoType =
 record
 Connection: ConnectionType;
 OpenAttemptTimeout: integer;
 Security: SecurityType;
 Compartment: CompartmentType;
 Precedence: PrecedenceType;
 BytesToRead: integer;
 UnackedBytes: integer;
 ConnectionState: ConnectionStateType;
 LocalSocket: SocketType;
 ForeignSocket: SocketType;
 end;

Figure 172. Pascal declaration of connection information record

Connection
A number identifying the connection that is described. This connection number is different from the
connection number displayed by the NETSTAT command.

OpenAttemptTimeout
The number of seconds that TCP continues to attempt to open a connection. You specify this number.
If the limit is exceeded, TCP stops trying to open the connection and shuts down any partially open
connection.

BytesToRead
The number of data bytes received from the foreign host by TCP, but not yet delivered to the client.
TCP maintains this value.

UnackedBytes
The number of bytes sent by your program, but not yet sent to the foreign TCP, or the number of bytes
sent to the foreign TCP, but not yet acknowledged.

692 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ConnectionState

The current state of the connection. ConnectionStateType defines the client program view of the state
of a TCP connection, in a form more readily usable than the formal TCP connection state defined by
RFC 793.

LocalSocket
The local internet address and local port. Together, these form one end of a connection. The foreign
socket forms the other end. See Figure 173 on page 693 for the Pascal declaration of the SocketType
record.

ForeignSocket
The foreign, or remote, internet address and its associated port. These form one end of a connection.
The local socket forms the other end. Figure 173 on page 693 shows the Pascal declaration of a
socket type.

 InternetAddressType = UnsignedIntegerType;
 PortType = UnsignedHalfWordType;
 SocketType =
 record
 Address: InternetAddressType;
 Port: PortType;
 end;

Figure 173. Pascal declaration of socket type

Address
The internet address.

Port
The port.

Notification record
The notification record is used to provide event information. You receive this information by using the
GetNextNote call. If it is a variant record, the number of fields depends on the type of notification. See
Figure 174 on page 694 for the Pascal declaration of this record.

Chapter 15. Pascal application programming interface 693

 NotificationInfoType =
 record
 Connection: ConnectionType;
 Protocol: ProtocolType;
 case NotificationTag: NotificationEnumType of
 BUFFERspaceAVAILABLE:
 (
 AmountOfSpaceInBytes: integer
);
 CONNECTIONstateCHANGED:
 (
 NewState: ConnectionStateType;
 Reason: CallReturnCodeType
);
 DATAdelivered:
 (
 BytesDelivered: integer;
 LastUrgentByte: integer;
 PushFlag: Boolean
);

 FSENDresponse:
 (
 SendTurnCode: CallReturnCodeType;
 SendRequestErr: Boolean;
);
 PINGresponse:
 (
 PingTurnCode: CallReturnCodeType;
 ElapsedTime: TimeStampType
);
 RAWIPpacketsDELIVERED:
 (
 RawIpDataLength: integer;
 RawIpFullLength: integer;
);
 RAWIPspaceAVAILABLE:
 (
 RawIpSpaceInBytes: integer;
);
 SMSGreceived: ();
 TIMERexpired:
 (
 Datum: integer;
 AssociatedTimer: TimerPointerType
);
 UDPdatagramDELIVERED:
 (
 DataLength: integer;
 ForeignSocket: SocketType;
 FullLength: integer
);
 UDPdatagramSPACEavailable: ();
 URGENTpending:
 (
 BytesToRead: integer;
 UrgentSpan: integer
);
 USERdefinedNOTIFICATION:
 (
 UserData: UserNotificationDataType
);
 end;

Figure 174. Notification record

Connection
The client’s connection number to which the notification applies. In the case of
USERdefinedNOTIFICATION, this field is as supplied by the user in the AddUserNote call.

Protocol
In the case of USERdefinedNOTIFICATION, this field is as supplied by the user in the AddUserNote
call. For all other notifications, this field is reserved.

694 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

NotificationTag
The type of notification being sent. A set of fields depends on the value of the tag. Possible tag values
relevant to the TCP/UDP/IP interface and the corresponding fields are:
BUFFERspaceAVAILABLE

Notification given when space becomes available on a connection for which TcpSend previously
returned NObufferSPACE.
AmountOfSpaceInBytes

The minimum number of bytes that the TCP/IP service has available for buffer space for this
connection. The actual amount of buffer space might be more than this number.

CONNECTIONstateCHANGED
Indicates that a TCP connection has changed state.
NewState

The new state for this connection.
Reason

The reason for the state change. This field is meaningful only if the NewState field has a value
of NONEXISTENT.

Notes:

1. The following lists show the sequence of state notifications for a connection.

• For active open:

– OPEN
– RECEIVINGonly or SENDINGonly
– CONNECTIONclosing
– NONEXISTENT

• For passive open:

– OPEN
– RECEIVINGonly or SENDINGonly
– CONNECTIONclosing
– NONEXISTENT

Your program should be prepared for any intermediate step or steps to be skipped.
2. The normal TCP connection closing sequence can lead to a connection staying in

CONNECTIONclosing state for up to two minutes, corresponding to the TCP state TIME-WAIT.
3. Reason codes giving the reason for a connection changing to NONEXISTENT are:

• OK
• UNREACHABLEnetwork
• TIMEOUTopen
• OPENrejected
• REMOTEreset
• WRONGsecORprc
• FATALerror
• TCPipSHUTDOWN

DATAdelivered
Notification given when your buffer (named in an earlier TcpReceive or TcpFReceive request)
contains data.

Note: The data delivered should be treated as part of a byte stream, not as a message. There is no
guarantee that the data sent in one TcpSend (or equivalent) call on the foreign host is delivered in
a single DATAdelivered notification, even if the PushFlag is set.

Chapter 15. Pascal application programming interface 695

BytesDelivered
Number of bytes of data delivered to you.

LastUrgentByte
Number of bytes of urgent data remaining, including data just delivered.

PushFlag
TRUE if the last byte of data was received with the push bit set.

FSENDresponse
Notification given when a TcpFSend request is completed, successfully or unsuccessfully.
SendTurnCode

The status of the send operation.
PINGresponse

Notification given when a PINGresponse is received.
PingTurnCode

The status of the PING operation.
ElapsedTime

The time elapsed between the sending of a request and the reception of a response. This field
is valid only if PingTurnCode has a value of OK.

RAWIPpacketsDELIVERED
Notification given when your buffer (indicated in an earlier RawIpReceive request) contains a
datagram. Only one datagram is delivered on each notification. Your buffer contains the entire IP
header, plus as much of the datagram as fits in your buffer.
RawIpDataLength

The actual data length delivered to your buffer. If this is less than RawIpFullLength, the
datagram was truncated.

RawIpFullLength
Length of the packet, from the TotalLength field of the IP header.

RAWIPspaceAVAILABLE
When space becomes available after a client does a RawIpSend and receives a NObufferSPACE
return code, the client receives this notification to indicate that space is now available.
RawIpSpaceInBytes

The amount of space available always equals the maximum size IP datagram.
RESOURCESavailable

Notice given when resources needed for a TcpOpen or TcpWaitOpen are available. This notification
is sent only if a previous TcpOpen or TcpWaitOpen returned ZEROresources.

SMSGreceived
Notification given when one or more special messages (Smsgs) arrive. The GetSmsg call is used to
retrieve queued Smsgs.

TIMERexpired
Notification given when a timer set through SetTimer expires.
Datum

The data specified when SetTimer was called.
AssociatedTimer

The address of the timer that expired.
UDPdatagramDELIVERED

Notification given when your buffer, indicated in an earlier UdpNReceive or UdpReceive request,
contains a datagram. Your buffer contains the datagram excluding the UDP header.

Note: If UdpReceive was used, your buffer contains the entire datagram excluding the header,
with the length indicated by DataLength. If UdpNReceive was used, and DataLength is less than
FullLength, your buffer contains a truncated datagram. The reason is that your buffer was too
small to contain the entire datagram.

696 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

DataLength
Length of the data delivered to your buffer.

ForeignSocket
The source of the datagram.

FullLength
The length of the entire datagram, excluding the UDP header. This field is set only if
UdpNReceive was used.

UDPdatagramSPACEavailable
Notification given when buffer space becomes available for a datagram for which UdpSend
previously returned NObufferSPACE because of insufficient resources.

URGENTpending
Notification given when there is urgent data pending on a TCP connection.
BytesToRead

The number of incoming bytes not yet delivered to the client.
UrgentSpan

Number of bytes that are not delivered to the last known urgent pointer. No urgent data is
pending if this is negative.

USERdefinedNOTIFICATION
Notice generated from data passed to AddUserNote by your program.
UserData

A 40-byte field supplied by your program through AddUserNote. Connection and protocol
fields also are set from the values supplied to AddUserNote.

File specification record
The file specification record is used to fully specify a data set. The Pascal declaration is shown in Figure
175 on page 697.

 SpecOfFileType =
 record
 Owner: DirectoryNameType;
 Case SpecOfSystemType of
 VM:
 (
 VirtualAddress:VirtualAddressType;
 NewVirtualAddress:VirtualAddressType;
 DiskPassword: DirectoryNameType;
 Filename: DirectoryNameType;
 Filetype: DirectoryNameType;
 Filemode: FilemodeType
);
 MVS:
 (
 DatasetPassword: DirectoryNameType;
 FullDatasetName: DatasetNameType;
 MemberName: MemberNameType;
 DDName: DDNameType
);
 end;

Figure 175. Pascal declaration of file specification record

Chapter 15. Pascal application programming interface 697

Pascal language API: using procedure calls
Your program uses procedure calls to initiate communication with the TCP/IP address space. Most of
these procedure calls return with a code, which indicates success or the type of failure incurred by the
call. See Table 23 on page 699 for an explanation of the return codes.

Before invoking any of the other interface procedures, use BeginTcpIp to start the TCP/UDP/IP service.
When the TCP/UDP/IP service has begun, use the Handle procedure to specify a set of notifications that
the TCP/UDP/IP service can send you. To terminate the TCP/UDP/IP service, use the EndTcpIp procedure.

Notifications
The TCP/IP address space notifies you of asynchronous events. Also, some notifications are generated in
your address space by the TCP interface. Notifications can be received only after BeginTcIp.

The notifications are received by the TCP interface and kept in a queue. Use GetNextNote to get the next
notification. The notifications are in Pascal variant record form. See Figure 174 on page 694 for more
information.

TCP initialization procedures
The TCP Initialization procedures affect all present and future connections. Use these procedures to
initialize the TCP environment for your program.

TCP termination procedure
The Pascal API has one termination procedure call. Use the EndTcpIp call when you have finished with
the TCP/IP services.

TCP communication procedures
The TCP communication procedures apply to a particular client connection. Use these procedures to
establish a connection and to communicate. You must call the BeginTcpIp initialization routine before you
can begin using TCP communication procedures.

PING interface
The Ping interface lets a client send an ICMP echo request to a foreign host. You must call the BeginTcpIp
initialization routine before you can begin using the PING Interface.

Monitor procedures
The MonQuery monitor procedure provides a mechanism for querying the TCP/IP address space.

Any program using this monitor procedure must include CMCOMM and CMCLIEN.

UDP communication procedures
The UDP communication procedures describe the programming interface for the User Datagram Protocol
(UDP) provided in the TCP/IP product.

Raw IP interface
The Raw IP interface lets a client program send and receive arbitrary IP datagrams on any IP Internet
protocol except TCP and UDP. Only one client can use any given protocol at one time. Only clients that are
APF-authorized can use the Raw IP interface.

698 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Timer routines
The timer routines are used with the TCP/UDP/IP interface. You must call the BeginTcpIp initialization
routine before you can begin using the timer routines.

Host lookup routines
The host lookup routines (with the exception of GetHostResol) are declared in the CMINTER member of
the SEZACMAC data set. The host lookup routine GetHostResol is declared in the CMRESGLB member of
the SEZACMAC data set. Any program using these procedures must include CMINTER or CMRESGLB after
the INCLUDE statements for CMCOMM and CMCLIEN.

Assembler calls
AddUserNote is provided and can be called directly from an assembler language interrupt handler.

Other routines
This group includes the following procedures.

• GetSmsg
• ReadXlateTable
• SayCalRe
• SayConSt
• SayIntAd
• SayIntNum
• SayNotEn
• SayPorTy
• SayProTy

Pascal return codes
When using Pascal procedure calls, check to determine whether the call has been completed
successfully. Use the SayCalRe function (see “SayCalRe” on page 714) to convert the ReturnCode
parameter to a printable form.

The SayCalRe function converts a return value into a descriptive message. For example, if SayCalRe is
invoked with the return value BADlengthARGUMENT, it returns the message invalid length
specified. See Table 23 on page 699 for a description of Pascal return codes and their equivalent
message text from SayCalRe.

Most return values are self-explanatory in the context where they occur. The return codes you see as a
result of issuing a TCP/UDP/IP request are in the range -128 to 0.

Table 23. Pascal language return codes

Return Value Return Code Message Text

OK 0 OK.

ABNORMALcondition -1 Abnormal condition because of CSA storage
shortage.

ALREADYclosing -2 Connection is already closing.

BADlengthARGUMENT -3 Length specified that is not valid.

CANNOTsendDATA -4 Cannot send data.

Chapter 15. Pascal application programming interface 699

Table 23. Pascal language return codes (continued)

Return Value Return Code Message Text

CLIENTrestart -5 Client reinitialized TCP/IP service.

CONNECTIONalreadyEXISTS -7 Connection exists.

ERRORinPROFILE -8 Error in profile data set. Details are in
PROFILE.TCPERROR or the //SYSERROR DD
file.

FATALerror -9 Fatal error; not valid user parameter (storage
key).

HASnoPASSWORD -10 No password is in the RACF directory.

INCORRECTpassword -11 TCPIP is not authorized to access the data set.

INVALIDrequest -12 Request not valid.

INVALIDuserID -13 User ID not valid.

INVALIDvirtualADDRESS -14 Virtual address not valid.

LOCALportNOTavailable -16 The requested local port is not available.

NObufferSPACE -19 No more space for data currently available.
This applies to this connection only; space
might still be available for other connections.

NONlocalADDRESS -21 The internet address is not local to this host.

NOoutstandingNOTIFICATIONS -22 No outstanding notifications.

NOsuchCONNECTION -23 No such connection.

NOtcpIPservice -24 No TCP/IP service is available.

NOTyetBEGUN -25 TCP/IP service not yet begun.

NOTyetOPEN -26 The connection is not yet open.

OPENrejected -27 Foreign host rejected the open attempt.

PARAMlocalADDRESS -28 TcpOpen error: local address not valid.

PARAMstate -29 TcpOpen error: initial state not valid.

PARAMtimeout -30 Timeout parameter not valid.

PARAMunspecADDRESS -31 TcpOpen error: unspecified foreign address in
active open.

PARAMunspecPORT -32 TcpOpen error: unspecified foreign port in
active open.

PROFILEnotFOUND -33 TCPIP cannot read PROFILE data set.

RECEIVEstillPENDING -34 Receive is still pending on this connection.

REMOTEclose -35 Foreign host unexpectedly closed the
connection.

REMOTEreset -36 Foreign host abended the connection.

SOFTWAREerror -37 Software error in TCP/IP.

TCPipSHUTDOWN -38 TCP/IP is being shut down.

700 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 23. Pascal language return codes (continued)

Return Value Return Code Message Text

TIMEOUTopen -40 Foreign host did not respond within OPEN
timeout.

TOOmanyOPENS -41 Too many open connections exist.

UNAUTHORIZEDuser -43 You are not authorized to issue this command.

UNIMPLEMENTEDrequest -45 TCP/IP request not implemented.

UNREACHABLEnetwork -47 Destination network cannot be reached.

UNSPECIFIEDconnection -48 Connection not specified.

VIRTUALmemoryTOOsmall -49 Client address space has too little storage.

WRONGsecORprc -50 Foreign host disagreed on security or
precedence.

ZEROresources -56 TCP cannot handle more connections now.

UDPlocalADDRESS -57 Local address for UDP not correct.

UDPunspecADDRESS -59 Address was not specified; specification is
necessary.

UDPunspecPORT -60 Port was unspecified; specification is
necessary.

FSENDstillPENDING -62 FSend still pending on this connection.

ERRORopeningORreadingFILE -80 Error opening or reading data set.

FILEformatINVALID -81 File format is not valid.

SAYCALRE* -130 Unknown TCP return code.

* Return codes that are not valid (out of the range -128 to 0) return Unknown TCP return codes when translated
using SAYCALRE.

Pascal language API procedure calls
This information provides the syntax, parameters, and other appropriate information for each Pascal
procedure call supported by TCP/IP.

AddUserNote
This procedure can be called from assembler language code to add a USERdefinedNOTIFICATION
notification to the note queue and cause the initiation of GetNextNote if it is waiting for a notification.
Figure 176 on page 702 shows a sample calling sequence.

Chapter 15. Pascal application programming interface 701

 LA R13,PASCSAVE
 LA R1,PASCPARM
 L R15,=V(ADDUSERN)
 BALR R14,R15
 .
 .
PASCSAVE DS 18F Register save area
ENV DC F'0' Zero initially. It is filled with
 an environment address. Pass it unchanged
 in subsequent calls to ADDUSERN.
DATA1 DS H Data for Connection field of notification.
DATA2 DS C Data for Protocol field of notification.
DATA3 DS XL40 Data for UserData field of notification.
RC DS F AddUserNote stores return code here.

PASCPARM DC A(ENV)
 DC A(DATA1)
 DC A(DATA2)
 DC A(DATA3)
 DC A(RC)

Figure 176. Sample calling sequence

Parameter
Description

ReturnCode (RC)
Indicates the success or failure of the call. Possible return values are:

• OK
• NObufferSPACE

BeginTcpIp
Use BeginTcpIp to inform the TCP/IP address space that you want to start using its services as show in
Figure 177 on page 702.

 procedure BeginTcpIp
 (
 var ReturnCode: integer
);
 external;

Figure 177. BeginTcpIp example

Parameter
Description

ReturnCode
Indicates success or failure of call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• NOtcpIPservice
• TCPipSHUTDOWN
• VIRTUALmemoryTOOsmall

For a description of the Pascal return codes, see Table 23 on page 699.

ClearTimer
This procedure resets the timer to prevent it timing out as shown in Figure 178 on page 703.

702 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 procedure ClearTimer
 (
 T: TimerPointerType
);
 external;

Figure 178. ClearTimer example

Parameter
Description

T
A timer pointer, as returned by a previous CreateTimer call.

CreateTimer
This procedure allocates a timer. The timer is not set in any way. See “SetTimer” on page 716 to activate
the timer. Figure 179 on page 703 shows an example.

 procedure CreateTimer
 (
 var T: TimerPointerType
);
 external;

Figure 179. Create timer example

Parameter
Description

T
Set to a timer pointer that can be used in subsequent SetTimer, ClearTimer, and DestroyTimer calls.

DestroyTimer
This procedure deallocates (frees) a timer you created. Figure 180 on page 703 shows an example.

 procedure DestroyTimer
 (
 var T: TimerPointerType
);
 external;

Figure 180. Destroy timer example

Parameter
Description

T
A timer pointer, as returned by a previous CreateTimer call.

EndTcpIp
Use EndTcpIp when you have finished with the TCP/IP services. The procedure shown in Figure 181 on
page 703 releases ports and protocols in use that are not permanently reserved. It causes TCP to clean
up the data structures it has associated with your commands.

 procedure EndTcpIp;
 external;

Figure 181. EndTcpIp example

Chapter 15. Pascal application programming interface 703

GetHostNumber
The GetHostNumber procedure resolves a host name into an internet address. This is shown in Figure 182
on page 704.

GetHostNumber uses a table lookup to convert the name of a host (alphanumeric name or dotted decimal
number) to an internet address, and returns this address in the HostNumber field. When the name is a
dotted decimal number, GetHostNumber returns the integer represented by that dotted decimal. The
dotted decimal representation of a 32-bit number has 1 decimal integer for each of the 4 bytes, separated
by dots. For example, 14.0.0.7 for X'0E000007'. See z/OS Communications Server: IP Configuration
Reference for information about how to create host lookup tables.

The HostNumber field is set to NOhost if the host is not found.

 procedure GetHostNumber
 (
 const Name: string;
 var HostNumber: InternetAddressType
);
 external;

Figure 182. GetHostNumber example

Parameter
Description

Name
The name or dotted decimal number to be converted. The maximum name length is 128 characters.

HostNumber
Set to the converted address, or NOhost if conversion fails.

GetHostResol
The GetHostResol procedure converts a host name into an internet address by using a name server.
Figure 183 on page 704 shows an example.

GetHostResol passes the query to the remote name server through the resolver. The name server
converts the name of a host (alphanumeric name or dotted decimal number) to an internet address, and
returns this address in the HostNumber field. If the name server does not respond or does not find the
name, the host name is converted to a host number by table lookup. When the name is a dotted decimal
number, the integer represented by that dotted decimal is returned. The dotted decimal representation of
a 32-bit number has 1 decimal integer for each of the 4 bytes, separated by dots. For example, 14.0.0.7
for X'0E000007'.

The HostNumber field is set to NOhost if the host is not found.

 procedure GetHostResol
 (
 const Name: string;
 var HostNumber: InternetAddressType
);
 external;

Figure 183. GetHostResol example

Parameter
Description

Name
The name or dotted decimal number to be converted. The maximum length is 255 characters.

HostNumber
Set to the converted address, or NOhost if conversion fails.

704 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

GetHostString
The GetHostString procedure call uses a table lookup to convert an internet address dotted decimal
format to a host name, and returns this string in the Name field. The first host name found in the lookup is
returned. If no host name is found, a gateway or network name is returned. If no gateway or network
name is found, a null string is returned. An example is shown in Figure 184 on page 705.

 procedure GetHostString
 (
 Address: InternetAddressType;
 var Name: SiteNameType
);
 external;

Figure 184. GetHostString example

Parameter
Description

Address
The address to be converted. The address must be in dotted decimal format.

Name
Set to the corresponding host, gateway, or network name, or to null string if a match is not found. The
maximum length is 24 characters.

GetIdentity
This procedure returns the following information:

• The user ID of the MVS user
• The host machine name
• The network domain name
• The user ID of the TCP/IP address space

The host machine name and domain name are extracted from the HostName and DomainOrigin
statements, respectively, in TCPIP.DATA. If a HostName statement is not specified, then the default host
machine name is the name specified by the TCP/IP installer during installation (the name from the line
containing the definition, VMCF,MVPXSSI,nodename, in the IEFSSNxx member of PARMLIB). The TCP/IP
address space user ID is extracted from the TcpipUserid/TcpipJobname statement in TCPIP.DATA; if the
statement is not specified, the default is TCPIP. See z/OS Communications Server: IP Configuration
Reference for information about TCPIP.DATA search order.

Figure 185 on page 705 shows the GetIdentity procedure.

 procedure GetIdentity
 (
 var UserId: DirectoryNameType;
 var HostName, DomainName: String;
 var TcpIpServiceName: DirectoryNameType;
 var Result: integer
);
 external;

Figure 185. GetIdentity example

Parameter
Description

UserId
The user ID of the TSO user or the job name of a batch job that has invoked GetIdentity.

HostName
The host machine name.

Chapter 15. Pascal application programming interface 705

DomainName
The network domain name.

TcpIpServiceName
The user ID of the TCP/IP address space.

Result
Indicates success or failure of the call.

GetNextNote
Use this procedure to retrieve notifications from the queue. This procedure returns the next notification
queued for you. Figure 186 on page 706 shows an example of the GetNextNote procedure.

 procedure GetNextNote
 (
 var Note: NotificationInfoType;
 ShouldWait: Boolean;
 var ReturnCode: integer
);
 external;

Figure 186. GetNextNote example

Parameter
Description

Note
Next notification is stored here when ReturnCode is OK.

ShouldWait
Set ShouldWait to TRUE if you want GetNextNote to wait until a notification becomes available. Set
ShouldWait to FALSE if you want GetNextNote to return immediately. When ShouldWait is set to
FALSE, ReturnCode is set to NOoutstandingNOTIFICATIONS if notification is not currently queued.

ReturnCode
Indicates success or failure of call. Possible return values are:

• OK
• NOoutstandingNOTIFICATIONS
• NOTyetBEGUN

For a description of Pascal return codes, see Table 23 on page 699.

GetSmsg
Your program should call this procedure after receiving an SMSGreceived notification. Each call to
GetSmsg retrieves one queued Smsg. Your program should exhaust all queued Smsgs by calling GetSmsg
repeatedly until the Success field returns with a value of FALSE. After a value of FALSE is returned, do not
call GetSmsg again until you receive another SMSGreceived notification. Figure 187 on page 706 shows
an example of the GetSmsg procedure.

 procedure GetSMsg
 (
 var Smsg: SmsgType;
 var Success: Boolean;
);
 external;

Figure 187. GetSmsg example

Parameter
Description

Smsg
Set to the returned Smsg if Success is set to TRUE.

706 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Success
If Smsg returned TRUE; otherwise FALSE.

Handle
Use the Handle procedure to specify that you want to receive notifications in the given set as shown in
Figure 188 on page 707. You must always use it after calling the BeginTcpIp procedure and before
accessing the TCP/IP services. This Pascal set of notifications can contain any of the
NotificationEnumType values shown in Figure 174 on page 694.

 procedure Handle
 (
 Notifications: NotificationSetType;
 var ReturnCode: integer
);
 external;

Figure 188. Handle example

Parameter
Description

Notifications
The set of notification types to be handled.

ReturnCode
Indicates success or failure of the call. Possible return values are:

• OK
• NOTyetBEGUN

For a description of Pascal return codes, see Table 23 on page 699.

IsLocalAddress
This procedure queries the TCP/IP address space to determine whether the HostAddress is one of the
addresses recognized for this host. If the address is local, it returns OK. If the address is not local, it
returns NONlocalADDRESS. Figure 189 on page 707 shows an example.

 procedure IsLocalAddress
 (
 HostAddress: InternetAddressType;
 var ReturnCode: integer
);
 external;

Figure 189. IsLocalAddress example

Parameter
Description

HostAddress
The host address to be tested.

ReturnCode
Indicates whether the host address is local, or it might indicate an error. Possible return values are:

• OK
• NONlocalADDRESS
• TCPipSHUTDOWN
• FATALerror
• SOFTWAREerror

For a description of Pascal return codes, see Table 23 on page 699.

Chapter 15. Pascal application programming interface 707

IsLocalHost
This procedure returns the correct host class for Name, which can be a host name or a dotted decimal
address. Figure 190 on page 708 shows an example of the IsLocalHost procedure.

The host classes are:
HOSTlocal

An internet address for the local host
HOSTloopback

One of the dummy internet addresses used to designate various levels of loopback testing
HOSTremote

A known host name for some remote host
HOSTunknown

An unknown host name (or other error)

 procedure IsLocalHost
 (
 const Name: string;
 var Class: HostClassType
);
 external;

Figure 190. IsLocalHost example

Parameter
Description

Name
The host name. The maximum name length is 255 characters.

Class
The host class

MonQuery
The MonQuery procedure is used to obtain status information or to request TCP/IP to perform certain
actions.

Restriction: When you use this function, the total number of IPv4 IP addresses that can be configured to
the TCP/IP stack is limited to 255 IP addresses. This limitation of 255 IP addresses applies to all IPv4 IP
addresses, including loopback and dynamic VIPA addresses.

 procedure MonQuery
 (
 QueryRecord: MonQueryRecordType;
 Buffer: integer;
 BufSize: integer;
 var ReturnCode: integer;
 var Length: integer
);
 external;

Figure 191. MonQuery example

Parameter
Description

Buffer
The address of the buffer to receive data.

BufSize
The size of the buffer.

ReturnCode
Indicates success or failure of the call. Possible return values are:

708 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• OK
• FATALerror
• NOTyetBEGUN
• TCPipSHUTDOWN
• UNIMPLEMENTEDrequest
• UNAUTHORIZEDuser
• SOFTWAREerror

Length
The length of the data returned in the buffer.

QueryRecord
Your program sets up a QueryRecord to specify the type of status information to be retrieved. The
MonQueryRecordType is shown in Figure 192 on page 709.

 MonQueryRecordType =
 record
 case QueryType: MonQueryType of
 QUERYhomeONLY: ();
 end; { MonQueryRecordType }

Figure 192. Monitor query record

The only QueryType values available for customer use is:
QUERYhomeONLY

Used to obtain a list of the home Internet addresses (up to 255) recognized by TCP/IP. Your program
sets the Buffer to the address of a variable of type HomeOnlyListType, and the BufSize to its length.
When MonQuery returns, Length is set to the length of the Buffer that was used, if ReturnCode is OK.
Divide the Length by size of the InternetAddressType to get the number of the home addresses that
are returned.

For a description of Pascal return codes, see Table 23 on page 699.

PingRequest
Use this procedure to send an ICMP echo request to a foreign host. When a response is received or the
timeout limit is reached, you receive a PingResponse notification.

 procedure PingRequest
 (
 ForeignAddress: InternetAddressType;
 Length: integer;
 Timeout: integer;
 var ReturnCode: integer
);
 external;

Figure 193. PingRequest example

Parameter
Description

ForeignAddress
The address of the foreign host to receive an ICMP echo request.

Length
Indicates the length of the ICMP packet, excluding the IP header. The range of values for this field is 8
- 65507 bytes.

Timeout
The amount of time to wait for a response, in seconds.

Chapter 15. Pascal application programming interface 709

ReturnCode
Indicates success or failure of a call. Possible return values are:

• OK
• ABNORMALcondition
• BADlengthARGUMENT
• CONNECTIONalreadyEXISTS
• VIRTUALmemoryTOOsmall
• NOTyetBEGUN
• TIMEOUTopen
• PARAMtimeout
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser

For a description of Pascal return codes, see Table 23 on page 699.

Note: CONNECTIONalreadyEXISTS, in this context, means a PING request is outstanding.

RawIpClose
This procedure tells the TCP/IP address space that the client does not handle the protocol any longer. Any
queued incoming packets are discarded. Figure 194 on page 710 shows an example of the RawIpClose
procedure.

When the client is not handling the protocol, a return code of NOsuchCONNECTION is received.

 procedure RawIpClose
 (
 ProtocolNo: integer;
 var ReturnCode: integer
);
 external;

Figure 194. RawIpClose example

Parameter
Description

ProtocolNo
The number of the Internet protocol.

ReturnCode
Indicates the success or failure of a call. Possible return values are:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser

For a description of Pascal return codes, see Table 23 on page 699.

RawIpOpen
This procedure tells the TCP/IP address space that the client wants to send and receive packets of the
specified protocol. Figure 195 on page 711 shows an example.

710 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Do not use protocols 6 and 17. They specify the TCP (6) and UDP (17) protocols. When you specify 6, 17,
or a protocol that has been opened by another address space, you receive the LOCALportNOTavailable
return code.

 procedure RawIpOpen
 (
 ProtocolNo: integer;
 var ReturnCode: integer
);
 external;

Figure 195. RawIpOpen example

Parameter
Description

ProtocolNo
The number of the Internet protocol.

ReturnCode
Indicates success or failure of a call. Possible return values are:

• OK
• LOCALportNOTavailable
• NObufferSPACE
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser

For a description of Pascal return codes, see Table 23 on page 699.

Note: You can open the ICMP protocol, but your program receives only those ICMP packets not
interpreted by the TCP/IP address space.

RawIpReceive
Use the procedure shown in Figure 196 on page 711 to specify a buffer to receive Raw IP datagrams of
the specified protocol. You get the notification RAWIPpacketsDELIVERED when a packet is put in the
buffer.

 procedure RawIpReceive
 (
 ProtocolNo: integer;
 Buffer: Address31Type;
 BufferLength: integer;
 var ReturnCode: integer
);
 external;

Figure 196. RawIpReceive example

Parameter
Description

ProtocolNo
The number of the Internet protocol.

Buffer
The address of your buffer.

BufferLength
The length of your buffer. If you specify a length greater than 65535 bytes, only the first 65535 bytes
are used.

Chapter 15. Pascal application programming interface 711

ReturnCode
Indicates success or failure of a call. Possible return values are:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser
• INVALIDvirtualADDRESS

For a description of Pascal return codes, see Table 23 on page 699.

RawIpSend
This procedure shown in this example sends IP datagrams of the given protocol number. The entire
packet, including the IP header, must be in the buffer. The TCP/IP address space uses the total length
field of the IP header to determine where each packet ends. Subsequent packets begin at the next
doubleword (eight-byte) boundary within the buffer.

The packets in your buffer are transmitted unchanged with the following exceptions:

• They can be fragmented; the fragment offset and flag fields in the header are filled.
• The version field in the header is filled.
• The checksum field in the header is filled.
• The source address field in the header is filled.

You get the return code NOsuchCONNECTION if the client is not handling the protocol, or if a packet in the
buffer has another protocol. The return code BADlengthARGUMENT is received when:

• The DataLength is fewer than 40 bytes, or greater than 65535 bytes.
• NumPackets is 0.
• All packets do not fit into DataLength.

A ReturnCode value of NObufferSPACE indicates that the data is rejected, because TCP/IP is out of
buffers. When buffer space is available, the notification RAWIPspaceAVAILABLE is sent to the client.

 procedure RawIpSend
 (
 ProtocolNo: integer;
 Buffer: Address31Type;
 DataLength: integer;
 NumPackets: integers;
 var ReturnCode: integer
);
 external;

Figure 197. RawIpSend example

Parameter
Description

ProtocolNo
The number of the Internet protocol.

Buffer
The address of your buffer containing packets to send.

DataLength
The total length of data in your buffer.

712 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

NumPackets
The number of packets in your buffer.

ReturnCode
Indicates the success or failure of a call. Possible return values are:

• OK
• BADlengthARGUMENT
• NObufferSPACE
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser
• INVALIDvirtualADDRESS

Note: If your buffer contains multiple packets waiting to be sent, some of the packets might have been
sent even if ReturnCode is not OK.

For a description of Pascal return codes, see Table 23 on page 699.

ReadXlateTable
The procedure shown in Figure 198 on page 713 reads the binary translation table data set specified by
TableName, and fills in the AtoETable and EtoATable translation tables.

 procedure ReadXlateTable
 (
 var TableName: DirectoryNameType;
 var AtoETable: AtoEType;
 var EtoATable: EtoAType;
 var TranslateTableSpec: SpecOfFileType;
 var ReturnCode: integer
);
 external;

Figure 198. ReadXlateTable example

Parameter
Description

TableName
The name of the translate table. ReadXlateTable tries to read user_id.TableName.TCPXLBIN. If that
data set exists but it has an incorrect format, ReadXlateTable returns with a ReturnCode
FILEformatINVALID. If user_id.TableName.TCPXLBIN does not exist, ReadXlateTable tries to read
hlq.TableName.TCPXLBIN. ReturnCode reflects the status of reading that data set.

AtoETable
Filled with ASCII-to-EBCDIC table if return code is OK.

EtoATable
Filled with EBCDIC-to-ASCII table if return code is OK.

TranslateTableSpec
If ReturnCode is OK, TranslateTableSpec contains the complete specification of the data set that
ReadXlateTable used. If ReturnCode is not OK, TranslateTableSpec contains the complete
specification of the last data set that ReadXlateTable tried to use.

ReturnCode
Indicates success or failure of a call. Possible return values are:

• OK
• ERRORopeningORreadingFILE

Chapter 15. Pascal application programming interface 713

• FILEformatINVALID

SayCalRe
This function returns a printable string describing the return code passed in CallReturn. Figure 199 on
page 714 shows an example.

 function SayCalRe
)
 CallReturn: integer
):
 WordType;
 external;

Figure 199. SayCalRe example

Parameter
Description

CallReturn
The return code to be described.

SayConSt
This function returns a printable string describing the connection state passed in State. For example, if
SayConSt is invoked with the type identifier RECEIVINGonly, it returns the message Receiving only.
Figure 200 on page 714 shows an example of this procedure.

 function SayConSt
 (
 State: ConnectionStateType
):
 Wordtype;
 external;

Figure 200. SayConSt example

Parameter
Description

State
The connection state to be described.

SayIntAd
This function converts the Internet Protocol address specified by InternetAddress to a printable string. If
the address can be resolved to a name by use of local host tables, the name is returned. The address to
name resolution depends on how the resolver is configured and if any local host tables exist. See z/OS
Communications Server: IP Configuration Guide for information about configuring the resolver and how
local host tables can be used. If the address cannot be resolved to a name, the dotted decimal format of
the address is returned. Figure 201 on page 714 shows an example of this procedure.

 function SayIntAd
 (
 InternetAddress: InternetAddressType
):
 WordType;
 external;

Figure 201. SayIntAd example

Parameter
Description

InternetAddress
The internet address to be converted.

714 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

SayIntNum
This function converts the internet address specified by InternetAddress to a printable string, in dotted
decimal form as shown in Figure 202 on page 715.

 function SayIntNum
 (
 InternetAddress: InternetAddressType
):
 Wordtype;
 external;

Figure 202. SayIntNum example

Parameter
Description

InternetAddress
The internet address to be converted.

SayNotEn
This function returns a printable string describing the notification enumeration type passed in
Notification. For example, if SayNotEn is invoked with the type identifier FSENDreponse, it returns the
message "Fsend response".

 function SayNotEn
 (
 Notification: NotificationEnumType
);
 Wordtype;
 external;

Figure 203. SayNotEn example

Parameter
Description

Notification
The notification enumeration type to be described.

SayPorTy
This function returns a printable string describing the port number passed in Port, if it is a well-known port
number such as port number 23, the Telnet port. Otherwise, the EBCDIC representation of the number is
returned. Figure 204 on page 715 shows an example of this function.

 function SayPorTy
 (
 Port: PortType
):
 WordType;
 external;

Figure 204. SayPorTy example

Parameter
Description

Port
The port number to be described.

Chapter 15. Pascal application programming interface 715

SayProTy
This function converts the protocol type specified by Protocol to a printable string, if it is a well-known
protocol number, such as 6 (TCP). Otherwise, the EBCDIC representation of the number is returned.
Figure 205 on page 716 shows an example of this function.

 function SayProTy
 (
 Protocol: ProtocolType
):
 WordType;
 external;

Figure 205. SayProTy example

Parameter
Description

Protocol
The number of the protocol to be described.

SetTimer
The procedure shown in Figure 206 on page 716 sets a timer to expire after a specified time interval.
Specify the amount of time in seconds. When it times out, you receive the TIMERexpired notification,
which contains the data and the timer pointer.

Note: This procedure resets any previous time interval set on this timer.

 procedure SetTimer
 (
 T: TimerPointerType;
 AmountOfTime: integer;
 Data: integer
);
 external;

Figure 206. SetTimer example

Parameter
Description

T
A timer pointer, as returned by a previous CreateTimer call.

AmountOfTime
The time interval in seconds.

Data
An integer value to be returned with the TIMERexpired notification.

TcpAbort
Use the procedure shown in Figure 207 on page 716 to shut down a specific connection immediately.
Data sent by your application on the abended connection might be lost. TCP sends a reset packet to notify
the foreign host that you have abended the connection, but there is no guarantee that the reset will be
received by the foreign host.

 procedure TcpAbort
 (
 Connection: ConnectionType;
 var ReturnCode: integer
);
 external;

Figure 207. TcpAbort example

716 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameter
Description

Connection
The connection number, as returned by TcpOpen or TcpWaitOpen in the Connection field of the
StatusInfoType record.

ReturnCode
Indicates success or failure of call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• NOsuchCONNECTION
• NOTyetBEGUN
• TCPipSHUTDOWN
• SOFTWAREerror
• REMOTEreset

The connection is fully terminated when you receive the notification CONNECTIONstateCHANGED with
the NewState field set to NONEXISTENT.

For a description of Pascal return codes, see Table 23 on page 699.

TcpClose
Use the procedure shown in Figure 208 on page 717 to begin the TCP one-way closing sequence. During
this closing sequence, you, the local client, cannot send any more data. Data might be delivered to you
until the foreign application also closes. TcpClose also causes all data sent on that connection by your
application, and buffered by TCPIP, to be sent to the foreign application immediately.

 procedure TcpClose
 (
 Connection: ConnectionType;
 var ReturnCode: integer
);
 external;

Figure 208. TcpClose example

Parameter
Description

Connection
The connection number, as returned by TcpOpen or TcpWaitOpen in the Connection field of the
StatusInfoType record.

ReturnCode
Indicates success or failure of call. Possible return values are:

• OK
• ABNORMALcondition
• ALREADYclosing
• NOsuchCONNECTION
• NOTyetBEGUN
• TCPipSHUTDOWN
• SOFTWARError
• REMOTEreset

For a description of Pascal return codes, see Table 23 on page 699.

Chapter 15. Pascal application programming interface 717

Notes:

1. If you receive the notification CONNECTIONstateCHANGED with a NewState of SENDINGonly, the
remote application has done TcpClose (or an equivalent function) and is receiving only. Respond with
TcpClose when you finish sending data on the connection.

2. The connection is fully closed when you receive the notification CONNECTIONstateCHANGED, with a
NewState field set to NONEXISTENT.

TcpFReceive, TcpReceive, and TcpWaitReceive
The examples in this material illustrate TcpFReceive, TcpReceive, and TcpWaitReceive.

TcpFReceive and TcpReceive are the asynchronous ways of specifying a buffer to receive data for a given
connection. Both procedures return to your program immediately. The return code OK means that the
request has been accepted. When received data has been placed in your buffer, your program receives a
DATAdelivered notification.

TcpWaitReceive is the synchronous interface for receiving data from a TCP connection. TcpWaitReceive
does not return to your program until data has been received into your buffer or until an error occurs.
Therefore, it is not necessary that TcpWaitReceive receive a notification when data is delivered. The
BytesRead parameter is set to the number of bytes received by the data delivery, but if the number is less
than 0, the parameter indicates an error.

 procedure TcpFReceive
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BytesToRead: integer;
 var ReturnCode: integer
);
 external;

Figure 209. TcpFReceive example

 procedure TcpReceive
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BytesToRead: integer;
 var ReturnCode: integer
);
 external;

Figure 210. TcpReceive example

 procedure TcpWaitReceive
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BytesToRead: integer;
 var BytesRead: integer
);
 external;

Figure 211. TcpWaitReceive example

Parameter
Description

Connection
The connection number, as returned by TcpOpen or TcpWaitOpen in the Connection field of the
StatusInfoType record.

Buffer
The address of the buffer to contain the received data.

718 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

BytesToRead
The size of the buffer. TCP/IP usually buffers the incoming data until this many bytes are received.
Data is delivered sooner if the sender specified the PushFlag, or if the sender does a TcpClose or
equivalent.

Note: The order of TcpFReceive or TcpReceive calls on multiple connections and the order of
DATAdelivered notifications among the connections are not necessarily related.

BytesRead
Set when TcpWaitReceive returns. If it is greater than 0, it indicates the number of bytes received into
your buffer. If it is less than or equal to 0, it indicates an error. Possible BytesRead values are:

• OK+
• ABNORMALcondition
• FATALerror
• TIMEOUTopen+
• UNREACHABLEnetwork+
• BADlengthARGUMENT
• NOsuchCONNECTION
• NOTyetBEGUN
• NOTyetOPEN
• OPENrejected+
• RECEIVEstillPENDING
• REMOTEreset+
• TCPipSHUTDOWN+
• REMOTEclose

ReturnCode
Indicates success or failure of call. Possible return values are:

• OK
• ABNORMALcondition
• BADlengthARGUMENT
• FATALerror
• NOsuchCONNECTION
• NOTyetBEGUN
• NOTyetOPEN
• RECEIVEstillPENDING
• REMOTEclose
• TCPipSHUTDOWN
• INVALIDvirtualADDRESS
• SOFTWAREerror

For a description of Pascal return codes, see Table 23 on page 699.

(TcpWaitReceive):

1. For BytesRead OK, the function was initiated, but the connection is no longer receiving for an
unspecified reason. Your program does not have to issue TcpClose, but the connection is not
completely terminated until a NONEXISTENT notification is received for the connection.

2. For BytesRead REMOTEclose, the foreign host has closed the connection. Your program should
respond with TcpClose.

Chapter 15. Pascal application programming interface 719

3. If you receive any of the codes marked with (+), the function was initiated but the connection has now
been terminated (see “2” on page 695). Your program should not issue TcpClose, but the connection is
not completely terminated until NONEXISTENT notification is received for the connection.

4. TcpWaitReceive is intended to be used by programs that manage a single TCP connection. It is not
suitable for use by multiple connection servers.

5. A return code of TCPipSHUTDOWN can be returned either because the connection initiation has failed,
or because the connection has been terminated because of shutdown. In either case, your program
should not issue any more TCP/IP calls.

TcpFSend, TcpSend, and TcpWaitSend
The examples in this material illustrate TcpFSend, TcpSend, and TcpWaitSend.

TcpFSend and TcpSend are the asynchronous ways of sending data on a TCP connection. Both procedures
return to your program immediately (do not wait under any circumstance).

TcpWaitSend is a simple synchronous method of sending data on a TCP connection. It does not return
immediately if the TCPIP address space has insufficient space to accept the data being sent.

In the case of insufficient buffer space, when space becomes available a BUFFERspaceAVAILABLE
notification is received.

Your program can issue successive TcpWaitSend calls. Buffer shortage conditions are handled
transparently. Errors at this point are most likely unable to recover or are caused by a terminated
connection.

If you receive any of the codes listed for Reason in the CONNECTIONstateCHANGED notification, except
for OK, the connection was terminated for the indicated reason. Your program should not issue a
TcpClose, but the connection is not completely terminated until your program receives a NONEXISTENT
notification for the connection.

 procedure TcpFSend
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BufferLength: integer;
 PushFlag: Boolean;
 UrgentFlag: Boolean;
 var ReturnCode: integer
);
 external;

Figure 212. TcpFSend example

 procedure TcpSend
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BufferLength: integer;
 PushFlag: Boolean;
 UrgentFlag: Boolean;
 var ReturnCode: integer
);
 external;

Figure 213. TcpSend example

720 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 procedure TcpWaitSend
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BufferLength: integer;
 PushFlag: Boolean;
 UrgentFlag: Boolean;
 var ReturnCode: integer
);
 external;

Figure 214. TcpWaitSend example

Parameter
Description

Connection
The connection number, as returned by TcpOpen or TcpWaitOpen in the Connection field of the
StatusInfoType record.

Buffer
The address of the buffer containing the data to send.

BufferLength
The size of the buffer.

PushFlag
Set to force the data, and previously queued data, to be sent immediately to the foreign application.

UrgentFlag
Is set to mark the data as urgent. The semantics of urgent data depends on your application.

Note: Use urgent data with caution. If the foreign application follows the Telnet-style use of urgent
data, it might flush all urgent data, until a special character sequence is encountered.

ReturnCode
Indicates success or failure of call:

• OK
• ABNORMALcondition
• BADlengthARGUMENT
• CANNOTsendDATA
• FATALerror
• NObufferSPACE (TcpSend and TcpFSend)
• NOsuchCONNECTION
• NOTyetBEGUN
• NOTyetOPEN
• TCPipSHUTDOWN
• INVALIDvirtualADDRESS
• SOFTWAREerror
• REMOTEreset

For a description of Pascal return codes, see Table 23 on page 699.

Notes:

1. A successful TcpFSend, TcpSend, and TcpWaitSend means that TCP has received the data to be sent
and stored it in its internal buffers. TCP then puts the data in packets and transmits it when the
conditions permit.

2. Data sent in a TcpFSend, TcpSend, or TcpWaitSend request can be split into numerous packets by TCP,
or the data can wait in TCP’s buffer space and share a packet with other TcpFSend, TcpSend, or
TcpWaitSend requests.

Chapter 15. Pascal application programming interface 721

3. The PushFlag is used to expedite when TCP sends the data.

Setting the PushFlag to FALSE allows TCP to buffer the data and wait until it has enough data to
transmit so as to use the transmission line more efficiently. There can be some delay before the
foreign host receives the data.

Setting the PushFlag to TRUE instructs TCP to put data into packets and transmit any buffered data
from previous Send requests along with the data in the current TcpFSend, TcpSend, or TcpWaitSend
request without delay or consideration of transmission line efficiency. A successful send does not
imply that the foreign application has actually received the data, only that the data will be sent as soon
as possible.

4. TcpWaitSend is intended for programs that manage a single TCP connection. It is not suitable for use
by multiple connection servers.

TcpNameChange
Use the procedure shown in Figure 215 on page 722 if the address space running the TCP/IP program is
not named TCPIP and is not the same as specified in the TcpipUserid statement of the TCPIP.DATA data
set. (See z/OS Communications Server: IP Configuration Reference.)

If required, this procedure must be called before the BeginTcpIp procedure.

 procedure TcpNameChange
 (
 NewNameOfTcp: DirectoryNameType
);
 external;

Figure 215. TcpNameChange example

Parameter
Description

NewNameOfTcp
The name of the address space running TCP/IP.

TcpOpen and TcpWaitOpen
The examples in this material illustrate TcpOpen and TcpWaitOpen.

Use TcpOpen or TcpWaitOpen to initiate a TCP connection. TcpOpen returns immediately, and connection
establishment proceeds asynchronously with your program’s other operations. The connection is fully
established when your program receives a CONNECTIONstateCHANGED notification with NewState set to
OPEN. TcpWaitOpen does not return until the connection is established, or until an error occurs.

There are two types of TcpOpen calls: passive open and active open. A passive open call sets the
connection state to LISTENING. An active open call sets the connection state to TRYINGtoOPEN.

 procedure TcpOpen
 (
 var ConnectionInfo: StatusInfoType;
 var ReturnCode: integer
);
 external;

Figure 216. TcpOpen example

 procedure TcpWaitOpen
 (
 var ConnectionInfo: StatusInfoType;
 var ReturnCode: integer
);
 external;

Figure 217. TcpWaitOpen example

722 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Parameter
Description

ConnectionInfo
A connection information record.
Connection

Set this field to UNSPECIFIEDconnection. When the call returns, the field contains the number of
the new connection if ReturnCode is OK.

ConnectionState
For active open, set this field to TRYINGtoOPEN. For passive open, set this field to LISTENING.

OpenAttemptTimeout
Set this field to specify how long, in seconds, TCP is to continue attempting to open the
connection. If the connection is not fully established during that time, TCP reports the error to you.
If you used TcpOpen, you receive a notification. The type of notification that you receive is
CONNECTIONstateCHANGED. It has a new state of NONEXISTENT and a reason of TIMEOUTopen.
If you used TcpWaitOpen, it returns with ReturnCode set to TIMEOUTopen.

Security
This field is reserved. Set it to DEFAULTsecurity.

Compartment
This field is reserved. Set it to DEFAULTcompartment.

Precedence
This field is reserved. Set it to DEFAULTprecedence.

LocalSocket
Active Open: You can use an address of UNSPECIFIEDaddress (TCP/IP uses the home address
corresponding to the network interface used to route to the foreign address) and a port of
UNSPECIFIEDport (TCP/IP assigns a port number, in the range of 1000 - 65535). You can specify
the address, the port, or both if particular values are required by your application. The address
must be a valid home address for your node, and the port must be available (not reserved, and not
in use by another application).

Passive Open: You usually specify a predetermined port number, known by another program,
which can do an active open to connect to your program. Alternatively, you can use
UNSPECIFIEDport to let TCP/IP assign a port number, obtain the port number through TcpStatus,
and transmit it to the other program through an existing TCP connection or manually. You
generally specify an address of UNSPECIFIEDaddress, so that the active open to your port
succeeds, regardless of the home address to which it was sent.

ForeignSocket
Active Open: The address and port must both be specified, because TCP/IP cannot actively
initiate a connection without knowing the destination address and port.

Passive Open: If your program is offering a service to anyone who wants it, specify an address of
UNSPECIFIEDaddress and a port of UNSPECIFIEDport. You can specify a particular address and
port if you want to accept an active open only from a certain foreign application.

ReturnCode
Indicates success or failure of call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• LOCALportNOTavailable
• NObufferSPACE
• NOsuchCONNECTION
• NOTyetBEGUN
• OPENrejected (TcpWaitOpen Only)

Chapter 15. Pascal application programming interface 723

• PARAMlocalADDRESS
• PARAMstate
• PARAMtimeout
• PARAMunspecADDRESS
• PARAMunspecPORT
• REMOTEreset (TcpWaitOpen Only)
• SOFTWAREerror
• TCPipSHUTDOWN
• TIMEOUTopen (TcpWaitOpen Only)
• TOOmanyOPENS
• UNAUTHORIZEDuser (TcpWaitOpen Only)
• UNREACHABLEnetwork (TcpWaitOpen Only)
• ZEROresources

For a description of Pascal return codes, see Table 23 on page 699.

TcpOption
Use the procedure shown in Figure 218 on page 724 to set an option for a TCP connection.

 procedure TcpOption
 (
 Connection: ConnectionType
 OptionName: integer
 OptionValue: integer;
 var ReturnCode: integer;
); external;

Figure 218. TcpOption example

Parameter
Description

Connection
The connection number, as returned by TcpOpen or TcpWaitOpen in the Connection field of the
StatusInforType record.

OptionName
The code for the option.
Name

Description
OPTIONtcpKEEPALIVE

If OptionValue is nonzero, then the keep-alive mechanism is activated for connection. If
OptionValue is 0, then the keep-alive mechanism is deactivated for the connection. When
activated, the keep-alive mechanism periodically sends a packet on an otherwise idle connection.
If the remote TCP does not respond to the packet or to retransmissions of the packet, then the
connection state is changed to NONEXISTENT, with reason TIMEOUT connection.

OptionValue
The value for the option.

ReturnCode
Indicates success or failure of call.

Possible return values are:

• OK

724 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• NOsuchCONNECTION
• NOTyetBEGUN
• TCPipSHUTDOWN
• INVALIDrequest
• SOFTWAREerror
• REMOTEreset

For a description of Pascal return codes, see Table 23 on page 699.

TcpStatus
Use TcpStatus to obtain the current status of a TCP connection. Your program sets the Connection field of
the ConnectionInfo record to the number of the connection whose status you want. Figure 219 on page
725 shows an example of TcpStatus.

 procedure TcpStatus
 (
 var ConnectionInfo: StatusInfoType;
 var ReturnCode: integer
);
 external;

Figure 219. TcpStatus example

Parameter
Description

ConnectionInfo
If ReturnCode is OK, the following fields are returned.
OpenAttemptTimeout

If the connection is in the process of being opened (including a passive open), this field is set to
the number of seconds remaining before the open is terminated if it has not completed.
Otherwise, it is set to WAITforever.

BytesToRead
The number of bytes of incoming data queued for your program (waiting for TcpReceive,
TcpFReceive, or TcpWaitReceive).

UnackedBytes
The number of bytes sent by your program but not yet sent to the foreign TCP, or the number of
bytes sent to the foreign TCP, but not yet acknowledged.

ConnectionState
The current connection state.

LocalSocket
The local socket, consisting of a local address and a local port.

ForeignSocket
The foreign socket, consisting of a foreign address and a foreign port.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• TCPipSHUTDOWN
• REMOTEreset
• SOFTWAREerror

For a description of Pascal return codes, see Table 23 on page 699.

Chapter 15. Pascal application programming interface 725

Note: Your program cannot monitor connection state changes exclusively through polling with TcpStatus.
It must receive CONNECTIONstateCHANGED notifications through GetNextNote for the TCP interface to
work properly.

UdpClose
The procedure shown in Figure 220 on page 726 closes the UDP socket specified in the ConnIndex field.
All incoming datagrams on this connection are discarded.

 procedure UdpClose
 (
 ConnIndex: ConnectionIndexType;
 var ReturnCode: CallReturnCodeType
);
 external;

Figure 220. UdpClose example

Parameter
Description

ConnIndex
The ConnIndex value returned from UdpOpen.

ReturnCode
Indicates success or failure of a call. Possible return values are:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• TCPipSHUTDOWN
• SOFTWAREerror

For a description of Pascal return codes, see Table 23 on page 699.

UdpNReceive
The procedure shown in Figure 221 on page 726 notifies the TCP/IP address space that you are willing
to receive UDP datagram data. This call returns immediately. The data buffer is not valid until you receive
a UDPdatagramDELIVERED notification.

 procedure UdpNReceive
 (
 ConnIndex: ConnectionIndexType;
 BufferAddress: integer;
 BufferLength: integer;
 var ReturnCode: CallReturnCodeType
);
 external;

Figure 221. UdpNReceive example

Parameter
Description

ConnIndex
The ConnIndex value returned from UdpOpen.

BufferAddress
The address of your buffer that is filled with a UDP datagram.

BufferLength
The length of your buffer. If you specify a length larger than 65507 bytes, only the first 65507 bytes
are used.

726 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ReturnCode
Indicates success or failure of a call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• NOsuchCONNECTION
• NOTyetBEGUN
• RECEIVEstillPENDING
• TCPipSHUTDOWN
• SOFTWAREerror
• BADlengthARGUMENT
• INVALIDvirtualADDRESS

For a description of Pascal return codes, see Table 23 on page 699.

UdpOpen
This procedure requests acceptance of UDP datagrams on the specified socket and allows datagrams to
be sent from the specified socket. When the socket port is unspecified, UDP selects a port and returns it
to the socket port field. When the socket address is unspecified, UDP uses the default local address. If
specified, the address must be a valid home address for your node.

Note: When the local address is specified, only the UDP datagrams addressed to it are delivered.

If the ReturnCode indicates the open was successful, use the returned ConnIndex value on any further
actions pertaining to this UDP socket. Figure 222 on page 727 shows an example.

 procedure UdpOpen
 (
 var LocalSocket: SocketType;
 var ConnIndex: ConnectionIndexType;
 var ReturnCode: CallReturnCodeType
);
 external;

Figure 222. UdpOpen example

Parameter
Description

LocalSocket
The local socket (address and port pair).

ConnIndex
The ConnIndex value returned from UdpOpen.

ReturnCode
Indicates success or failure of a call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• LOCALportNOTavailable
• NObufferSPACE
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UDPlocalADDRESS

Chapter 15. Pascal application programming interface 727

• TOOmanyOPENS
• UNAUTHORIZEDuser

For a description of Pascal return codes, see Table 23 on page 699.

UdpReceive
The procedure shown in Figure 223 on page 728 notifies the TCP/IP address space that you are willing
to receive UDP datagram data.

UdpReceive is for compatibility with old programs only. New programs should use the UdpNReceive
procedure, which allows you to specify the size of your buffer.

If you use UdpReceive, TCP/IP can put a datagram as large as 2012 bytes in your buffer. If a larger
datagram is sent to your port when UdpReceive is pending, the datagram is discarded without
notification.

Note: No data is transferred from the TCP/IP address space in this call. It only tells TCP/IP that you are
waiting for a datagram. Data has been transferred when a UDPdatagramDELIVERED notification is
received.

 procedure UdpReceive
 (
 ConnIndex: ConnectionIndexType;
 DatagramAddress: integer;
 var ReturnCode: CallReturnCodeType
);
 external;

Figure 223. UdpReceive example

Parameter
Description

ConnIndex
The ConnIndex value returned from UdpOpen.

DatagramAddress
The address of your buffer that is filled with a UDP datagram.

ReturnCode
Indicates success or failure of a call:

• OK
• ABNORMALcondition
• FATALerror
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• INVALIDvirtualADDRESS

For a description of Pascal return codes, see Table 23 on page 699.

UdpSend
The procedure shown in Figure 224 on page 729 sends a UDP datagram to the specified foreign socket.
The source socket is the local socket selected in the UdpOpen that returned the ConnIndex value that
was used. The buffer does not include the UDP header. This header is supplied by TCP/IP.

When there is no buffer space to process the data, an error is returned. In this case, wait for a subsequent
UDPdatagramSPACEavailable notification.

728 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 procedure UdpSend
 (
 ConnIndex: ConnectionIndexType;
 ForeignSocket: SocketType;
 BufferAddress: integer;
 Length: integer;
 var ReturnCode: CallReturnCodeType
);
 external;

Figure 224. UdpSend example

Parameter
Description

ConnIndex
The ConnIndex value returned from UdpOpen.

ForeignSocket
The foreign socket (address and port) to which the datagram is to be sent.

BufferAddress
The address of your buffer containing the UDP datagram to be sent, excluding UDP header.

Length
The length of the datagram to be sent, excluding UDP header. Maximum is 65507 bytes.

ReturnCode
Indicates success or failure of a call. Possible return values are:

• OK
• BADlengthARGUMENT
• NObufferSPACE
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UDPunspecADDRESS
• UDPunspecPORT
• INVALIDvirtualADDRESS

For a description of Pascal return codes, see Table 23 on page 699.

Unhandle
Use the procedure shown in Figure 225 on page 729 when you no longer want to receive notifications in
the given set.

If you request to unhandle the DATAdelivered notification, the Unhandle procedure returns with a code of
INVALIDrequest.

 procedure Unhandle
 (
 Notifications: NotificationSetType;
 var ReturnCode: integer
);
 external;

Figure 225. Unhandle example

Parameter
Description

Notifications
The set of notifications that you no longer want to receive.

Chapter 15. Pascal application programming interface 729

ReturnCode
Indicates success or failure of call. Possible return values are:

• OK
• NOTyetBEGUN
• INVALIDrequest

For a description of Pascal return codes, see Table 23 on page 699.

Sample Pascal program
This information contains an example of a Pascal application program. The source code can be found in
the SEZAINST data set.

Building the sample Pascal API module
This topic describes the steps of building a sample Pascal API module.

Procedure
The following steps describe how to build the Pascal API module:
1. Compile the sample Pascal program.
2. Link-edit the object code module to form an executable module sample.

Running the sample module
This topic describes the steps of running a sample Pascal API module.

Procedure
The following steps describe how to run the sample module:
1. Run the Pascal API sample program with the Receive option (shown in Figure 226 on page 730).

Run PSAMPLE to start the sample program on the TSO command line. The following example is a
typical response:

ENTER TSO COMMAND, CLIST, OR REXX EXEC BELOW:

===> psample

Transfer Mode: (Send or Receive) receive

Host Name or Internet Address: mvs1

mvs1
Transfer rate 483884. Bytes/sec.
Transfer rate 442064. Bytes/sec.
Transfer rate 478802. Bytes/sec.
Transfer rate 549568. Bytes/sec.
Transfer rate 635116. Bytes/sec.
Program terminated successfully.

Figure 226. Sample Pascal API with receive option
2. Run the Pascal API sample program with the Send option on a second TSO ID (shown in Figure 227 on

page 731).

Run PSAMPLE on the TSO command line to start the sample program. The following example is a
typical response:

730 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

ENTER TSO COMMAND, CLIST, OR REXX EXEC BELOW:

===> psample

Transfer Mode: (Send or Receive) send

Host Name or Internet Address: mvs1

mvs1
Transfer rate 516540. Bytes/sec.
Transfer rate 487030. Bytes/sec.
Transfer rate 427816. Bytes/sec.
Transfer rate 566186. Bytes/sec.
Transfer rate 612128. Bytes/sec.
Program terminated successfully.

Figure 227. Sample Pascal API with send option

Sample Pascal application program
The following example shows a Pascal application program.

%UHEADER 5647-A01 (C) IBM CORP 1991, 2002. &SYSPARM EZABB01S PSAMPLE
{
 TCP/IP for MVS
 SMP/E Distribution Name: EZABB01V (for PSAMPLE source in SEZAINST)
 EZABB01S (for PSAMPLE module in SEZAMOD1)

 Licensed Materials - Property of IBM
 This product contains "Restricted Materials of IBM"
 5694-A01 (C) Copyright IBM Corp. 1991, 2002
 All rights reserved.
 US Government Users Restricted Rights -
 Use, duplication or disclosure restricted by GSA ADP Schedule
 Contract with IBM Corp.
 See IBM Copyright Instructions.
/* Change Activity - */
/* CFD List: */
/* */
/* $L1=D45MDEYE HTCP320 960205 KAA: RAS DCR - Module Eyecatchers */
/* $L2=D109 HTCP340 971024 KDJ: OS/390 Copyright */
/* $A1=PQ11420 HTCP340 971210 SLHUANG: Remove FRECEIVEerror and */
/* replace SendTurnCode */
/* $N1=PMV24171 CSV1R4 011128 SLHUANG: Ignore Bufferspaceavailable */
/* notification */
/* */
/* End CFD List: */

}
{**}
{* *}
{* Memory-to-memory Data Transfer Rate Measurement *}
{* *}
{* Pseudocode: Establish access to TCP/IP Services *}
{* Prompt user for operation parameters *}
{* Open a connection (Sender:active, Receiver:passive) *}
{* If Sender: *}
{* Send 5M of data using TcpFSend *}
{* Use GetNextNote to know when Send is complete *}
{* Print transfer rate after every 1M of data *}
{* else Receiver: *}
{* Receive 5M of data using TcpFReceive *}
{* Use GetNextNote to know when data is delivered *}
{* Print transfer rate after every 1M of data *}
{* Close connection *}
{* Use GetNextNote to wait until connection is closed *}
{* *}
{**}
program PSAMPLE;

%include CMALLCL
%include CMINTER
%include CMRESGLB

const
 BUFFERlength = 8192; { same as MAXdataBUFFERsize }

Chapter 15. Pascal application programming interface 731

 PORTnumber = 999; { constant on both sides }
 CLOCKunitsPERthousandth = '3E8000'x;

static
 Buffer : packed array (.1..BUFFERlength.) of char;
 BufferAddress : Address31Type;
 ConnectionInfo : StatusInfoType;
 Count : integer;
 DataRate : real;
 Difference : TimeStampType;
 HostAddress : InternetAddressType;
 IbmSeconds : integer;
 Ignored : integer;
 Line : string(80);
 Note : NotificationInfoType;
 PushFlag : boolean; { for TcpFSend }
 RealRate : real;
 ReturnCode : integer;
 SendFlag : boolean; { are we sending or receiving }
 StartingTime : TimeStampType;
 Thousandths : integer;
 TotalBytes : integer;
 UrgentFlag : boolean; { for TcpFSend }

 var RoundRealRate : integer;

 {**}
 {* Print message, release resources and reset environment *}
 {**}
 procedure Restore (const Message: string;
 const ReturnCode: integer);
 %UHEADER
 begin
 Write(Message);
 if ReturnCode <> OK then
 {* Write(SayCalRe(ReturnCode));
 Writeln(''); *}
 Msg1(Output,1, addr(SayCalRe(ReturnCode)))
 else Msg0(Output,2);

 EndTcpIp;
 Close (Input);
 Close (Output);
 end;

begin
 TermOut (Output);
 TermIn (Input);

 { Establish access to TCP/IP services }
 BeginTcpIp (ReturnCode);
 if ReturnCode <> OK then begin
 {* Writeln('BeginTcpip: ',SayCalRe(ReturnCode)); *}
 Msg1(Output,4, addr(SayCalRe(ReturnCode)));
 return;
 end;

 { Inform TCPIP which notifications will be handled by the program }
 Handle ((.DATAdelivered, BUFFERspaceAVAILABLE,
 CONNECTIONstateCHANGED,
 FSendResponse.), ReturnCode);
 if ReturnCode <> OK then begin
 Restore ('Handle: ', ReturnCode);
 return;
 end;

 { Prompt user for operation parameters }
{* Writeln('Transfer mode: (Send or Receive)'); *}
 Msg0(Output,5);
 ReadLn (Line);
 if (Substr(Ltrim(Line),1,1) = 's')
 or (Substr(Ltrim(Line),1,1) = 'S') then
 SendFlag := TRUE
 else
 SendFlag := FALSE;

{* Writeln('Host Name or Internet Address :'); *}
 Msg0(Output,6);
 ReadLn (Line);
 GetHostResol (Trim(Ltrim(Line)), HostAddress);
 if HostAddress = NOhost then begin

732 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 Restore ('GetHostResol failed. ', OK);
 return;
 end;

 { Open a TCP connection: active for Send and passive for Receive }
 { - Connection value will be returned by TcpIp }
 { - initialize IBM reserved fields: Security, Compartment }
 { and Precedence }
 { for Active open - set Connection State to TRYINGtoOPEN }
 { - must initialize foreign socket }
 { for Passive open - set ConnectionState to LISTENING }
 { - may leave foreign socket uninitialized to }
 { accept any open attempt }
 with ConnectionInfo do begin
 Connection := UNSPECIFIEDconnection;
 OpenAttemptTimeout := WAITforever;
 Security := DEFAULTsecurity;
 Compartment := DEFAULTcompartment;
 Precedence := DEFAULTprecedence;
 if SendFlag then begin
 ConnectionState := TRYINGtoOPEN;
 LocalSocket.Address := UNSPECIFIEDaddress;
 LocalSocket.Port := UNSPECIFIEDport;
 ForeignSocket.Address := HostAddress;
 ForeignSocket.Port := PORTnumber;
 end
 else begin
 ConnectionState := LISTENING;
 LocalSocket.Address := HostAddress;
 LocalSocket.Port := PORTnumber;
 ForeignSocket.Address := UNSPECIFIEDaddress;
 ForeignSocket.Port := UNSPECIFIEDport;
 end;
 end;
 TcpWaitOpen (ConnectionInfo, ReturnCode);
 if ReturnCode <> OK then begin
 Restore ('TcpWaitOpen: ', ReturnCode);
 return;
 end;

 { Initialization }
 BufferAddress := Addr(Buffer(.1.));
 StartingTime := ClockTime;
 TotalBytes := 0;
 Count := 0;
 PushFlag := false; { let TcpIp buffer data for efficiency }
 UrgentFlag := false; { none of out data is Urgent }

 { Issue first TcpFSend or TcpFReceive }
 if SendFlag then
 TcpFSend (ConnectionInfo.Connection, BufferAddress,
 BUFFERlength, PushFlag, UrgentFlag, ReturnCode)
 else
 TcpFReceive (ConnectionInfo.Connection, BufferAddress,
 BUFFERlength, ReturnCode);

 if ReturnCode <> OK then begin
 {* Writeln('TcpSend/Receive: ',SayCalRe(ReturnCode)); *}
 Msg1(Output,7, addr(SayCalRe(ReturnCode)));
 return;
 end;

 { Repeat until 5M bytes of data have been transferred }
 while (Count < 5) do begin
 { Wait until previous transfer operation is completed }
 GetNextNote(Note, True, ReturnCode);
 if ReturnCode <> OK then begin
 restore('GetNextNote :',ReturnCode);
 return;
 end;

 { Proceed with transfer according to the Notification received }
 { Notifications Expected : }
 { DATAdelivered - TcpFReceive function call is now complete }
 { - receive buffer contains data }
 { FSENDresponse - TcpFSend function call is now complete }
 { - send buffer is now available for use }
 case Note.NotificationTag of
 DATAdelivered:
 begin
 TotalBytes := TotalBytes + Note.BytesDelivered;

Chapter 15. Pascal application programming interface 733

 {issue next TcpFReceive }
 TcpFReceive (ConnectionInfo.Connection, BufferAddress,
 BUFFERlength, ReturnCode);
 if ReturnCode <> OK then begin
 Restore('TcpFReceive: ', ReturnCode);
 return;
 end;
 end;
 FSENDresponse:
 begin
 if Note.SendTurnCode <> OK then begin
 Restore('FSENDresponse: ',Note.SendTurnCode);
 return;
 end
 else begin
 {issue next TcpFSend }
 TotalBytes := TotalBytes + BUFFERlength;
 TcpFSend (ConnectionInfo.Connection, BufferAddress,
 BUFFERlength, PushFlag, UrgentFlag, ReturnCode);
 if ReturnCode <> OK then begin
 Restore('TcpFSend: ', ReturnCode);
 return;
 end;
 end;
 end;
 BUFFERspaceAVAILABLE:
 { do nothing };
 OTHERWISE
 begin
 Restore('UnExpected Notification ',OK);
 return;
 end;
 end; { Case on Note.NotificationTag }

 { is it time to print transfer rate? }
 if TotalBytes < 1048576 then
 continue;

 { Print transfer rate after every 1M bytes of data transferred }
 DoubleSubtract (ClockTime, StartingTime, Difference);
 DoubleDivide (Difference, CLOCKunitsPERthousandth, Thousandths,
 Ignored);
 RealRate := (TotalBytes/Thousandths) * 1000.0;
 {* Writeln('Transfer Rate ', RealRate:1:0,' Bytes/sec.'); *}
 RoundRealRate := Round(RealRate);
 Msg1(Output,8, addr(RoundRealRate));

 StartingTime := ClockTime;
 TotalBytes := 0;
 Count := Count + 1;
 end; {Loop while Count < 5 }

 { Close TCP connection and wait till partner also drops connection }
 TcpClose (ConnectionInfo.Connection, ReturnCode);
 if ReturnCode <> OK then begin
 Restore ('TcpClose: ', ReturnCode);
 return;
 end;

 { when partner also drops connection, program will receive }
 { CONNECTIONstateCHANGED notification with NewState = NONEXISTENT }
 repeat
 GetNextNote (Note, True, ReturnCode);
 if ReturnCode <> OK then begin
 Restore ('GetNextNote: ', ReturnCode);
 return;
 end;
 until (Note.NotificationTag = CONNECTIONstateCHANGED) &
 ((Note.NewState = NONEXISTENT) |
 (Note.NewState = CONNECTIONclosing));

 Restore ('Program terminated successfully. ', OK);
end.

Figure 228. Sample Pascal application program

734 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Appendix A. Multitasking C socket sample program

The first sample program is the server in the C language. It allocates a socket, binds to a port, calls listen()
to perform a passive open, and uses select() to block until a client request arrives. When a client requests
a connection, select() returns and accept() is called to establish the connection.

Note: Some hosts have more than one network address. By specifying a particular network address for
the bind() call, a server specifies that it wants to honor connections from one particular network address
only. If the server specifies the constant INADDR_ANY for this address, it accepts connections from any of
the machine’s network addresses.

This program uses the Multitasking Facility (MTF). The server has started a number of subtasks with the
MTF task initialization service tinit(). When the server has accepted a connection, it calls tsched() to start
the subtask that will handle the client. The server then uses givesocket() and takesocket() to pass the
connection to the subtask. When the connection has been passed to the subtask, the main loop blocks in
select() waiting for another client.

The second program is the subtask in C. When it begins, it does a takesocket(). It was passed two 8-byte
names that define the parent task from which it will obtain the socket. After it gets the socket, it sends a
message to this new client and then waits for the client to send a message back.

The third program is the client in C. It allocates a socket, binds to a port, and connects to a server port
that is passed as the second parameter port number 691. Then it has a conversation with the server
(actually the server’s subtask) sending and receiving messages alternatively.

Notes:

1. When you compile the C sample programs, use DEF(MVS) in the CPARM list.
2. When you run the server program, specify PARM='9999' to use port 9999.
3. When you run the client program, specify PARM='MVSF 9999' to use port 9999. Replace MVSF with

the host name of your MVS system.

Server sample program in C
The following C socket server program is the MTCSRVR member in the SEZAINST data set.

/*** IBMCOPYR **/
/* */
/* Component Name: MTCSRVR (alias EZAEC047) */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC049 */
/* */
/* */
/*** IBMCOPYR **/

/***/
/* C socket Server Program */
/* */
/* This code performs the server functions for multitasking, which */

© Copyright IBM Corp. 2000, 2020 735

/* include */
/* . creating subtasks */
/* . socket(), bind(), listen(), accept() */
/* . getclientid */
/* . givesocket() to TCP/IP in preparation for the subtask */
/* to do a takesocket() */
/* . select() */
/* */
/* There are three test tasks running: */
/* . server master */
/* . server subtask - separate TCB within server address space */
/* . client */
/* */
/***/

static char ibmcopyr[] =
 "MTCSRVR - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1994, 1996. "
 "See IBM Copyright Instructions.";

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <netdb.h>
#include <socket.h>
#include <inet.h>
#include <fcntl.h>
#include <errno.h>
#include <tcperrno.h>
#include <bsdtime.h>
#include <mtf.h>
#include <stdio.h>

int dotinit(void);
void getsock(int *s);
int dobind(int *s, unsigned short port);
int dolisten(int *s);
int getname(char *myname, char *mysname);
int doaccept(int *s);
int testgive(int *s);
int dogive(int *clsocket, char *myname);

/*
 * Server Main.
 */
main(argc, argv)
int argc;
char **argv;
{
 unsigned short port; /* port server for bind */
 int s; /* socket for accepting connections */
 int rc; /* return code */
 int count; /* counter for number of sockets */
 int clsocket; /* client socket */
 char myname[8]; /* 8 char name of this addres space */
 char mysname[8]; /* my subtask name */

 /*
 * Check arguments. Should be only one: the port number to bind to.
 */
 if (argc != 2) {
 fprintf(stderr, "Usage: %s port\n", argv[0]);
 exit(1);
 }

 /*
 * First argument should be the port.
 */
 port = (unsigned short) atoi(argv[1]);
 fprintf(stdout, "Server: port = %d \n", port);

 /*
 * Create subtasks
 */
 rc = dotinit();
 if (rc < 0)
 perror("Srvr: error for tinit");
 printf("rc from tinit is %d\n", rc);

 getsock(&s);
 printf("Srvr: socket = %d\n", s);

736 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 rc = dobind(&s, port);
 if (rc < 0)
 tcperror("Srvr: error for bind");
 printf("Srvr: rc from bind is %d\n", rc);

 rc = dolisten(&s);
 if (rc < 0)
 tcperror("Srvr: error for listen");
 printf("Srvr: rc from listen is %d\n", rc);

 /***************************************
 * To do nonblocking mode,
 * uncomment out this code.
 *
 rc = fcntl(s, F_SETFL, FNDELAY);
 if (rc != 0)
 tcperror("Error for fcntl");
 printf("rc from fcntl is %d\n", rc);

 ***************************************/

 rc = getname(myname, mysname);
 if (rc < 0)
 tcperror("Srvr: error for getclientid");
 printf("Srvr: rc from getclientid is %d\n", rc);

 /*--*/
 /* . issue accept(), waiting for client connection */
 /* . issue givesocket() to pass client's socket to TCP/IP */
 /* . issue select(), waiting for subtask to complete takesocket() */
 /* . close our local socket associated with client's socket */
 /* . loop on accept(), waiting for another client connection */
 /*--*/
 rc = 0;
 count = 0; /* number of sockets */
 while (rc == 0) {
 clsocket = doaccept(&s);
 printf("Srvr: clsocket from accept is %d\n", clsocket);
 count = count + 1;
 printf("Srvr: ###number of sockets is %d\n", count);
 if (clsocket != 0) {
 rc = dogive(&clsocket, myname);
 if (rc < 0)
 tcperror("Srvr: error for dogive");
 printf("Srvr: rc from dogive is %d\n", rc);
 if (rc == 0) {
 rc = tsched(MTF_ANY,"csub", &clsocket,
 myname, mysname);
 if (rc < 0)
 perror("error for tsched");
 printf("Srvr: rc from tsched is %d\n", rc);

 rc = testgive(&clsocket);
 printf("Srvr: rc from testgive is %d\n", rc);

 sleep(60); /*** do simplified situation first ***/

 printf("Srvr: closing client socket %d\n", clsocket);
 rc = close(clsocket); /* give back this socket */
 if (rc < 0)
 tcperror("error for close of clsocket");
 printf("Srvr: rc from close of clsocket is %d\n", rc);
 /**/
 exit(0); /*** do this simplified situation first ***/
 /**/
 } /** end of if (rc == 0) ****/
 } /**** end of if (clsocket != 0) ****/
 } /******** end of while (rc == 0) ****/
} /************ end of main ********/

/*--*/
/* dotinit() */
/* Call tinit() to ATTACH subtask and fetch() subtask load module */
/*--*/
int dotinit(void)
{
 int rc;
 int numsubs = 1;
 printf("Srvr: calling __tinit\n");
 rc = __tinit("mtccsub", numsubs);
 return rc;

Appendix A. Multitasking C socket sample program 737

}

/*--*/
/* getsock() */
/* Get a socket */
/*--*/
void getsock(int *s)
{
 int temp;
 temp = socket(AF_INET, SOCK_STREAM, 0);
 *s = temp;
 return;
}

/*--*/
/* dobind() */
/* Bind to all interfaces */
/*--*/
int dobind(int *s, unsigned short port)
{
 int rc;
 int temps;
 struct sockaddr_in tsock;
 memset(&tsock, 0, sizeof(tsock)); /* clear tsock to 0's */
 tsock.sin_family = AF_INET;
 tsock.sin_addr.s_addr = INADDR_ANY; /* bind to all interfaces */
 tsock.sin_port = htons(port);

 temps = *s;
 rc = bind(temps, (struct sockaddr *)&tsock, sizeof(tsock));
 return rc;
}

/*--*/
/* dolisten() */
/* Listen to prepare for client connections. */
/*--*/
int dolisten(int *s)
{
 int rc;
 int temps;
 temps = *s;
 rc = listen(temps, 10); /* backlog of 10 */
 return rc;
}

/*--*/
/* getname() */
/* Get the identifiers by which TCP/IP knows this server. */
/*--*/
int getname(char *myname, char *mysname)
{
 int rc;
 struct clientid cid;
 memset(&cid, 0, sizeof(cid));
 rc = getclientid(AF_INET, &cid);
 memcpy(myname, cid.name, 8);
 memcpy(mysname, cid.subtaskname, 8);
 return rc;
}

/*--*/
/* doaccept() */
/* Select() on this socket, waiting for another client connection. */
/* If connection is pending, issue accept() to get client's socket */
/*--*/
int doaccept(int *s)
{
 int temps;
 int clsocket;
 struct sockaddr clientaddress;
 int addrlen;
 int maxfdpl;
 struct fd_set readmask;
 struct fd_set writmask;
 struct fd_set excpmask;
 int rc;
 struct timeval time;

 temps = *s;
 time.tv_sec = 1000;
 time.tv_usec = 0;

738 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 maxfdpl = temps + 1;

 FD_ZERO(&readmask);
 FD_ZERO(&writmask);
 FD_ZERO(&excpmask);

 FD_SET(temps, &readmask);

 rc = select(maxfdpl, &readmask, &writmask, &excpmask, &time);
 printf("Srvr: rc from select is %d\n", rc);
 if (rc < 0) {
 tcperror("error from select");
 return rc;
 }
 else if (rc == 0) { /* time limit expired */
 return rc;
 }
 else { /* this socket is ready */
 addrlen = sizeof(clientaddress);
 clsocket = accept(temps, &clientaddress, &addrlen);
 return clsocket;
 }
}

/*--*/
/* testgive() */
/* Issue select(), checking for an exception condition, which */
/* indicates that takesocket() by the subtask was successful. */
/*--*/
int testgive(int *s)
{
 int temps;
 struct sockaddr clientaddress;
 int addrlen;
 int maxfdpl;
 struct fd_set readmask;
 struct fd_set writmask;
 struct fd_set excpmask;
 int rc;
 struct timeval time;

 temps = *s;
 time.tv_sec = 1000;
 time.tv_usec = 0;
 maxfdpl = temps + 1;

 FD_ZERO(&readmask);
 FD_ZERO(&writmask);
 FD_ZERO(&excpmask);

 /* FD_SET(temps, &readmask); */
 /* FD_SET(temps, &writmask); */
 FD_SET(temps, &excpmask);

 rc = select(maxfdpl, &readmask, &writmask, &excpmask, &time);
 printf("Srvr: rc from select for testgive is %d\n", rc);
 if (rc < 0) {
 tcperror("Srvr: error from testgive");
 }
 else
 rc = 0;

 return rc;
}

/*--*/
/* dogive() */
/* Issue givesocket() for giving client's socket to subtask. */
/*--*/
int dogive(int *clsocket, char *myname)
{
 int rc;
 struct clientid cid;
 int temps;

 temps = *clsocket;
 memset(&cid, 0, sizeof(cid));
 cid.domain = AF_INET;

 memcpy(cid.name, myname, 8);
 memcpy(cid.subtaskname," ", 8);
 printf("Srvr: givesocket socket is %d\n", temps);

Appendix A. Multitasking C socket sample program 739

 printf("Srvr: givesocket name is %s\n", cid.name);

 rc = givesocket(temps, &cid);
 return rc;
}

Figure 229. MTCSRVR C socket server program sample

The subtask sample program in C
The following C socket server program is the MTCCSUB member in the SEZAINST data set.

/*** IBMCOPYR **/
/* */
/* Component Name: MTCCSUB */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* */
/* SMP/E Distribution Name: EZAEC048 */
/* */
/* */
/*** IBMCOPYR **/

/***/
/* C Socket Server Subtask Program */
/* */
/* This code is started by the tsched() routine of C/370 MTF. */
/* Its purpose is to do a takesocket() and then send/recv with the */
/* client process. */
/***/
#pragma runopts(noargparse,plist(mvs),noexecops)

static char ibmcopyr[] =
 "MTCCSUB - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1994, 1996. "
 "See IBM Copyright Instructions.";

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <netdb.h>
#include <socket.h>
#include <inet.h>
#include <fcntl.h>
#include <errno.h>
#include <tcperrno.h>
#include <bsdtime.h>
#include <stdio.h>

/*
 * Server subtask
 */
csub(int *clsock, /* address of socket passed */
 char *tskname, /* address of caller's name */
 char *tsksname) /* address of caller's sname */
{
 int temps; /* */
 int sendbytes; /* # bytes sent */
 int recvbytes; /* # bytes received */
 int clsocket; /* client socket */
 int rc; /* */
 char xtskname[8]; /* caller's name */

740 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 char xtsksname[8]; /* caller's subtask name */

 clsocket = *clsock;
 memcpy(&xtskname, tskname, 8); /* local copy */
 memcpy(&xtsksname, tsksname, 8); /* local copy */
 rc = doget(&clsocket, xtskname, xtsksname);
 printf("Csub: returned from doget()\n");
 if (rc < 0)
 tcperror("Csub: Error from doget");
 printf("Csub: rc from doget is %d\n", rc);

 temps = rc; /* new socket number */
 if (temps > -1) do {
 sendbytes = dosend(&temps);
 recvbytes = dorecv(&temps);
 } while (0);
 /* } while (recvbytes > 0); do simplified situation first ***/
 fflush(stdout);
 sleep(30);
}

/*-----------------*/
/* doget() */
/*-----------------*/
int doget(int *clsocket, char *xtskname, char *xtsksname)
{
 int rc;
 int temps;
 struct clientid cid;

 memset(&cid, 0, sizeof(cid));
 temps = *clsocket;
 memcpy(cid.name, xtskname, 8);
 memcpy(cid.subtaskname, xtsksname, 8);
 cid.domain = AF_INET;
 rc = takesocket(&cid, temps);
 *clsocket = temps;
 return rc;
}

/*-----------------*/
/* dosend() */
/*-----------------*/
int dosend(int *clsocket)
{
 int temps;
 int sendbytes;
 char data[80] = "Message from subtask: I sent this data";

 /***
 note: stream mode means that data is not sent
 as a record and can therefore flow in
 variable sized chunks across the network.
 This example is a simplified situation.
 **/
 temps = *clsocket;
 sendbytes = send(temps, data, sizeof(data), 0);
 printf("Csub: sendbytes = %d\n", sendbytes);
 return sendbytes;
}

/*-----------------*/
/* dorecv() */
/*-----------------*/
int dorecv(int *clsocket)
{
 int temps;
 int recvbytes;
 char data[80];
 char *datap;

 /***
 note: stream mode means that data is not sent
 as a record and can therefore flow in
 variable sized chunks across the network.
 This example is a simplified situation.
 **/
 temps = *clsocket;
 recvbytes = recv(temps, data, sizeof(data), 0);

Appendix A. Multitasking C socket sample program 741

 if (recvbytes > 0)
 printf("Csub: data recv: %s\n", data);
 else
 printf("Csub: client stopped sending data\n");
 printf("Csub: recvbytes = %d\n", recvbytes);
 return recvbytes;
}

Figure 230. MTCCSUB C socket server program sample

The client sample program in C
The following C socket server program is the MTCCLNT member in the SEZAINST data set.

/*** IBMCOPYR **/
/* */
/* Component Name: MTCCLNT */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC047 */
/* */
/* */
/*** IBMCOPYR **/

/***/
/* C Socket Client Program */
/* */
/* This code sends and receives mgs with the server subtask. */
/***/

static char ibmcopyr[] =
 "MTCCLNT - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1994, 1996. "
 "See IBM Copyright Instructions.";

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <netdb.h>
#include <socket.h>
#include <inet.h>
#include <errno.h>
#include <tcperrno.h>
#include <bsdtime.h>
#include <stdio.h>

int dosend(int *s);
int dorecv(int *s);
int doconn(int *s, unsigned long *octaddrp, unsigned short port);
void getsock(int *s);

/*
 * Client
 */
main(int argc, char **argv)
{
 int gotbytes; /* number of bytes received */
 int sndbytes; /* number of bytes sent */
 int s; /* socket descriptor */
 int rc; /* return code */
 struct in_addr octaddr; /* host internet address (binary) */

742 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

 unsigned short port; /* port number sent as parameter */
 char * charaddr; /* host internet address (dotted dec) */
 struct hostent *hostnm; /* server host name information */

 /*
 * Check Arguments Passed. Should be hostname and port.
 */
 if (argc != 3) {
 fprintf(stderr, "Usage: %s hostname port\n", argv[0]);
 exit(1);
 }
 /*
 * The host name is the first argument. Get the server address.
 */
 hostnm = gethostbyname(argv[1]);
 if (hostnm == (struct hostent *) 0) {
 fprintf(stderr, "Gethostbyname failed\n");
 exit(2);
 }
 octaddr.s_addr = *((unsigned long *)hostnm->h_addr);

 /*
 * The port is the second argument.
 */
 port = (unsigned short) atoi(argv[2]);
 fprintf(stdout, "Clnt: port = %d\n", port);

 getsock(&s);
 printf("Clnt: our socket is %d\n", s);

 charaddr = inet_ntoa(octaddr);
 printf("Clnt: address of host is %8s\n", charaddr);

 rc = doconn(&s, &octaddr.s_addr, port);
 if (rc < 0)
 tcperror("Clnt: error for connect");
 else {
 printf("Clnt: rc from connect is %d\n", rc);
 do {
 gotbytes = dorecv(&s);
 sndbytes = dosend(&s);
 } while (0);
 /* } while (sndbytes > 0); do simplified situation first ***/
 sleep(15);
 }
}

/*-----------------*/
/* getsock() */
/*-----------------*/
void getsock(int *s)
{
 int temp;
 temp = socket(AF_INET, SOCK_STREAM, 0);
 *s = temp;
 return;
}

/*-----------------*/
/* doconn() */
/*-----------------*/
int doconn(int *s, unsigned long *octaddrp, unsigned short port)
{
 int rc;
 int temps;
 struct sockaddr_in tsock;

 memset(&tsock, 0, sizeof(tsock));
 tsock.sin_family = AF_INET;
 tsock.sin_port = htons(port);
 tsock.sin_addr.s_addr = *octaddrp;

 temps = *s;
 rc = connect(temps, (struct sockaddr *)&tsock, sizeof(tsock));
 return rc;
}

/*-----------------*/
/* dorecv() */
/*-----------------*/
int dorecv(int *s)
{

Appendix A. Multitasking C socket sample program 743

 int temps;
 int gotbytes;
 char data[100];

 temps = *s;

 gotbytes = recv(temps, data, sizeof(data), 0);
 if (gotbytes < 0) {
 tcperror("Clnt: error for recv");
 }
 else
 printf("Clnt: data recv: %s\n", data);
 return gotbytes;
}

/*-----------------*/
/* dosend() */
/*-----------------*/
int dosend(int *s)
{
 int temps;
 int sndbytes;
 char data[50];

 temps = *s;
 gets(data);
 printf("clnt: data to send: %s\n", data);
 sndbytes = send(temps, data, sizeof(data), 0);
 if (sndbytes < 0) {
 tcperror("Clnt: error for send");
 }
 else
 printf("Clnt: sent %d bytes to server subtask\n", sndbytes);
 return sndbytes;
}

Figure 231. MTCCLNT C socket server program sample

744 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Appendix B. Socket call error return codes

This information contains error return codes for socket calls. The error codes apply to all of the following
socket APIs:

• TCP/IP C socket API
• X/Open Transport Interface
• Macro API for IPv4 or IPv6 that is written in z/OS assembler language
• Call instruction API for IPv4 or IPv6 socket applications
• z/OS Communications Server socket API for REXX
• Pascal language for IPv4 socket API

It also contains sockets extended return codes that apply only to the macro, call instruction, and REXX
socket APIs.

If the return code is not listed in this information, it is a return code that is received from z/OS UNIX. See
z/OS UNIX System Services Messages and Codes for the z/OS UNIX ERRNOs.

See “User abend U4093” on page 761 for a description of user abend U4093.

System error codes for socket calls
This information contains the error codes and the message names that refer to the following APIs:

• C sockets
• Macro
• Call instruction
• REXX sockets

The names in the Socket Type column are identifiers that apply to all of the above APIs and do not follow
the naming convention for any specific API. These message numbers and codes are in the TCPERRNO.H
include file.

When a socket call is processed, both a return code and an error number are returned to your program. If
the return code is 0 or a positive number, the call completed normally. If the return code is a negative
number, the call did not complete normally and an error number is returned. See the following table for
the meaning of the error number that is returned.

For the following error conditions, a name is returned by C socket calls and a number is returned by the
sockets extended interface calls. The error condition return codes can originate from the socket
application programming interface or from a peer server program.

Sockets return codes (ERRNOs)
This section provides the system-wide message numbers and codes set by the system calls. These
message numbers and codes are in the TCPERRNO.H include file supplied with TCP/IP Services.

Table 24. Sockets ERRNOs

Error
numbe
r Message name

Socket
API type Error description Programmer's response

1 EAI_NONAME GETADDRINFO GETNAMEINFO NODE or HOST cannot be found. Ensure the NODE or HOST name can be
resolved.

1 EDOM All Argument too large. Check parameter values of the function
call.

1 EPERM All Permission is denied. No owner exists. Check that TCP/IP is still active; check
protocol value of socket () call.

© Copyright IBM Corp. 2000, 2020 745

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

1 EPERM IOCTL (SIOCGPARTNERINFO) Both endpoints do not reside in the
same security domain.

Check and modify the security domain
name for the endpoints. After you
correct the security domain name, the
application might need to close the
connection if the IOCTL is needed.

1 EPERM IOCTL (SIOCGPARTNERINFO,
SIOCSPARTNERINFO)

The security domain name is not
defined.

Define the security domain name on
both endpoints. After you define the
security domain name, the application
might need to close the connection if
the IOCTL is needed.

1 EPERM IOCTL (SIOCTTLSCTL) Denotes one of the following error
conditions:

• The TTLS_INIT_ CONNECTION
option was requested with either
TTLS_RESET_ SESSION,
TTLS_RESET_ CIPHER,
TTLS_RESET_WRITE_CIPHER,
TTLS_SEND_SESSION_TICKET, or
TTLS_STOP_ CONNECTION

• The TTLS_STOP_ CONNECTION
option was requested along with
TTLS_RESET_ SESSION,
TTLS_RESET_ CIPHER,
TTLS_RESET_WRITE_CIPHER, or
TTLS_SEND_SESSION_TICKET

• The TTLS_ALLOW_ HSTIMEOUT
option was requested without
TTLS_INIT_ CONNECTION

• The TTLS_RESET_WRITE_CIPHER
option was requested along with
TTLS_RESET_SESSION or
TTLS_RESET_CIPHER

• The TTLS_SEND_SESSION_TICKET
option was requested along with
TTLS_RESET_SESSION,
TTLS_RESET_CIPHER, or
TTLS_RESET_WRITE_CIPHER

Request TTLS_RESET_SESSION,
TTLS_RESET_CIPHER,
TTLS_RESET_WRITE_CIPHER, or
TTLS_SEND_SESSION_TICKET only
when TTLS_INIT_ CONNECTION and
TTLS_STOP_ CONNECTION are not
requested. Always request TTLS_INIT_
CONNECTION when TTLS_ALLOW_
HSTIMEOUT is requested. Use seperate
SIOCTTLSCTL ioctls to request
TTLS_INIT_ CONNECTION and
TTLS_STOP_ CONNECTION.

Use separate SIOCTTLSCTL ioctls to
request TTLS_RESET_WRITE_CIPHER
or TTLS_SEND_SESSION_TICKET.

2 EAI_AGAIN FREEADDRINFO GETADDRINFO GETNAMEINFO For GETADDRINFO, NODE could not be
resolved within the configured time
interval. For GETNAMEINFO, HOST
could not be resolved within the
configured time interval. The Resolver
address space has not been started.
The request can be retried later.

Ensure the Resolver is active, then retry
the request.

2 ENOENT All The data set or directory was not found. Check files used by the function call.

2 ERANGE All The result is too large. Check parameter values of the function
call.

3 EAI_FAIL FREEADDRINFO GETADDRINFO GETNAMEINFO This is an unrecoverable error.
NODELEN, HOSTLEN, or SERVLEN is
incorrect. For FREEADDRINFO, the
resolver storage does not exist.

Correct the NODELEN, HOSTLEN, or
SERVLEN. Otherwise, call your system
administrator.

3 ESRCH All The process was not found. A table
entry was not located.

Check parameter values and structures
pointed to by the function parameters.

4 EAI_OVERFLOW GETNAMEINFO The output buffer for the host name or
service name was too small.

Increase the size of the buffer to 255
characters, which is the maximum size
permitted.

4 EINTR All A system call was interrupted. Check that the socket connection and
TCP/IP are still active.

5 EAI_FAMILY GETADDRINFO GETNAMEINFO The AF or the FAMILY is incorrect. Correct the AF or the FAMILY.

5 EIO All An I/O error occurred. Check status and contents of source
database if this occurred during a file
access.

6 EAI_MEMORY GETADDRINFO GETNAMEINFO The resolver cannot obtain storage to
process the host name.

Contact your system administrator.

6 ENXIO All The device or driver was not found. Check status of the device attempting
to access.

7 E2BIG All The argument list is too long. Check the number of function
parameters.

7 EAI_BADFLAGS GETADDRINFO GETNAMEINFO FLAGS has an incorrect value. Correct the FLAGS.

8 EAI_SERVICE GETADDRINFO The SERVICE was not recognized for
the specified socket type.

Correct the SERVICE.

746 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

8 ENOEXEC All An EXEC format error occurred. Check that the target module on an
exec call is a valid executable module.

9 EAI_SOCKTYPE GETADDRINFO The SOCTYPE was not recognized. Correct the SOCTYPE.

9 EBADF All An incorrect socket descriptor was
specified.

Check socket descriptor value. It might
be currently not in use or incorrect.

9 EBADF Givesocket The socket has already been given. The
socket domain is not AF_INET or
AF_INET6.

Check the validity of function
parameters.

9 EBADF Select One of the specified descriptor sets is
an incorrect socket descriptor.

Check the validity of function
parameters.

9 EBADF Takesocket The socket has already been taken. Check the validity of function
parameters.

9 EAI_SOCKTYPE GETADDRINFO The SOCTYPE was not recognized. Correct the SOCTYPE.

10 ECHILD All There are no children. Check if created subtasks still exist.

11 EAGAIN All There are no more processes. Retry the operation. Data or condition
might not be available at this time.

11 EAGAIN All TCP/IP is not active at the time of the
request.

Start TCP/IP, and retry the request.

11 EAGAIN IOCTL (SIOCGPARTNERINFO) The IOCTL was issued in no-suspend
mode and the SIOCSPARTNERINFO
IOCTL has not been issued.

Reissue the IOCTL with a timeout value
to set the amount of time to wait while
the partner security credentials are
being retrieved.

Restriction: You cannot use a select
mask to determine when an IOCTL is
complete, because an IOCTL is not
affected by whether the socket is
running in blocking or nonblocking
mode. If the IOCTL times out, reissue
the IOCTL to retrieve the partner
security credentials.

12 ENOMEM All There is not enough storage. Check the validity of function
parameters.

13 EACCES All Permission denied, caller not
authorized.

Check access authority of file.

13 EACCES IOCTL (SIOCGPARTNERINFO) The application is not running in
supervisor state, is not APF authorized,
or is not permitted to the appropriate
SERVAUTH profile.

Allow the application to issue this
IOCTL, or provide the user ID with the
proper SERVAUTH permission.

13 EACCES IOCTL (SIOCTTLSCTL) The IOCTL is requesting a function that
requires that the socket be mapped to
policy that specifies
ApplicationControlled On.

Check policy and add
ApplicationControlled On if the
application should be permitted to
issue the controlled SIOCTTLSCTL
functions.

13 EACCES Takesocket The other application (listener) did not
give the socket to your application.
Permission denied, caller not
authorized.

Check access authority of file.

14 EFAULT All An incorrect storage address or length
was specified.

Check the validity of function
parameters.

14 EFAULT All EZASMI macros when using an asynchronous
exit routine.

The exit routine has abnormally ended
(ABEND condition).

Correct the error in the routine's code.
Add an ESTAE routine to the exit.

14 EFAULT IOCTL (SIOCSAPPLDATA) An abend occurred while attempting to
copy the SetADcontainer structure from
the address provided in the SetAD_ptr
field.

Check the validity of function
parameters.

15 ENOTBLK All A block device is required. Check device status and
characteristics.

16 EBUSY All Listen has already been called for this
socket. Device or file to be accessed is
busy.

Check if the device or file is in use.

17 EEXIST All The data set exists. Remove or rename existing file.

18 EXDEV All This is a cross-device link. A link to a
file on another file system was
attempted.

Check file permissions.

19 ENODEV All The specified device does not exist. Check file name and if it exists.

Appendix B. Socket call error return codes 747

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

20 ENOTDIR All The specified directory is not a
directory.

Use a valid file that is a directory.

21 EISDIR All The specified directory is a directory. Use a valid file that is not a directory.

22 EINVAL All types An incorrect argument was specified. Check the validity of function
parameters.

22 EINVAL Multicast Source filter APIs Mix of any-source, source-specific or
full-state APIs

Specify the correct type of APIs.

22 EINVAL MCAST_JOIN_GROUP, MCAST_JOIN_SOURCE_
GROUP, MCAST_BLOCK_SOURCE,
MCAST_LEAVE_GROUP, MCAST_LEAVE_SOURCE_
GROUP, MCAST_UNBLOCK_ SOURCE,
SIOCGMSFILTER, SIOCSMSFILTER

The socket address family or the socket
length of the input multicast group or
the source IP address is not correct.

Specify the correct value.

22 EINVAL SIOCSMSFILTER, SIOCSIPMSFILTER The specified filter mode is not correct. Specify the correct value.

23 ENFILE All Data set table overflow occurred. Reduce the number of open files.

24 EMFILE All The socket descriptor table is full. Check the maximum sockets specified
in MAXDESC().

25 ENOTTY All An incorrect device call was specified. Check specified IOCTL() values.

26 ETXTBSY All A text data set is busy. Check the current use of the file.

27 EFBIG All The specified data set is too large. Check size of accessed dataset.

28 ENOSPC All There is no space left on the device. Increase the size of accessed file.

29 ESPIPE All An incorrect seek was attempted. Check the offset parameter for seek
operation.

30 EROFS All The data set system is Read only. Access data set for read only operation.

31 EMLINK All There are too many links. Reduce the number of links to the
accessed file.

32 EPIPE All The connection is broken. For socket
write/send, peer has shut down one or
both directions.

Reconnect with the peer.

32 EPIPE IOCTL (SIOCTTLSCTL requesting TTLS_INIT_
CONNECTION, TTLS_RESET_CIPHER,
TTLS_RESET_WRITE_CIPHER,
TTLS_SEND_SESSION_TICKET or TTLS_STOP_
CONNECTION)

The TCP connection is not in the
established state.

Issue the SIOCTTLSCTL IOCTL when
the socket is connected.

33 EDOM All The specified argument is too large. Check and correct function parameters.

34 ERANGE All The result is too large. Check function parameter values.

35 EWOULDBLOCK Accept The socket is in nonblocking mode and
connections are not queued. This is not
an error condition.

Reissue Accept().

35 EWOULDBLOCK IOCTL (SIOCTTLSCTL) The handshake is in progress and the
socket is a nonblocking socket.

For a nonblocking socket, you can wait
for the handshake to complete by
issuing Select or Poll for Socket
Writable.

35 EWOULDBLOCK Read Recvfrom The socket is in nonblocking mode and
read data is not available. This is not an
error condition.

Issue a select on the socket to
determine when data is available to be
read or reissue the Read()/Recvfrom().

35 EWOULDBLOCK All receive calls (RECV, RECVMSG, RECVFROM,
READV, READ), when the socket is set with the
SO_RCVTIMEO socket option

The socket is in blocking mode and the
receive call has blocked for the time
period that was specified in the
SO_RCVTIMEO option. No data was
received.

The application should reissue the
receive call.

35 EWOULDBLOCK Send Sendto Write The socket is in nonblocking mode and
buffers are not available.

Issue a select on the socket to
determine when data is available to be
written or reissue the Send(), Sendto(),
or Write().

35 EWOULDBLOCK All send calls (SEND, SENDMSG, SENDTO, WRITEV,
WRITE), when the socket is set with the
SO_SNDTIMEO socket option

The socket is in blocking mode and the
send call has blocked for the time
period that was specified in the
SO_SNDTIMEO option. No data was
sent.

The application should reissue the send
call.

36 EINPROGRESS Connect The socket is marked nonblocking and
the connection cannot be completed
immediately. This is not an error
condition.

See the Connect() description for
possible responses.

748 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

36 EINPROGRESS IOCTL (SIOCGPARTNERINFO) The IOCTL was issued in no-suspend
mode after the SIOCSPARTNERINFO
IOCTL was issued, but the partner
security credentials are not currently
available.

Retry the IOCTL, or issue the IOCTL
with a timeout value to set the amount
of time to wait while the partner
security credentials are being retrieved.

Restriction: You cannot use a select
mask to determine when an IOCTL is
complete, because an IOCTL is not
affected by whether the socket is
running in blocking or nonblocking
mode. If the IOCTL times out, reissue
the IOCTL to retrieve the partner
security credentials.

36 EINPROGRESS IOCTL (SIOCTTLSCTL requesting TTLS_INIT_
CONNECTION or TTLS_STOP_ CONNECTION)

The handshake is already in progress
and the socket is a nonblocking socket.

For a nonblocking socket, you can wait
for the handshake to complete by
issuing Select or Poll for Socket
Writable.

37 EALREADY Connect The socket is marked nonblocking and
the previous connection has not been
completed.

Reissue Connect().

37 EALREADY IOCTL (SIOCGPARTNERINFO) The request is already in progress. Only
one IOCTL can be outstanding.

Check and modify the socket
descriptor, if specified; otherwise, no
action is needed.

37 EALREADY IOCTL (SIOCTTLSCTL requesting TTLS_INIT_
CONNECTION or TTLS_STOP_ CONNECTION)

For TTLS_INIT_ CONNECTION, the
socket is already secure. For
TTLS_STOP_ CONNECTION, the socket
is not secure.

Modify the application so that it issues
the SIOCTTLSCTL IOCTL that requests
TTLS_INIT_ CONNECTION only when
the socket is not already secure and
that requests TTLS_STOP_
CONNECTION only when the socket is
secure.

37 EALREADY Maxdesc A socket has already been created
calling Maxdesc() or multiple calls to
Maxdesc().

Issue Getablesize() to query it.

37 EALREADY Setibmopt A connection already exists to a TCP/IP
image. A call to SETIBMOPT
(IBMTCP_IMAGE), has already been
made.

Call Setibmopt() only once.

38 ENOTSOCK All A socket operation was requested on a
nonsocket connection. The value for
socket descriptor was not valid.

Correct the socket descriptor value and
reissue the function call.

39 EDESTADDRREQ All A destination address is required. Fill in the destination field in the correct
parameter and reissue the function call.

40 EMSGSIZE Sendto Sendmsg Send Write for Datagram (UDP) or
RAW sockets

The message is too long. It exceeds the
IP limit of 64K or the limit set by the
setsockopt() call.

Either correct the length parameter, or
send the message in smaller pieces.

41 EPROTOTYPE All The specified protocol type is incorrect
for this socket.

Correct the protocol type parameter.

41 EPROTOTYPE bind2addrsel The referenced socket is not a stream
(TCP) or datagram (UDP) socket.

Issue bind2addrsel() on TCP or UDP
sockets only.

41 EPROTOTYPE IOCTL (SIOCGPARTNERINFO, SIOCSAPPLDATA,
SIOCSPARTNERINFO, SIOCTTLSCTL)

Socket is not a TCP socket. Issue the IOCTL on TCP sockets only.

42 ENOPROTOOPT Getsockopt Setsockopt The socket option specified is incorrect
or the level is not SOL_SOCKET. Either
the level or the specified optname is
not supported.

Correct the level or optname.

42 ENOPROTOOPT Getibmsockopt Setibmsockopt Either the level or the specified
optname is not supported.

Correct the level or optname.

43 EPROTONOSUPPORT Socket The specified protocol is not supported. Correct the protocol parameter.

44 ESOCKTNOSUPPORT All The specified socket type is not
supported.

Correct the socket type parameter.

45 EOPNOTSUPP Accept Givesocket The selected socket is not a stream
socket.

Use a valid socket.

45 EOPNOTSUPP bind2addrsel The referenced socket is not a type that
supports the requested function

Use a socket of the correct type.

45 EOPNOTSUPP Getibmopt Setibmopt The socket does not support this
function call. This command is not
supported for this function.

Correct the command parameter. See
Getibmopt() for valid commands.
Correct by ensuring a Listen() was not
issued before the Connect().

Appendix B. Socket call error return codes 749

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

45 EOPNOTSUPP GETSOCKOPT The specified GETSOCKOPT OPTNAME
option is not supported by this socket
API.

Correct the GETSOCKOPT OPTNAME
option.

45 EOPNOTSUPP IOCTL The specified IOCTL command is not
supported by this socket API.

Correct the IOCTL COMMAND.

45 EOPNOTSUPP IOCTL (SIOCSPARTNERINFO) The request must be issued before the
listen call or the connect call.

Check and modify the socket
descriptor, or close the connection and
reissue the call.

45 EOPNOTSUPP IOCTL (SIOCTTLSCTL requesting TTLS_INIT_
CONNECTION, TTLS_RESET_ SESSION,
TTLS_RESET_ CIPHER,
TTLS_RESET_WRITE_CIPHER,
TTLS_SEND_SESSION_TICKET, or TTLS_STOP_
CONNECTION)

Mapped policy indicates that AT-TLS is
not enabled for the connection.

Modify the policy to enable AT-TLS for
the connection.

45 EOPNOTSUPP Listen The socket does not support the Listen
call.

Change the type on the Socket() call
when the socket was created. Listen()
supports only a socket type of
SOCK_STREAM.

45 EOPNOTSUPP RECV, RECVFROM, RECVMSG, SEND, SENDTO,
SENDMSG

The specified flags are not supported
on this socket type or protocol.

Correct the FLAG.

46 EPFNOSUPPORT All The specified protocol family is not
supported or the specified domain for
the client identifier is not AF_INET=2.

Correct the protocol family.

47 EAFNOSUPPORT bind2addrsel inet6_is_srcaddr You specified an IP address that is not
an AF_INET6 IP address

Correct the IP address. If the IP
address is an IPv4 address, you must
specify it as an IPv4-mapped IPv6
address.

47 EAFNOSUPPORT bind2addrsel inet6_is_srcaddr You attempted an IPv6-only API for a
stack that does not support the
AF_INET6 domain.

Activate the AF_INET6 stack, and retry
the request.

47 EAFNOSUPPORT Bind Connect Socket The specified address family is not
supported by this protocol family.

For Socket(), set the domain parameter
to AF_INET. For Bind() and Connect(),
set Sin_Family in the socket address
structure to AF_INET.

47 EAFNOSUPPORT Getclient Givesocket The socket specified by the socket
descriptor parameter was not created
in the AF_INET domain.

The Socket() call used to create the
socket should be changed to use
AF_INET for the domain parameter.

47 EAFNOSUPPORT IOCTL You attempted to use an IPv4-only ioctl
on an AF_INET6 socket.

Use the correct socket type for the ioctl
or use an ioctl that supports AF_INET6
sockets.

48 EADDRINUSE Bind, Connect The address is in a timed wait because
a LINGER delay from a previous close
or another process is using the address.
This error can also occur if the port
specified in the bind call has been
configured as RESERVED on a port
reservation statement in the TCP/IP
profile.

To reuse the same address, use
Setsockopt() with SO_REUSEADDR. See
the section about Setsockopt() in z/OS
Communications Server: IP Sockets
Application Programming Interface
Guide and Reference for more
information. Otherwise, use a different
address or port in the socket address
structure.

48 EADDRINUSE IP_ADD_MEMBERSHIP, IP_ADD_SOURCE_
MEMBERSHIP, IPV6_JOIN_GROUP,
MCAST_JOIN_GROUP, MCAST_JOIN_SOURCE_
GROUP

The specified multicast address and
interface address (or interface index)
pair is already in use.

Correct the specified multicast address,
interface address, or interface index.

49 EADDRNOTAVAIL Bind The specified address is incorrect for
this host.

Correct the function address
parameter.

49 EADDRNOTAVAIL Connect The calling host cannot reach the
specified destination.

Correct the function address
parameter.

49 EADDRNOTAVAIL bind2addrsel For the specified destination address,
there is no source address that the
application can bind to. Possible
reasons can be one of the following
situations:

• The socket is a stream socket, but
the specified destination address is
a multicast address.

• No ephemeral ports are available to
assign to the socket.

Correct the function address parameter
or issue the request when ephemeral
ports are available.

750 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

49 EADDRNOTAVAIL inet6_is_srcaddr The address specified is not correct for
one of these reasons:

• The address is not an address on
this node.

• The address was not active at the
time of the request.

• The scope ID specified for a link-
local IPV6 address is incorrect.

Correct or activate the address

49 EADDRNOTAVAIL IP_BLOCK_SOURCE, IP_ADD_SOURCE_
MEMBERSHIP, MCAST_BLOCK_SOURCE,
MCAST_JOIN_SOURCE_ GROUP

A duplicate source IP address is
specified on the multicast group and
interface pair.

Correct the specified source IP
address.

49 EADDRNOTAVAIL IP_UNBLOCK_SOURCE, IP_DROP_SOURCE_
MEMBERSHIP, MCAST_UNBLOCK_ SOURCE,
MCAST_LEAVE_SOURCE_ GROUP

A previously blocked source multicast
group cannot be found.

Correct the specified address.

49 EADDRNOTAVAIL Multicast APIs The specified multicast address,
interface address, or interface index is
not correct.

Correct the specified address.

50 ENETDOWN All The network is down. Retry when the connection path is up.

51 ENETUNREACH Connect The network cannot be reached. Ensure that the target application is
active.

52 ENETRESET All The network dropped a connection on a
reset.

Reestablish the connection between
the applications.

53 ECONNABORTED All The software caused a connection
abend.

Reestablish the connection between
the applications.

54 ECONNRESET All The connection to the destination host
is not available.

N/A

54 ECONNRESET Send Write The connection to the destination host
is not available.

The socket is closing. Issue Send() or
Write() before closing the socket.

55 ENOBUFS All No buffer space is available. Check the application for massive
storage allocation call.

55 ENOBUFS Accept Not enough buffer space is available to
create the new socket.

Call your system administrator.

55 ENOBUFS IOCTL (SIOCGPARTNERINFO) The buffer size provided is too small. Create a larger input buffer based on
the value returned in the PI_Buflen
field.

55 ENOBUFS IOCTL (SIOCSAPPLDATA) There is no storage available to store
the associated data.

Call your system administrator.

55 ENOBUFS IOCTL (SIOCTTLSCTL TTLS_Version1 requesting
TTLS_RETURN_ CERTIFICATE or TTLS_Version2
query)

The buffer size provided is too small. For TTLS_Version1 use the returned
certificate length to allocate a larger
buffer and reissue IOCTL with the larger
buffer.

55 ENOBUFS IP_BLOCK_SOURCE, IP_ADD_SOURCE_
MEMBERSHIP, MCAST_BLOCK_SOURCE,
MCAST_JOIN_SOURCE_ GROUP,
SIOCSIPMSFILTER, SIOCSMSFILTER,
setipv4sourcefilter, setsourcefilter

A maximum of 64 source filters can be
specified per multicast address,
interface address pair.

Remove unneeded source IP addresses
and reissue the command.

55 ENOBUFS Send Sendto Write Not enough buffer space is available to
send the new message.

Call your system administrator.

55 ENOBUFS Takesocket Not enough buffer space is available to
create the new socket.

Call your system administrator.

56 EISCONN Connect The socket is already connected. Correct the socket descriptor on
Connect() or do not issue a Connect()
twice for the socket.

57 ENOTCONN All The socket is not connected. Connect the socket before
communicating.

57 ENOTCONN IOCTL (SIOCGPARTNERINFO) The requested socket is not connected. Check and modify the socket
descriptor, or reissue the IOCTL after
the connect call from the client side or
after the accept call from the server
side.

57 ENOTCONN IOCTL (SIOCTTLSCTL) The socket is not connected. Issue the SIOCTTLSCTL IOCTL only
after the socket is connected.

58 ESHUTDOWN All A Send cannot be processed after
socket shutdown.

Issue read/receive before shutting
down the read side of the socket.

Appendix B. Socket call error return codes 751

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

59 ETOOMANYREFS All There are too many references. A splice
cannot be completed.

Call your system administrator.

59 ETOOMANYREFS IP_ADD_MEMBERSHIP, IP_ADD_SOURCE_
MEMBERSHIP, MCAST_JOIN_GROUP,
MCAST_JOIN_SOURCE_ GROUP,
IPV6_JOIN_GROUP

A maximum of 20 multicast groups per
single UDP socket or a maximum of 256
multicast groups per single RAW socket
can be specified.

Remove unneeded multicast groups
and reissue the command.

60 ETIMEDOUT Connect The connection timed out before it was
completed.

Ensure the server application is
available.

61 ECONNREFUSED Connect The requested connection was refused. Ensure server application is available
and at specified port.

62 ELOOP All There are too many symbolic loop
levels.

Reduce symbolic links to specified file.

63 ENAMETOOLONG All The file name is too long. Reduce size of specified file name.

64 EHOSTDOWN All The host is down. Restart specified host.

65 EHOSTUNREACH All There is no route to the host. Set up network path to specified host
and verify that host name is valid.

66 ENOTEMPTY All The directory is not empty. Clear out specified directory and
reissue call.

67 EPROCLIM All There are too many processes in the
system.

Decrease the number of processes or
increase the process limit.

68 EUSERS All There are too many users on the
system.

Decrease the number of users or
increase the user limit.

69 EDQUOT All The disk quota has been exceeded. Call your system administrator.

70 ESTALE All An old NFS** data set handle was
found.

Call your system administrator.

71 EREMOTE All There are too many levels of remote in
the path.

Call your system administrator.

72 ENOSTR All The device is not a stream device. Call your system administrator.

73 ETIME All The timer has expired. Increase timer values or reissue
function.

73 ETIME IOCTL (SIOCGPARTNERINFO) The wait time for the request has
expired, possibly as the result of
network problems.

Retry the request.

Restriction: You cannot use a select
mask to determine when an IOCTL is
complete, because an IOCTL is not
affected by whether the socket is
running in blocking or nonblocking
mode. If the IOCTL times out, reissue
the IOCTL to retrieve the partner
security credentials.

74 ENOSR All There are no more stream resources. Call your system administrator.

75 ENOMSG All There is no message of the desired
type.

Call your system administrator.

76 EBADMSG All The system cannot read the message. Verify that z/OS Communications
Server installation was successful and
that message files were properly
loaded.

77 EIDRM All The identifier has been removed. Call your system administrator.

78 EDEADLK All A deadlock condition has occurred. Call your system administrator.

78 EDEADLK Select Selectex None of the sockets in the socket
descriptor sets are either AF_INET or
AF_IUCV sockets and there is no
timeout value or no ECB specified. The
select/selectex would never complete.

Correct the socket descriptor sets so
that an AF_INET or AF_IUCV socket is
specified. A timeout or ECB value can
also be added to avoid the select/
selectex from waiting indefinitely.

79 ENOLCK All No record locks are available. Call your system administrator.

80 ENONET All The requested machine is not on the
network.

Call your system administrator.

81 ERREMOTE All The object is remote. Call your system administrator.

82 ENOLINK All The link has been severed. Release the sockets and reinitialize the
client-server connection.

83 EADV All An ADVERTISE error has occurred. Call your system administrator.

84 ESRMNT All An SRMOUNT error has occurred. Call your system administrator.

752 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

85 ECOMM All A communication error has occurred on
a Send call.

Call your system administrator.

86 EPROTO All A protocol error has occurred. Call your system administrator.

86 EPROTO IOCTL (SIOCTTLSCTL requesting
TTLS_RESET_SESSION, TTLS_RESET_CIPHER,
TTLS_RESET_WRITE_CIPHER,
TTLS_SEND_SESSION_TICKET,
TTLS_STOP_CONNECTION, or
TTLS_ALLOW_HSTIMEOUT)

One of the following errors occurred:

• A TTLS_INIT_CONNECTION request
was not received for the connection.

• TTLS_STOP_CONNECTION was
requested on a connection that has
outstanding application data. For
unread application data, the errno
junior is
JrTTLSStopReadDataPending. For
unwritten application data, the errno
junior is
JrTTLSStopWriteDataPending.

• TTLS_RESET_CIPHER or
TTLS_STOP_ CIPHER was requested
on a connection that is secured
using SSL version 2.

• TTLS_RESET_WRITE_CIPHER or
TTLS_SEND_SESSION_TICKET was
requested on a connection that is
secured using a protocol version
less than TLS version 1.3.

• TTLS_ALLOW_HSTIMEOUT was
requested but the policy has the
HandshakeRole value client or the
HandshakeTimeout value is 0.

• TTLS_SEND_SESSION_TICKET was
requested but the policy has the
HandshakeRole value client or
GSK_SESSION_TICKET_SERVER_EN
ABLE value Off or the
GSK_SESSION_TICKET_SERVER_CO
UNT value is not 0.

• Request TTLS_INIT_CONNECTION
before requesting
TTLS_RESET_SESSION,
TTLS_RESET_CIPHER,
TTLS_RESET_WRITE_CIPHER, or
TTLS_SEND_SESSION_TICKET.

• Request TTLS_STOP_CONNECTION
after all application data is cleared
from the connection. For
JrTTLSStopReadDataPending, read
all available application data. For
JrTTLSStopWriteDataPending, wait
for all the outstanding application
data to be written.

• Request TTLS_RESET_CIPHER or
TTLS_STOP_CONNECTION only on
connections secured using SSL
version 3 or TLS version 1.0 or
higher.

• Request
TTLS_RESET_WRITE_CIPHER or
TTLS_SEND_SESSION_TICKET only
on connections secured using TLS
version 1.3 or higher.

• Request TTLS_ALLOW_HSTIMEOUT
only when the security type is
TTLS_SEC_SERVER or higher and
the HandshakeTimeout value is not
0.

• Request
TTLS_SEND_SESSION_TICKET only
when the security type is
TTLS_SEC_SERVER or higher and
when
GSK_SESSION_TICKET_SERVER_EN
ABLE is On and
GSK_SESSION_TICKET_SERVER_CO
UNT is 0.

87 EMULTIHOP All A multi-hop address link was
attempted.

Call your system administrator.

88 EDOTDOT All A cross-mount point was detected. This
is not an error.

Call your system administrator.

89 EREMCHG All The remote address has changed. Call your system administrator.

90 ECONNCLOSED All The connection was closed by a peer. Check that the peer is running.

113 EBADF All Socket descriptor is not in correct
range. The maximum number of socket
descriptors is set by MAXDESC(). The
default range is 0–49.

Reissue function with corrected socket
descriptor.

113 EBADF Bind socket The socket descriptor is already being
used.

Correct the socket descriptor.

113 EBADF Givesocket The socket has already been given. The
socket domain is not AF_INET.

Correct the socket descriptor.

113 EBADF Select One of the specified descriptor sets is
an incorrect socket descriptor.

Correct the socket descriptor. Set on
Select() or Selectex().

113 EBADF Takesocket The socket has already been taken. Correct the socket descriptor.

113 EBADF Accept A Listen() has not been issued before
the Accept().

Issue Listen() before Accept().

121 EINVAL All An incorrect argument was specified. Check and correct all function
parameters.

Appendix B. Socket call error return codes 753

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

121 EINVAL IOCTL (SIOCSAPPLDATA) The input parameter is not a correctly
formatted SetApplData structure.

• The SetAD_eye1 value is not valid.

• The SetAD_ver value is not valid.

• The storage pointed to by SetAD_ptr
does not contain a correctly
formatted SetADcontainer structure.

• The SetAD_eye2 value is not valid.

• The SetAD_len value contains an
incorrect length for the SetAD_ver
version of the SetADcontainer
structure.

Check and correct all function
parameters.

121 EINVAL inet6_is_srcaddr • One or more invalid IPV6_ADDR_
PREFERENCES flags were specified

• A scope ID was omitted for a link
local IP address

• A scope ID was specified for an IP
address that is not link-local

• The socket address length was not
valid

Correct the function parameters

122 ECLOSED

126 ENMELONG

134 ENOSYS IOCTL The function is not implemented Either configure the system to support
the ioctl command or remove the ioctl
command from your program.

134 ENOSYS IOCTL - siocgifnameindex The TCP/IP stack processing the
siocgifnameindex IOCTL is configured
as a pure IPv4 TCP/IP stack.
Additionally, UNIX System Services is
configured to process as INET.

Either configure the system to support
the ioctl command or remove the ioctl
command from your program.

136 ENOTEMPT

145 E2BIG All The argument list is too long. Eliminate excessive number of
arguments.

156 EMVSINITIAL All Process initialization error.

This indicates an z/OS UNIX process
initialization failure. This is usually an
indication that a proper OMVS RACF
segment is not defined for the user ID
associated with application. The RACF
OMVS segment might not be defined or
might contain errors such as an
improper HOME() directory
specification.

Attempt to initialize again. After
ensuring that an OMVS Segment is
defined, if the errno is still returned,
call your MVS system programmer to
have IBM service contacted.

157 EMISSED

157 EMVSERR An MVS environmental or internal error
occurred.

1002 EIBMSOCKOUTOFRANGE Socket, Accept, Takesocket A new socket cannot be created
because the MAXSOC value, which is
specified on the INITAPI call, has been
reached.

Take either one of the following actions:

• Verify whether all open sockets are
intended to be in use.

• Increase the MAXSOC value to a
value that is appropriate for the
current workload. If the default
value is currently being used, you
might be required to add the
INITAPI call.

1003 EIBMSOCKINUSE Socket A socket number assigned by the client
interface code is already in use.

Use a different socket descriptor.

1004 EIBMIUCVERR All The request failed because of an IUCV
error. This error is generated by the
client stub code.

Ensure IUCV/VMCF is functional.

1008 EIBMCONFLICT All This request conflicts with a request
already queued on the same socket.

Cancel the existing call or wait for its
completion before reissuing this call.

1009 EIBMCANCELLED All The request was canceled by the
CANCEL call.

Informational, no action needed.

1011 EIBMBADTCPNAME All A TCP/IP name that is not valid was
detected.

Correct the name specified in the
IBM_TCPIMAGE structure.

754 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

1011 EIBMBADTCPNAME Setibmopt A TCP/IP name that is not valid was
detected.

Correct the name specified in the
IBM_TCPIMAGE structure.

1011 EIBMBADTCPNAME INITAPI A TCP/IP name that is not valid was
detected.

Correct the name specified on the
IDENT option TCPNAME field.

1012 EIBMBADREQUESTCODE All A request code that is not valid was
detected.

Contact your system administrator.

1013 EIBMBADCONNECTIONSTATE All A connection token that is not valid was
detected; bad state.

Verify TCP/IP is active.

1014 EIBMUNAUTHORIZEDCALLER All An unauthorized caller specified an
authorized keyword.

Ensure user ID has authority for the
specified operation.

1015 EIBMBADCONNECTIONMATCH All A connection token that is not valid was
detected. There is no such connection.

Verify TCP/IP is active.

1016 EIBMTCPABEND All An abend occurred when TCP/IP was
processing this request.

Verify that TCP/IP has restarted.

1023 EIBMTERMERROR All Encountered a terminating error while
processing.

Call your system administrator.

1026 EIBMINVDELETE All Delete requestor did not create the
connection.

Delete the request from the process
that created it.

1027 EIBMINVSOCKET All A connection token that is not valid was
detected. No such socket exists.

Call your system programmer.

1028 EIBMINVTCPCONNECTION All Connection terminated by TCP/IP. The
token was invalidated by TCP/IP.

Reestablish the connection to TCP/IP.

1032 EIBMCALLINPROGRESS All Another call was already in progress. Reissue after previous call has
completed.

1036 EIBMNOACTIVETCP All TCP/IP is not installed or not active. Correct TCP/IP name used.

1036 EIBMNOACTIVETCP Select EIBMNOACTIVETCP Ensure TCP/IP is active.

1036 EIBMNOACTIVETCP Getibmopt No TCP/IP image was found. Ensure TCP/IP is active.

1037 EIBMINVTSRBUSERDATA All The request control block contained
data that is not valid.

Call your system programmer.

1038 EIBMINVUSERDATA All The request control block contained
user data that is not valid.

Check your function parameters and
call your system programmer.

1040 EIBMSELECTEXPOST SELECTEX SELECTEX passed an ECB that was
already posted.

Check whether the user's ECB was
already posted.

1112 ECANCEL

1162 ENOPARTNERINFO IOCTL (SIOCGPARTNERINFO) The partner resides in a TCP/IP stack
running a release that is earlier than
V1R12, or the partner is not in the
same sysplex.

Ensure that both endpoints reside in
TCP/IP stacks that are running V1R12
or any later release, or check and
modify the socket descriptor. If the
partner is not in the same sysplex,
security credentials will not be
returned.

2001 EINVALIDRXSOCKETCALL REXX A syntax error occurred in the
RXSOCKET parameter list.

Correct the parameter list passed to the
REXX socket call.

2002 ECONSOLEINTERRUPT REXX A console interrupt occurred. Retry the task.

2003 ESUBTASKINVALID REXX The subtask ID is incorrect. Correct the subtask ID on the
INITIALIZE call.

2004 ESUBTASKALREADYACTIVE REXX The subtask is already active. Issue the INITIALIZE call only once in
your program.

2005 ESUBTASKNOTACTIVE REXX The subtask is not active. Issue the INITIALIZE call before any
other socket call.

2006 ESOCKETNOTALLOCATED REXX The specified socket or needed control
block could not be allocated.

Increase the user storage allocation for
this job.

2007 EMAXSOCKETSREACHED REXX The maximum number of sockets has
been reached.

Increase the number of allocate
sockets, or decrease the number of
sockets used by your program.

2009 ESOCKETNOTDEFINED REXX The socket is not defined. Issue the SOCKET call before the call
that fails.

2011 EDOMAINSERVERFAILURE REXX A Domain Name Server failure
occurred.

Call your MVS system programmer.

2012 EINVALIDNAME REXX An incorrect name was received from
the TCP/IP server.

Call your MVS system programmer.

Appendix B. Socket call error return codes 755

Table 24. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

2013 EINVALIDCLIENTID REXX An incorrect clientid was received from
the TCP/IP server.

Call your MVS system programmer.

2014 ENIVALIDFILENAME REXX An error occurred during NUCEXT
processing.

Specify the correct translation table file
name, or verify that the translation
table is valid.

2016 EHOSTNOTFOUND REXX The host is not found. Call your MVS system programmer.

2017 EIPADDRNOTFOUND REXX Address not found. Call your MVS system programmer.

2019 ENORECOVERY REXX A non-recoverable failure occurred
during the Resolver's processing of the
GETHOSTBYADDR or
GETHOSTBYNAME call.

Contact the IBM support center.

2020 EINVALIDCOMBINATION REXX An invalid combination of IPV6_ADDR_
PREFERENCES flags was received from
the caller.

Correct the specified flags

2021 EOPTNAMEMISMATCH REXX The caller specified an OPTNAME that
is invalid for the LEVEL that it specified.

Correct either the OPTNAME or the
LEVEL.

2022 EFLAGSMISMATCH REXX The caller issued a GETADDRINFO with
conflicting FLAGS and EFLAGS
parameters: either AI_EXT_FLAGS was
specified with a null EFLAGS, or
AI_EXT_FLAGS was not specified but
EFLAGS was not null.

Correct either the FLAGS parameter or
the EFLAGS parameter. A non-null
EFLAGS should be specified if and only
if AI_EXT_FLAGS is specified in the
FLAGS.

2051 EFORMATERROR REXX The name server was unable to
interpret the query

Contact the IBM support center.

3412 ENODATA Message does not exist.

3416 ELINKED Stream is linked.

3419 ERECURSE Recursive attempt rejected.

3420 EASYNC Asynchronous I/O scheduled. This is a
normal, internal event that is NOT
returned to the user.

3448 EUNATCH The protocol required to support the
specified address family is not
available.

3464 ETERM Operation terminated.

3474 EUNKNOWN Unknown system state.

3495 EBADOBJ You attempted to reference an object
that does not exist.

3513 EOUTOFSTATE Protocol engine has received a
command that is not acceptable in its
current state.

z/OS UNIX return codes
All return codes not listed in either Sockets return codes (ERRNOs) or Sockets extended ERRNOs are z/OS
UNIX error condition codes that are not translated to a TCP/IP errno. This is an errno that is received from
z/OS UNIX. These errnos are found in the SYS1.MACLIB(BPXYERNO) and are defined in z/OS UNIX
System Services Messages and Codes.

For more information about z/OS UNIX error codes, see z/OS UNIX System Services Messages and Codes.

Additional return codes
The following table contains the error condition codes that are returned in the ERRNO field by the API
when you use the sockets extended interfaces. The RETCODE field contains a -1 when an error condition
is returned.

756 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Sockets extended ERRNOs
Table 25. Sockets extended ERRNOs

Error
code Problem description System action Programmer’s response

10100 An ESTAE macro did not
complete normally.

End the call. Call your MVS system programmer.

10101 A STORAGE OBTAIN failed. End the call. Increase MVS storage in the application's
address space.

10108 The first call issued was not a
valid first call.

End the call. Almost all sockets programs that are
written in COBOL, PL/I, or assembler
language must issue the INITAPI call
before they issue other sockets calls.

10110 LOAD of EZBSOH03 (alias
EZASOH03) failed.

End the call. Call the IBM Software Support Center.

10154 Errors were found in the
parameter list for an IOCTL call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10155 The length parameter for an
IOCTL call is less than or equal
to 0.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10156 The length parameter for an
IOCTL call is 3200 (32 x 100).

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10159 A 0 or negative data length was
specified for a READ or READV
call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length in the READ call.

10161 The REQARG parameter in the
IOCTL parameter list is 0.

End the call. Correct the program.

10163 A 0 or negative data length was
found for a RECV, RECVFROM,
or RECVMSG call.

Disable the subtask
for interrupts. Sever
the DLC path. Return
an error code to the
caller.

Correct the data length.

10167 The descriptor set size for a
SELECT or SELECTEX call is less
than or equal to 0.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SELECT or SELECTEX call. You
might have incorrect sequencing of socket
calls.

10168 The descriptor set size in bytes
for a SELECT or SELECTEX call
is greater than 8192. A number
greater than the maximum
number of allowed sockets
(65534 is the maximum) has
been specified.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the descriptor set size.

Appendix B. Socket call error return codes 757

Table 25. Sockets extended ERRNOs (continued)

Error
code Problem description System action Programmer’s response

10170 A 0 or negative data length was
found for a SEND or SENDMSG
call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SEND call.

10174 A 0 or negative data length was
found for a SENDTO call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SENDTO call.

10178 The SETSOCKOPT option length
is less than the minimum
length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the OPTLEN parameter.

10179 The SETSOCKOPT option length
is greater than the maximum
length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the OPTLEN parameter.

10184 A data length of 0 was specified
for a WRITE call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

10186 A negative data length was
specified for a WRITE or
WRITEV call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

10190 The GETHOSTNAME option
length is not in the range of 1–
255.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length parameter.

10193 The SETSOCKOPT or
GETSOCKOPT option length is
shorter than the minimum
length or longer than the
maximum length.

End the call. Correct the length parameter.

10197 The application issued an
INITAPI call after the
connection was already
established.

Bypass the call. Correct the logic that produces the INITAPI
call that is not valid.

10198 The maximum number of
sockets specified for an INITAPI
exceeds 65535.

Return to the user. Correct the INITAPI call.

10200 The first call issued was not a
valid first call.

End the call. Almost all sockets programs that are
written in COBOL, PL/I, or assembler
language must issue the INITAPI call
before they issue other sockets calls.

10202 The RETARG parameter in the
IOCTL call is 0.

End the call. Correct the parameter list. You might have
incorrect sequencing of socket calls.

758 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 25. Sockets extended ERRNOs (continued)

Error
code Problem description System action Programmer’s response

10203 The requested socket number is
a negative value.

End the call. Correct the requested socket number.

10205 The requested socket number is
a duplicate.

End the call. Correct the requested socket number.

10208 The NAMELEN parameter for a
GETHOSTBYNAME call was not
specified.

End the call. Correct the NAMELEN parameter. You might
have incorrect sequencing of socket calls.

10209 The NAME parameter on a
GETHOSTBYNAME call was not
specified.

End the call. Correct the NAME parameter. You might
have incorrect sequencing of socket calls.

10210 The HOSTENT parameter on a
GETHOSTBYNAME or
GETHOSTBYADDR call was not
specified.

End the call. Correct the HOSTENT parameter. You might
have incorrect sequencing of socket calls.

10211 The HOSTADDR parameter on a
GETHOSTBYNAME or
GETHOSTBYADDR call is
incorrect.

End the call. Correct the HOSTADDR parameter. You
might have incorrect sequencing of socket
calls.

10212 The resolver program failed to
load correctly for a
GETHOSTBYNAME or
GETHOSTBYADDR call.

End the call. Check the JOBLIB, STEPLIB, and linklib
datasets and rerun the program.

10213 Not enough storage is available
to allocate the HOSTENT
structure.

End the call. Increase the user storage allocation for this
job.

10214 The HOSTENT structure was not
returned by the resolver
program.

End the call. Ensure that the domain name server is
available. This can be a nonerror condition
indicating that the name or address
specified in a GETHOSTBYADDR or
GETHOSTBYNAME call could not be
matched.

10215 The APITYPE parameter on an
INITAPI call instruction was not
2 or 3.

End the call. Correct the APITYPE parameter.

10218 The application programming
interface (API) cannot locate
the specified TCP/IP.

End the call. Ensure that an API that supports the
performance improvements related to CPU
conservation is installed on the system and
verify that a valid TCP/IP name was
specified on the INITAPI call. This error call
might also mean that EZASOKIN could not
be loaded.

10219 The NS parameter is greater
than the maximum socket for
this connection.

End the call. Correct the NS parameter on the ACCEPT,
SOCKET or TAKESOCKET call.

Appendix B. Socket call error return codes 759

Table 25. Sockets extended ERRNOs (continued)

Error
code Problem description System action Programmer’s response

10221 The AF parameter of a SOCKET
call is not AF_INET.

End the call. Set the AF parameter equal to AF_INET.

10222 The SOCTYPE parameter of a
SOCKET call must be stream,
datagram, or raw (1, 2, or 3).

End the call. Correct the SOCTYPE parameter.

10223 No ASYNC parameter specified
for INITAPI with APITYPE=3
call.

End the call. Add the ASYNC parameter to the INITAPI
call.

10224 The IOVCNT parameter is less
than or equal to 0, for a READV,
RECVMSG, SENDMSG, or
WRITEV call.

End the call. Correct the IOVCNT parameter.

10225 The IOVCNT parameter is
greater than 120, for a READV,
RECVMSG, SENDMSG, or
WRITEV call.

End the call. Correct the IOVCNT parameter.

10226 Not valid COMMAND parameter
specified for a GETIBMOPT call.

End the call. Correct the COMMAND parameter of the
GETIBMOPT call.

10229 A call was issued on an
APITYPE=3 connection without
an ECB or REQAREA parameter.

End the call. Add an ECB or REQAREA parameter to the
call.

10300 Termination is in progress for
either the CICS transaction or
the socket interface.

End the call. None.

10330 A SELECT call was issued
without a MAXSOC value and a
TIMEOUT parameter.

End the call. Correct the call by adding a TIMEOUT
parameter.

10331 A call that is not valid was
issued while in SRB mode.

End the call. Get out of SRB mode and reissue the call.

10332 A SELECT call is invoked with a
MAXSOC value greater than that
which was returned in the
INITAPI function (MAXSNO
field).

End the call. Correct the MAXSOC parameter and reissue
the call.

10334 An error was detected in
creating the data areas required
to process the socket call.

End the call. Call the IBM Software Support Center.

10335 An INITAPI or first call was
issued by using a TIE that
another task used.

End the call. Change the application to allocate a new
TIE or to ensure that a TERMAPI is done
before the TIE is reused.

760 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 25. Sockets extended ERRNOs (continued)

Error
code Problem description System action Programmer’s response

10999 An abend has occurred in the
subtask.

Write message
EZY1282E to the
system console. End
the subtask and post
the TRUE ECB.

If the call is correct, call your system
programmer.

20000 An unknown function code was
found in the call.

End the call. Correct the SOC-FUNCTION parameter.

20001 The call passed an incorrect
number of parameters.

End the call. Correct the parameter list.

20002 The user ID associated with the
program linking EZACIC25 does
not have the proper authority to
execute a CICS EXTRACT EXIT.

End the call. Start the CICS socket interface before
executing this call.

20003 The CICS socket interface is not
in operation.

End the call. Contact the CICS system programmer.
Ensure that the user ID being used is
permitted to have at least UPDATE access
to the EXITPROGRAM resource.

20004 The CICS socket TRUE failed to
suspend the task.

End the call. Call the IBM Software Support Center.

20005 The socket task was purged by
CICS while the task was being
suspended by the CICS socket
TRUE.

End the call. None.

User abend U4093
An abend U4093 indicates that a sockets extended call that is not valid has been detected. It is issued by
EZASOKET following a call to EZASOKFN if EZASOKFN has detected an error in the socket call parameter
list. The registers at the time of the abend are:

• R2 contains the address of the save area containing the calling program registers.
• R11 contains the error code passed to EZASOKET by EZASOKFN.

Code
Description

X'4E20' (20000)
Indicates EZASOKFN could not find the requested CALL function name.

X'4E21' (20001)
Indicates that EZASOKFN found an incorrect number of parameters in the parameter list for the
requested function.

• R12 contains the address of the incorrect parameter list.

Figure 232 on page 762 is an example of abend U4093:

Appendix B. Socket call error return codes 761

 USER COMPLETION CODE=4093
 TIME=15.01.58 SEQ=00074 CPU=0000 ASID=000E
 PSW AT TIME OF ERROR 078D1000 80018F14 ILC 2 INTC 0D
 ACTIVE LOAD MODULE=DLSV2AS2 ADDRESS=00018670 OFFSET=000008A4
 DATA AT PSW 00018F0E - 00181610 0A0D4100 35185000
 GPR 0-3 80000000 80000FFD 000189E4 00018DC0
 GPR 4-7 00019DC0 00018CE0 00018AA6 00018D18
 GPR 8-11 00013780 00019378 00019088 00004E21
 GPR 12-15 000187D4 0001902C 80018EF4 00004E21

Figure 232. Example of abend U4093

762 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Appendix C. Address family cross reference

This information contains AF_INET, AF_INET6, and AF_IUCV address family cross reference information
for the following APIs:

• TCP/IP C socket API
• X/Open Transport Interface
• Macro API for IPv4 or IPv6 that is written in z/OS assembler language
• Call instruction API for IPv4 or IPv6 socket applications
• z/OS Communications Server socket API for REXX
• Pascal language for IPv4 socket API

Address families define different styles of addressing. All hosts in the same addressing family understand
and use the same method for addressing socket endpoints. TCP/IP supports the following addressing
families:

• AF_INET
• AF_INET6
• AF_IUCV

The AF_INET and AF_INET6 families both define addressing in the internet domain. The AF_IUCV family
defines addressing in the IUCV domain. In the IUCV domain, address spaces can use the socket interface
to communicate with other address spaces on the same host.

The INET, INET6, and IUCV column entries are:
yes

The call applies to this address family.
no

If you use this call with this address family, an error is returned.
n/a

If you use this call with this address family, no error is returned and the call is not processed.
blank

The call does not apply to this API.

Notes:

1. Pascal API supports only AF_INET address family.
2. XTI API supports only AF_INET address family.
3. INET6 is not supported.

Table 26. C socket address families cross reference

Application Programming Interface (API)

Function C SOCKETS

INET IUCV

accept() yes yes

bind() yes yes

close() yes yes

connect() yes yes

endhostent() yes n/a

© Copyright IBM Corp. 2000, 2020 763

Table 26. C socket address families cross reference (continued)

Application Programming Interface (API)

Function C SOCKETS

INET IUCV

endnetent() yes n/a

endprotoent() yes n/a

endservent() yes n/a

fcntl() yes no

getclientid() yes no

getdtablesize() yes yes

gethostbyaddr() yes no

gethostbyname() yes n/a

gethostent() yes n/a

gethostid() yes no

gethostname() yes no

getibmopt() yes no

getibmsockopt() yes no

getnetbyaddr() yes n/a

getnetbyname() yes n/a

getnetent() yes n/a

getpeername() yes yes

getprotobyname() yes n/a

getprotobynumber() yes n/a

getprotoent() yes n/a

getservbyname() yes n/a

getservbyport() yes n/a

getservent() yes n/a

getsockname() yes yes

getsockopt() yes no

givesocket() yes no

htonl() yes n/a

htons() yes n/a

inet_addr() yes n/a

inet_inaof() yes n/a

inet_makeaddr() yes n/a

inet_netof() yes n/a

764 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 26. C socket address families cross reference (continued)

Application Programming Interface (API)

Function C SOCKETS

INET IUCV

inet_network() yes n/a

inet_ntoa() yes n/a

ioctl() yes no

listen() yes yes

maxdesc() yes yes

ntohl() yes n/a

ntohs() yes n/a

read() yes yes

readv() yes yes

recv() yes yes

recvfrom() yes yes

recvmsg() yes yes

select() yes yes

selectex() yes yes

send() yes yes

sendmsg() yes no

sendto() yes no

setibmopt() yes no

setibmsockopt() yes no

sethostent() yes n/a

setnetent() yes n/a

setprotoent() yes n/a

setservent() yes n/a

setsockopt() yes no

shutdown() yes yes

sock_debug() yes yes

sock_do_teststor() yes yes

socket() yes yes

takesocket() yes no

tcperror() yes yes

write() yes yes

writev() yes yes

Appendix C. Address family cross reference 765

Note: In the following table, IUCV is not supported.

Table 27. MACRO, CALL, REXX, socket address families cross reference

Application Programming Interface (API)

COMMAND MACRO CALL REXX

INET INET6 INET INET6 INET INET6

ACCEPT yes yes yes yes yes yes

BIND yes yes yes yes yes yes

BIND2ADDRSEL no yes no yes no yes

CANCEL yes yes

CLOSE yes yes yes yes yes yes

CONNECT yes yes yes yes yes yes

FCNTL yes yes yes yes yes yes

FREEADDRINFO yes yes yes yes

GETADDRINFO yes yes yes yes yes yes

GETCLIENTID yes yes yes yes yes yes

GETDOMAINNAME yes yes

GETHOSTBYADDR yes yes yes yes yes yes

GETHOSTBYNAME yes yes yes yes yes yes

GETHOSTID yes yes yes yes yes yes

GETHOSTNAME yes yes yes yes yes yes

GETIBMOPT yes yes yes yes

GETNAMEINFO yes yes yes yes yes yes

GETPEERNAME yes yes yes yes yes yes

GETPROTOBYNAME n/a n/a

GETPROTOBYNUMBER yes yes

GETSERVBYNAME yes yes

GETSERVBYPORT yes yes

GETSOCKNAME yes yes yes yes yes yes

GETSOCKOPT see Table 28 on page
767 for exceptions.

yes yes yes yes yes yes

GIVESOCKET yes yes yes yes yes yes

GLOBAL yes yes yes yes

INET6_IS_SRCADDR no yes no yes no yes

INITAPI yes yes yes yes

IOCTL see Table 28 on page 767
for exceptions.

yes yes yes yes yes yes

LISTEN yes yes yes yes yes yes

766 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 27. MACRO, CALL, REXX, socket address families cross reference (continued)

Application Programming Interface (API)

COMMAND MACRO CALL REXX

INET INET6 INET INET6 INET INET6

NTOP yes yes yes yes

PTON yes yes yes yes

READ yes yes yes yes yes yes

READV yes yes yes yes

RECV yes yes yes yes yes yes

RECVFROM yes yes yes yes yes yes

RECVMSG yes yes yes yes

RESOLVE yes yes

SELECT yes yes yes yes yes yes

SELECTEX yes yes yes yes

SEND yes yes yes yes yes yes

SENDMSG yes yes yes yes

SENDTO yes yes yes yes yes yes

SETSOCKOPT see Table 28 on page
767 for exceptions.

yes yes yes yes yes yes

SHUTDOWN yes yes yes yes yes yes

SOCKET yes yes yes yes yes yes

TAKESOCKET yes yes yes yes yes yes

TASK yes yes yes yes

TERMAPI yes yes yes yes

VERSION yes yes

WRITE yes yes yes yes yes yes

WRITEV yes yes yes yes

Table 28. MACRO, CALL, REXX, exceptions

Application Programming Interface (API)

COMMAND MACRO CALL REXX

INET INET6 INET INET6 INET INET6

GETSOCKOPT exceptions

IP_MULTICAST_IF yes no yes no yes no

IP_MULTICAST_LOOP yes no yes no yes no

IP_MULTICAST_TTL yes no yes no yes no

IPV6_ADDR_PREFERENCES no yes no yes no yes

Appendix C. Address family cross reference 767

Table 28. MACRO, CALL, REXX, exceptions (continued)

Application Programming Interface (API)

COMMAND MACRO CALL REXX

INET INET6 INET INET6 INET INET6

IPV6_MULTICAST_HOPS no yes no yes no yes

IPV6_MULTICAST_IF no yes no yes no yes

IPV6_MULTICAST_LOOP no yes no yes no yes

IPV6_UNICAST_HOPS no yes no yes no yes

IPV6_V6ONLY no yes no yes no yes

SETSOCKOPT exceptions

IP_ADD_MEMBERSHIP yes no yes no yes no

IP_ADD_SOURCE_MEMBERSHIP yes no yes no yes no

IP_BLOCK_SOURCE yes no yes no yes no

IP_DROP_MEMBERSHIP yes no yes no yes no

IP_DROP_SOURCE_MEMBERSHIP yes no yes no yes no

IP_MULTICAST_IF yes no yes no yes no

IP_MULTICAST_LOOP yes no yes no yes no

IP_MULTICAST_TTL yes no yes no yes no

IP_UNBLOCK_SOURCE yes no yes no yes no

IPV6_ADDR_PREFERENCES no yes no yes no yes

IPV6_JOIN_GROUP no yes no yes no yes

IPV6_LEAVE_GROUP no yes no yes no yes

IPV6_MULTICAST_HOPS no yes no yes no yes

IPV6_MULTICAST_IF no yes no yes no yes

IPV6_MULTICAST_LOOP no yes no yes no yes

IPV6_UNICAST_HOPS no yes no yes no yes

IPV6_V6ONLY no yes no yes no yes

IOCTL exceptions

SIOCGHOMEIF6 no yes no yes

SIOCGIPMSFILTER yes no yes no yes no

SIOCSIPMSFILTER yes no yes no yes no

768 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Appendix D. GETSOCKOPT/SETSOCKOPT command
values

You can use the following table to determine the decimal or hexadecimal value associated with the
GETSOCKOPT/SETSOCKOPT OPTNAMES supported by the APIs discussed in this document.

The command names are shown with underscores for the assembler language. The underscores should
be changed to dashes if using the COBOL programming language.

Languages that cannot easily handle binary values, such as COBOL, should use the decimal value
associated with the command where necessary.

The hexadecimal value can be used in Macro, Assembler and PL/I programs.

Table 29. GETSOCKOPT/SETSOCKOPT command values for Macro, Assembler, COBOL and PL/I

Command name Decimal value Hex value

IP_ADD_MEMBERSHIP 1048581 X'00100005'

IP_ADD_SOURCE_MEMBERSHIP 1048588 X'0010000C'

IP_BLOCK_SOURCE 1048586 X'0010000A'

IP_DROP_MEMBERSHIP 1048582 X'00100006'

IP_DROP_SOURCE_MEMBERSHIP 1048589 X'0010000D'

IP_MULTICAST_IF 1048583 X'00100007'

IP_MULTICAST_LOOP 1048580 X'00100004'

IP_MULTICAST_TTL 1048579 X'00100003'

IP_UNBLOCK_SOURCE 1048587 X'0010000B'

IPV6_ADDR_PREFERENCES 65568 X'00010020'

IPV6_JOIN_GROUP 65541 X'00010005'

IPV6_LEAVE_GROUP 65542 X'00010006'

IPV6_MULTICAST_HOPS 65545 X'00010009'

IPV6_MULTICAST_IF 65543 X'00010007'

IPV6_MULTICAST_LOOP 65540 X'00010004'

IPV6_UNICAST_HOPS 65539 X'00010003'

IPV6_V6ONLY 65546 X'0001000A'

MCAST_BLOCK_SOURCE 1048620 X'0010002C'

MCAST_JOIN_GROUP 1048616 X'00100028'

MCAST_JOIN_SOURCE_GROUP 1048618 X'0010002A'

MCAST_LEAVE_GROUP 1048617 X'00100029'

MCAST_LEAVE_SOURCE_GROUP 1048619 X'0010002B'

MCAST_UNBLOCK_SOURCE 1048621 X'0010002D'

SO_BROADCAST 32 X'00000020'

© Copyright IBM Corp. 2000, 2020 769

Table 29. GETSOCKOPT/SETSOCKOPT command values for Macro, Assembler, COBOL and PL/I
(continued)

Command name Decimal value Hex value

SO_ERROR 4103 X'00001007'

SO_LINGER 128 X'00000080'

SO_KEEPALIVE 8 X'00000008'

SO_OOBINLINE 256 X'00000100'

SO_RCVBUF 4098 X'00001002'

SO_RCVTIMEO 4102 X'00001006'

SO_REUSEADDR 4 X'00000004'

SO_SNDBUF 4097 X'00001001'

SO_SNDTIMEO 4101 X'00001005'

SO_TYPE 4104 X'00001008 '

TCP_KEEPALIVE 2147483654 X'80000008 '

TCP_NODELAY 2147483649 X'80000001'

Table 30. GETSOCKOPT/SETSOCKOPT optname value for C programs

Option name Decimal value

IP_ADD_MEMBERSHIP 5

IP_ADD_SOURCE_MEMBERSHIP 12

IP_BLOCK_SOURCE 10

IP_DROP_MEMBERSHIP 6

IP_DROP_SOURCE_MEMBERSHIP 13

IP_MULTICAST_IF 7

IP_MULTICAST_LOOP 4

IP_MULTICAST_TTL 3

IP_UNBLOCK_SOURCE 11

MCAST_BLOCK_SOURCE 44

MCAST_JOIN_GROUP 40

MCAST_JOIN_SOURCE_GROUP 42

MCAST_LEAVE_GROUP 41

MCAST_LEAVE_SOURCE_GROUP 43

MCAST_UNBLOCK_SOURCE 45

SO_ACCEPTCONN 2

SO_BROADCAST 32

SO_CLUSTERCONNTYPE 16385

SO_DEBUG 1

770 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Table 30. GETSOCKOPT/SETSOCKOPT optname value for C programs (continued)

Option name Decimal value

SO_ERROR 4103

SO_KEEPALIVE 8

SO_LINGER 128

SO_OOBINLINE 256

SO_RCVBUF 4098

SO_REUSEADDR 4

SO_SNDBUF 4097

SO_TYPE 4104

TCP_KEEPALIVE 8

TCP_NODELAY 1

Appendix D. GETSOCKOPT/SETSOCKOPT command values 771

772 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Appendix E. Abbreviations and acronyms

AIX®
Advanced Interactive Executive

ANSI
American National Standards Institute

API
Application program interface

APPC
Advanced Program-to-Program Communications

APPN
Advanced Peer-to-Peer Networking

ARP
Address Resolution Protocol

ASCII
American National Standard Code for Information Interchange

ASN.1
Abstract Syntax Notation One

AT-TLS
Application Transparent Transport Layer Security

AUI
Attachment Unit Interface

BIOS
Basic Input/Output System

BNC
Bayonet Neill-Concelman

CCITT
Comite Consultatif International Telegraphique et Telephonique. The International Telegraph and
Telephone Consultative Committee

CETI
Continuously Executing Transfer Interface

CLAW
Common Link Access to Workstation

CLIST
Command List

CMS
Conversational Monitor System

CP
Control Program

CPI
Common Programming Interface

CREN
Corporation for Research and Education Networking

CSD
Corrective Service Diskette

CTC
Channel-to-Channel

© Copyright IBM Corp. 2000, 2020 773

CU
Control Unit

CUA
Common User Access

DASD
Direct Access Storage Device

DBCS
Double Byte Character Set

DLL
Dynamic Link Library

DNS
Domain Name System

DOS
Disk Operating System

DPI
Distributed Program Interface

EBCDIC
Extended Binary-Coded Decimal Interchange Code

EISA
Enhanced Industry Standard Adapter

ELANS
IBM Ethernet LAN Subsystem

ESCON
Enterprise Systems Connection

FAT
File Allocation Table

FDDI
Fiber Distributed Data Interface

FTAM
File Transfer Access Management

FTP
File Transfer Protocol

FTP API
File Transfer Protocol Applications Programming Interface

GCS
Group Control System

GDDM
Graphical Data Display Manager

GDF
Graphics Data File

HCH**

HYPERchannel device**

HIPPI
High Performance Parallel Interface

HPFS
High Performance File System

ICAT
Installation Configuration Automation Tool

ICMP
Internet Control Message Protocol

774 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IEEE
Institute of Electrical and Electronic Engineers

IETF
Internet Engineering Task Force

ILANS
IBM Token-Ring LAN Subsystem

IP
Internet Protocol

IPL
Initial Program Load

ISA
Industry Standard Adapter

ISDN
Integrated Services Digital Network

ISO
International Organization for Standardization

IUCV
Inter-User Communication Vehicle

JES
Job Entry Subsystem

JIS
Japanese Institute of Standards

JCL
Job Control Language

LAN
Local Area Network

LAPS
LAN Adapter Protocol Support

LCS
IBM LAN Channel Station

LPD
Line Printer Daemon

LPQ
Line Printer Query

LPR
Line Printer Client

LPRM
Line Printer Remove

LPRMON
Line Printer Monitor

LU
Logical Unit

MAC
Media Access Control

Mbps
Megabits per second

MBps
Megabytes per second

MCA
Micro Channel Adapter

Appendix E. Abbreviations and acronyms 775

MHS
Message Handling System

MIB
Management Information Base

MIH
Missing Interrupt Handler

MILNET
Military Network

MTU
Maximum Transmission Unit

MVS
Multiple Virtual Storage

MX
Mail Exchange

NCP
Network Control Program

NCS
Network Computing System

NDIS
Network Driver Interface Specification

NFS**

Network File System**

NIC
Network Information Center

NLS
multicultural support

NSFNET
National Science Foundation Network

OS/2
Operating System/2®

OSF**

Open Software Foundation**, Inc.
OSI

Open Systems Interconnection
OSIMF/6000

Open Systems Interconnection Messaging and Filing/6000
OV/MVS

OfficeVision/MVS
OV/VM

OfficeVision/VM
PAD

Packet Assembly/Disassembly
PC

program call
PCA

Parallel Channel Adapter
PDN

Public Data Network
PDU

Protocol Data Units

776 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

PING
Packet Internet Groper

PIOAM
Parallel I/O Access Method

POP
Post Office Protocol

PROFS
Professional Office Systems

PSCA
Personal System Channel Attach

PSDN
Packet Switching Data Network

PU
Physical Unit

PVM
Passthrough Virtual Machine

RACF
Resource Access Control Facility

RARP
Reverse Address Resolution Protocol

REXEC
Remote Execution

REXX
Restructured Extended Executor Language

RFC
Request For Comments

RIP
Routing Information Protocol

RISC
Reduced Instruction Set Computer

RPC
Remote procedure call

RSCS
Remote Spooling Communications Subsystem

SAA
System Application Architecture

SBCS
Single Byte Character Set

SDLC
Synchronous Data Link Control

SLIP
Serial Line Internet Protocol

SMI
Structure for Management Information

SMTP
Simple Mail Transfer Protocol

SNA
Systems Network Architecture

SNMP
Simple Network Management Protocol

Appendix E. Abbreviations and acronyms 777

SOA
Start of Authority

SPOOL
Simultaneous Peripheral Operations Online

SQL
IBM Structured Query Language

TCP
Transmission Control Protocol

TCP/IP
Transmission Control Protocol/Internet Protocol

TFTP
Trivial File Transfer Protocol

TSO
Time Sharing Option

TTL
Time-to-Live

UDP
User Datagram Protocol

VGA
Video Graphic Array

VM
Virtual Machine

VMCF
Virtual machine communication facility

VM/SP
Virtual Machine/System Product

VM/XA
Virtual Machine/Extended Architecture

VTAM
Virtual Telecommunications Access Method

WAN
Wide Area Network

XDR
eXternal Data Representation

778 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Appendix F. GETNAMEINFO flags and returned
information examples

Flag name Hexadecimal value

NI_NOFQDN 01

NI_NUMERICHOST 02

NI_NAMEREQD 04

NI_NUMERICSERV 08

NI_DGRAM 10

NI_NUMERICSCOPE 20

The following table shows returned results of information for all 63 possible combinations of flags (x'01'
to x'3F') using a REXX socket call for GETNAMEINFO:

af = 2 /* AF_INET */
portnum = 23 /* port number */
ipaddr = 10.x.y.z /* IP address */
flags = one or more flag name separated by blanks

Result = SOCKET('GETNAMEINFO', af ipaddr portnum, flags)

Flags (in hexadecimal value) Result of returned information (return code, data1, data2)

01, 05, 21, or 25 0 mvshost telnet

02, 03, 22, or 23 0 10.x.y.z telnet

04, 20, or 24 0 mvshost.tcp.raleigh.ibm.com telnet

06, 07, 0E, 0F, 16, 17, 1E, 1F, 26, 27,
2E, 2F, 36, 37, 3E, or 3F

3 EAI_FAIL No recovery - resolver

08, 0C, 10, 14, 18, 1C, 28, 2C, 30, 34,
38, or 3C

0 mvshost.tcp.raleigh.ibm.com 23

09, 0D, 11, 15, 19, 1D, 29, 2D, 31, 35,
39, or 3D

0 mvshost 23

0A, 0B, 18, 19, 1A, 1B, 2A, 2B, 32,
33, 3A, or 3B

0 10.x.y.z 23

© Copyright IBM Corp. 2000, 2020 779

780 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Appendix G. Related protocol specifications

This appendix lists the related protocol specifications (RFCs) for TCP/IP. The Internet Protocol suite is still
evolving through requests for comments (RFC). New protocols are being designed and implemented by
researchers and are brought to the attention of the Internet community in the form of RFCs. Some of
these protocols are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular functions or protocols.
These become the de facto standards, on which the TCP/IP protocol suite is built.

RFCs are available at http://www.rfc-editor.org/rfc.html.

Draft RFCs that have been implemented in this and previous Communications Server releases are listed at
the end of this topic.

Many features of TCP/IP Services are based on the following RFCs:
RFC

Title and Author
RFC 652

Telnet output carriage-return disposition option D. Crocker
RFC 653

Telnet output horizontal tabstops option D. Crocker
RFC 654

Telnet output horizontal tab disposition option D. Crocker
RFC 655

Telnet output formfeed disposition option D. Crocker
RFC 657

Telnet output vertical tab disposition option D. Crocker
RFC 658

Telnet output linefeed disposition D. Crocker
RFC 698

Telnet extended ASCII option T. Mock
RFC 726

Remote Controlled Transmission and Echoing Telnet option J. Postel, D. Crocker
RFC 727

Telnet logout option M.R. Crispin
RFC 732

Telnet Data Entry Terminal option J.D. Day
RFC 733

Standard for the format of ARPA network text messages D. Crocker, J. Vittal, K.T. Pogran, D.A.
Henderson

RFC 734
SUPDUP Protocol M.R. Crispin

RFC 735
Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

RFC 736
Telnet SUPDUP option M.R. Crispin

RFC 749
Telnet SUPDUP—Output option B. Greenberg

RFC 765
File Transfer Protocol specification J. Postel

© Copyright IBM Corp. 2000, 2020 781

http://www.rfc-editor.org/rfc.html

RFC 768
User Datagram Protocol J. Postel

RFC 779
Telnet send-location option E. Killian

RFC 791
Internet Protocol J. Postel

RFC 792
Internet Control Message Protocol J. Postel

RFC 793
Transmission Control Protocol J. Postel

RFC 820
Assigned numbers J. Postel

RFC 823
DARPA Internet gateway R. Hinden, A. Sheltzer

RFC 826
Ethernet Address Resolution Protocol: Or converting network protocol addresses to 48.bit Ethernet
address for transmission on Ethernet hardware D. Plummer

RFC 854
Telnet Protocol Specification J. Postel, J. Reynolds

RFC 855
Telnet Option Specification J. Postel, J. Reynolds

RFC 856
Telnet Binary Transmission J. Postel, J. Reynolds

RFC 857
Telnet Echo Option J. Postel, J. Reynolds

RFC 858
Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

RFC 859
Telnet Status Option J. Postel, J. Reynolds

RFC 860
Telnet Timing Mark Option J. Postel, J. Reynolds

RFC 861
Telnet Extended Options: List Option J. Postel, J. Reynolds

RFC 862
Echo Protocol J. Postel

RFC 863
Discard Protocol J. Postel

RFC 864
Character Generator Protocol J. Postel

RFC 865
Quote of the Day Protocol J. Postel

RFC 868
Time Protocol J. Postel, K. Harrenstien

RFC 877
Standard for the transmission of IP datagrams over public data networks J.T. Korb

RFC 883
Domain names: Implementation specification P.V. Mockapetris

RFC 884
Telnet terminal type option M. Solomon, E. Wimmers

782 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 885
Telnet end of record option J. Postel

RFC 894
Standard for the transmission of IP datagrams over Ethernet networks C. Hornig

RFC 896
Congestion control in IP/TCP internetworks J. Nagle

RFC 903
Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul, M. Theimer

RFC 904
Exterior Gateway Protocol formal specification D. Mills

RFC 919
Broadcasting Internet Datagrams J. Mogul

RFC 922
Broadcasting Internet datagrams in the presence of subnets J. Mogul

RFC 927
TACACS user identification Telnet option B.A. Anderson

RFC 933
Output marking Telnet option S. Silverman

RFC 946
Telnet terminal location number option R. Nedved

RFC 950
Internet Standard Subnetting Procedure J. Mogul, J. Postel

RFC 952
DoD Internet host table specification K. Harrenstien, M. Stahl, E. Feinler

RFC 959
File Transfer Protocol J. Postel, J.K. Reynolds

RFC 961
Official ARPA-Internet protocols J.K. Reynolds, J. Postel

RFC 974
Mail routing and the domain system C. Partridge

RFC 1001
Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and methods NetBios
Working Group in the Defense Advanced Research Projects Agency, Internet Activities Board, End-to-
End Services Task Force

RFC 1002
Protocol Standard for a NetBIOS service on a TCP/UDP transport: Detailed specifications NetBios
Working Group in the Defense Advanced Research Projects Agency, Internet Activities Board, End-to-
End Services Task Force

RFC 1006
ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E. Cass

RFC 1009
Requirements for Internet gateways R. Braden, J. Postel

RFC 1011
Official Internet protocols J. Reynolds, J. Postel

RFC 1013
X Window System Protocol, version 11: Alpha update April 1987 R. Scheifler

RFC 1014
XDR: External Data Representation standard Sun Microsystems

RFC 1027
Using ARP to implement transparent subnet gateways S. Carl-Mitchell, J. Quarterman

Appendix G. Related protocol specifications 783

RFC 1032
Domain administrators guide M. Stahl

RFC 1033
Domain administrators operations guide M. Lottor

RFC 1034
Domain names—concepts and facilities P.V. Mockapetris

RFC 1035
Domain names—implementation and specification P.V. Mockapetris

RFC 1038
Draft revised IP security option M. St. Johns

RFC 1041
Telnet 3270 regime option Y. Rekhter

RFC 1042
Standard for the transmission of IP datagrams over IEEE 802 networks J. Postel, J. Reynolds

RFC 1043
Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda, T. Thompson

RFC 1044
Internet Protocol on Network System's HYPERchannel: Protocol specification K. Hardwick, J.
Lekashman

RFC 1053
Telnet X.3 PAD option S. Levy, T. Jacobson

RFC 1055
Nonstandard for transmission of IP datagrams over serial lines: SLIP J. Romkey

RFC 1057
RPC: Remote Procedure Call Protocol Specification: Version 2 Sun Microsystems

RFC 1058
Routing Information Protocol C. Hedrick

RFC 1060
Assigned numbers J. Reynolds, J. Postel

RFC 1067
Simple Network Management Protocol J.D. Case, M. Fedor, M.L. Schoffstall, J. Davin

RFC 1071
Computing the Internet checksum R.T. Braden, D.A. Borman, C. Partridge

RFC 1072
TCP extensions for long-delay paths V. Jacobson, R.T. Braden

RFC 1073
Telnet window size option D. Waitzman

RFC 1079
Telnet terminal speed option C. Hedrick

RFC 1085
ISO presentation services on top of TCP/IP based internets M.T. Rose

RFC 1091
Telnet terminal-type option J. VanBokkelen

RFC 1094
NFS: Network File System Protocol specification Sun Microsystems

RFC 1096
Telnet X display location option G. Marcy

RFC 1101
DNS encoding of network names and other types P. Mockapetris

784 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 1112
Host extensions for IP multicasting S.E. Deering

RFC 1113
Privacy enhancement for Internet electronic mail: Part I — message encipherment and authentication
procedures J. Linn

RFC 1118
Hitchhikers Guide to the Internet E. Krol

RFC 1122
Requirements for Internet Hosts—Communication Layers R. Braden, Ed.

RFC 1123
Requirements for Internet Hosts—Application and Support R. Braden, Ed.

RFC 1146
TCP alternate checksum options J. Zweig, C. Partridge

RFC 1155
Structure and identification of management information for TCP/IP-based internets M. Rose, K.
McCloghrie

RFC 1156
Management Information Base for network management of TCP/IP-based internets K. McCloghrie, M.
Rose

RFC 1157
Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M. Schoffstall, J. Davin

RFC 1158
Management Information Base for network management of TCP/IP-based internets: MIB-II M. Rose

RFC 1166
Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

RFC 1179
Line printer daemon protocol L. McLaughlin

RFC 1180
TCP/IP tutorial T. Socolofsky, C. Kale

RFC 1183
New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V. Mockapetris

RFC 1184
Telnet Linemode Option D. Borman

RFC 1186
MD4 Message Digest Algorithm R.L. Rivest

RFC 1187
Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

RFC 1188
Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D. Katz

RFC 1190
Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

RFC 1191
Path MTU discovery J. Mogul, S. Deering

RFC 1198
FYI on the X window system R. Scheifler

RFC 1207
FYI on Questions and Answers: Answers to commonly asked “experienced Internet user” questions G.
Malkin, A. Marine, J. Reynolds

RFC 1208
Glossary of networking terms O. Jacobsen, D. Lynch

Appendix G. Related protocol specifications 785

RFC 1213
Management Information Base for Network Management of TCP/IP-based internets: MIB-II K.
McCloghrie, M.T. Rose

RFC 1215
Convention for defining traps for use with the SNMP M. Rose

RFC 1227
SNMP MUX protocol and MIB M.T. Rose

RFC 1228
SNMP-DPI: Simple Network Management Protocol Distributed Program Interface G. Carpenter, B.
Wijnen

RFC 1229
Extensions to the generic-interface MIB K. McCloghrie

RFC 1230
IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

RFC 1231
IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

RFC 1236
IP to X.121 address mapping for DDN L. Morales, P. Hasse

RFC 1256
ICMP Router Discovery Messages S. Deering, Ed.

RFC 1267
Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

RFC 1268
Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

RFC 1269
Definitions of Managed Objects for the Border Gateway Protocol: Version 3 S. Willis, J. Burruss

RFC 1270
SNMP Communications Services F. Kastenholz, ed.

RFC 1285
FDDI Management Information Base J. Case

RFC 1315
Management Information Base for Frame Relay DTEs C. Brown, F. Baker, C. Carvalho

RFC 1321
The MD5 Message-Digest Algorithm R. Rivest

RFC 1323
TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

RFC 1325
FYI on Questions and Answers: Answers to Commonly Asked "New Internet User" Questions G. Malkin,
A. Marine

RFC 1327
Mapping between X.400 (1988)/ISO 10021 and RFC 822 S. Hardcastle-Kille

RFC 1340
Assigned Numbers J. Reynolds, J. Postel

RFC 1344
Implications of MIME for Internet Mail Gateways N. Bornstein

RFC 1349
Type of Service in the Internet Protocol Suite P. Almquist

RFC 1351
SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

786 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 1352
SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

RFC 1353
Definitions of Managed Objects for Administration of SNMP Parties K. McCloghrie, J. Davin, J. Galvin

RFC 1354
IP Forwarding Table MIB F. Baker

RFC 1356
Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D. Robinson, R. Ullmann

RFC 1358
Charter of the Internet Architecture Board (IAB) L. Chapin

RFC 1363
A Proposed Flow Specification C. Partridge

RFC 1368
Definition of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K. McCloghrie

RFC 1372
Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

RFC 1374
IP and ARP on HIPPI J. Renwick, A. Nicholson

RFC 1381
SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

RFC 1382
SNMP MIB Extension for the X.25 Packet Layer D. Throop

RFC 1387
RIP Version 2 Protocol Analysis G. Malkin

RFC 1388
RIP Version 2 Carrying Additional Information G. Malkin

RFC 1389
RIP Version 2 MIB Extensions G. Malkin, F. Baker

RFC 1390
Transmission of IP and ARP over FDDI Networks D. Katz

RFC 1393
Traceroute Using an IP Option G. Malkin

RFC 1398
Definitions of Managed Objects for the Ethernet-Like Interface Types F. Kastenholz

RFC 1408
Telnet Environment Option D. Borman, Ed.

RFC 1413
Identification Protocol M. St. Johns

RFC 1416
Telnet Authentication Option D. Borman, ed.

RFC 1420
SNMP over IPX S. Bostock

RFC 1428
Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G. Vaudreuil

RFC 1442
Structure of Management Information for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1443
Textual Conventions for version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

Appendix G. Related protocol specifications 787

RFC 1445
Administrative Model for version 2 of the Simple Network Management Protocol (SNMPv2) J. Galvin, K.
McCloghrie

RFC 1447
Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2) K. McCloghrie, J. Galvin

RFC 1448
Protocol Operations for version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 1464
Using the Domain Name System to Store Arbitrary String Attributes R. Rosenbaum

RFC 1469
IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483
Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha Heinanen

RFC 1514
Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516
Definitions of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K. McCloghrie

RFC 1521
MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies N. Borenstein, N. Freed

RFC 1535
A Security Problem and Proposed Correction With Widely Deployed DNS Software E. Gavron

RFC 1536
Common DNS Implementation Errors and Suggested Fixes A. Kumar, J. Postel, C. Neuman, P. Danzig, S.
Miller

RFC 1537
Common DNS Data File Configuration Errors P. Beertema

RFC 1540
Internet Official Protocol Standards J. Postel

RFC 1571
Telnet Environment Option Interoperability Issues D. Borman

RFC 1572
Telnet Environment Option S. Alexander

RFC 1573
Evolution of the Interfaces Group of MIB-II K. McCloghrie, F. Kastenholz

RFC 1577
Classical IP and ARP over ATM M. Laubach

RFC 1583
OSPF Version 2 J. Moy

RFC 1591
Domain Name System Structure and Delegation J. Postel

RFC 1592
Simple Network Management Protocol Distributed Protocol Interface Version 2.0 B. Wijnen, G.
Carpenter, K. Curran, A. Sehgal, G. Waters

RFC 1594
FYI on Questions and Answers— Answers to Commonly Asked "New Internet User" Questions A. Marine,
J. Reynolds, G. Malkin

RFC 1644
T/TCP — TCP Extensions for Transactions Functional Specification R. Braden

788 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 1646
TN3270 Extensions for LUname and Printer Selection C. Graves, T. Butts, M. Angel

RFC 1647
TN3270 Enhancements B. Kelly

RFC 1652
SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker

RFC 1664
Using the Internet DNS to Distribute RFC1327 Mail Address Mapping Tables C. Allochio, A. Bonito, B.
Cole, S. Giordano, R. Hagens

RFC 1693
An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P. Conrad

RFC 1695
Definitions of Managed Objects for ATM Management Version 8.0 using SMIv2 M. Ahmed, K. Tesink

RFC 1701
Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P. Traina

RFC 1702
Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D. Farinacci, P. Traina

RFC 1706
DNS NSAP Resource Records B. Manning, R. Colella

RFC 1712
DNS Encoding of Geographical Location C. Farrell, M. Schulze, S. Pleitner D. Baldoni

RFC 1713
Tools for DNS debugging A. Romao

RFC 1723
RIP Version 2—Carrying Additional Information G. Malkin

RFC 1752
The Recommendation for the IP Next Generation Protocol S. Bradner, A. Mankin

RFC 1766
Tags for the Identification of Languages H. Alvestrand

RFC 1771
A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

RFC 1794
DNS Support for Load Balancing T. Brisco

RFC 1819
Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version ST2+ L. Delgrossi, L. Berger
Eds.

RFC 1826
IP Authentication Header R. Atkinson

RFC 1828
IP Authentication using Keyed MD5 P. Metzger, W. Simpson

RFC 1829
The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

RFC 1830
SMTP Service Extensions for Transmission of Large and Binary MIME Messages G. Vaudreuil

RFC 1831
RPC: Remote Procedure Call Protocol Specification Version 2 R. Srinivasan

RFC 1832
XDR: External Data Representation Standard R. Srinivasan

RFC 1833
Binding Protocols for ONC RPC Version 2 R. Srinivasan

Appendix G. Related protocol specifications 789

RFC 1850
OSPF Version 2 Management Information Base F. Baker, R. Coltun

RFC 1854
SMTP Service Extension for Command Pipelining N. Freed

RFC 1869
SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker

RFC 1870
SMTP Service Extension for Message Size Declaration J. Klensin, N. Freed, K. Moore

RFC 1876
A Means for Expressing Location Information in the Domain Name System C. Davis, P. Vixie, T. Goodwin,
I. Dickinson

RFC 1883
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 1884
IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

RFC 1886
DNS Extensions to support IP version 6 S. Thomson, C. Huitema

RFC 1888
OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J. Houldsworth, A. Lloyd

RFC 1891
SMTP Service Extension for Delivery Status Notifications K. Moore

RFC 1892
The Multipart/Report Content Type for the Reporting of Mail System Administrative Messages G.
Vaudreuil

RFC 1894
An Extensible Message Format for Delivery Status NotificationsK. Moore, G. Vaudreuil

RFC 1901
Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1902
Structure of Management Information for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1903
Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 1904
Conformance Statements for Version 2 of the Simple Network Management Protocol (SNMPv2) J. Case,
K. McCloghrie, M. Rose, S. Waldbusser

RFC 1905
Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 1906
Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 1907
Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2) J.
Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1908
Coexistence between Version 1 and Version 2 of the Internet-standard Network Management
Framework J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1912
Common DNS Operational and Configuration Errors D. Barr

790 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 1918
Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D. Karrenberg, G.J. de Groot, E. Lear

RFC 1928
SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, L. Jones

RFC 1930
Guidelines for creation, selection, and registration of an Autonomous System (AS) J. Hawkinson, T.
Bates

RFC 1939
Post Office Protocol-Version 3 J. Myers, M. Rose

RFC 1981
Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

RFC 1982
Serial Number Arithmetic R. Elz, R. Bush

RFC 1985
SMTP Service Extension for Remote Message Queue Starting J. De Winter

RFC 1995
Incremental Zone Transfer in DNS M. Ohta

RFC 1996
A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P. Vixie

RFC 2010
Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011
SNMPv2 Management Information Base for the Internet Protocol using SMIv2 K. McCloghrie, Ed.

RFC 2012
SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2 K.
McCloghrie, Ed.

RFC 2013
SNMPv2 Management Information Base for the User Datagram Protocol using SMIv2 K. McCloghrie, Ed.

RFC 2018
TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S. Floyd, A. Romanow

RFC 2026
The Internet Standards Process — Revision 3 S. Bradner

RFC 2030
Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI D. Mills

RFC 2033
Local Mail Transfer Protocol J. Myers

RFC 2034
SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040
The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR. Baldwin, R. Rivest

RFC 2045
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies N. Freed, N.
Borenstein

RFC 2052
A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen, P. Vixie

RFC 2065
Domain Name System Security Extensions D. Eastlake 3rd, C. Kaufman

RFC 2066
TELNET CHARSET Option R. Gellens

Appendix G. Related protocol specifications 791

RFC 2080
RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096
IP Forwarding Table MIB F. Baker

RFC 2104
HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare, R. Canetti

RFC 2119
Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2133
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, W. Stevens

RFC 2136
Dynamic Updates in the Domain Name System (DNS UPDATE) P. Vixie, Ed., S. Thomson, Y. Rekhter, J.
Bound

RFC 2137
Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163
Using the Internet DNS to Distribute MIXER Conformant Global Address Mapping (MCGAM) C. Allocchio

RFC 2168
Resolution of Uniform Resource Identifiers using the Domain Name System R. Daniel, M. Mealling

RFC 2178
OSPF Version 2 J. Moy

RFC 2181
Clarifications to the DNS Specification R. Elz, R. Bush

RFC 2205
Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification R. Braden, Ed., L. Zhang, S.
Berson, S. Herzog, S. Jamin

RFC 2210
The Use of RSVP with IETF Integrated Services J. Wroclawski

RFC 2211
Specification of the Controlled-Load Network Element Service J. Wroclawski

RFC 2212
Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R. Guerin

RFC 2215
General Characterization Parameters for Integrated Service Network Elements S. Shenker, J.
Wroclawski

RFC 2217
Telnet Com Port Control Option G. Clarke

RFC 2219
Use of DNS Aliases for Network Services M. Hamilton, R. Wright

RFC 2228
FTP Security Extensions M. Horowitz, S. Lunt

RFC 2230
Key Exchange Delegation Record for the DNS R. Atkinson

RFC 2233
The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

RFC 2240
A Legal Basis for Domain Name Allocation O. Vaughn

RFC 2246
The TLS Protocol Version 1.0 T. Dierks, C. Allen

792 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 2251
Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

RFC 2253
Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names M.
Wahl, S. Kille, T. Howes

RFC 2254
The String Representation of LDAP Search Filters T. Howes

RFC 2261
An Architecture for Describing SNMP Management Frameworks D. Harrington, R. Presuhn, B. Wijnen

RFC 2262
Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) J. Case, D.
Harrington, R. Presuhn, B. Wijnen

RFC 2271
An Architecture for Describing SNMP Management Frameworks D. Harrington, R. Presuhn, B. Wijnen

RFC 2273
SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

RFC 2274
User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
U. Blumenthal, B. Wijnen

RFC 2275
View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) B.
Wijnen, R. Presuhn, K. McCloghrie

RFC 2279
UTF-8, a transformation format of ISO 10646 F. Yergeau

RFC 2292
Advanced Sockets API for IPv6 W. Stevens, M. Thomas

RFC 2308
Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

RFC 2317
Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

RFC 2320
Definitions of Managed Objects for Classical IP and ARP Over ATM Using SMIv2 (IPOA-MIB) M. Greene,
J. Luciani, K. White, T. Kuo

RFC 2328
OSPF Version 2 J. Moy

RFC 2345
Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G. Oglesby

RFC 2352
A Convention for Using Legal Names as Domain Names O. Vaughn

RFC 2355
TN3270 Enhancements B. Kelly

RFC 2358
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J. Johnson

RFC 2373
IP Version 6 Addressing Architecture R. Hinden, S. Deering

RFC 2374
An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O'Dell, S. Deering

RFC 2375
IPv6 Multicast Address Assignments R. Hinden, S. Deering

Appendix G. Related protocol specifications 793

RFC 2385
Protection of BGP Sessions via the TCP MD5 Signature Option A. Hefferman

RFC 2389
Feature negotiation mechanism for the File Transfer Protocol P. Hethmon, R. Elz

RFC 2401
Security Architecture for Internet Protocol S. Kent, R. Atkinson

RFC 2402
IP Authentication Header S. Kent, R. Atkinson

RFC 2403
The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

RFC 2404
The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R. Glenn

RFC 2405
The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N. Doraswamy

RFC 2406
IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

RFC 2407
The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

RFC 2408
Internet Security Association and Key Management Protocol (ISAKMP) D. Maughan, M. Schertler, M.
Schneider, J. Turner

RFC 2409
The Internet Key Exchange (IKE) D. Harkins, D. Carrel

RFC 2410
The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S. Kent,

RFC 2428
FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

RFC 2445
Internet Calendaring and Scheduling Core Object Specification (iCalendar) F. Dawson, D. Stenerson

RFC 2459
Internet X.509 Public Key Infrastructure Certificate and CRL Profile R. Housley, W. Ford, W. Polk, D. Solo

RFC 2460
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 2461
Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W. Simpson

RFC 2462
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

RFC 2463
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification A.
Conta, S. Deering

RFC 2464
Transmission of IPv6 Packets over Ethernet Networks M. Crawford

RFC 2466
Management Information Base for IP Version 6: ICMPv6 Group D. Haskin, S. Onishi

RFC 2476
Message Submission R. Gellens, J. Klensin

RFC 2487
SMTP Service Extension for Secure SMTP over TLS P. Hoffman

RFC 2505
Anti-Spam Recommendations for SMTP MTAs G. Lindberg

794 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 2523
Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

RFC 2535
Domain Name System Security Extensions D. Eastlake 3rd

RFC 2538
Storing Certificates in the Domain Name System (DNS) D. Eastlake 3rd, O. Gudmundsson

RFC 2539
Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D. Eastlake 3rd

RFC 2540
Detached Domain Name System (DNS) Information D. Eastlake 3rd

RFC 2554
SMTP Service Extension for Authentication J. Myers

RFC 2570
Introduction to Version 3 of the Internet-standard Network Management Framework J. Case, R. Mundy,
D. Partain, B. Stewart

RFC 2571
An Architecture for Describing SNMP Management Frameworks B. Wijnen, D. Harrington, R. Presuhn

RFC 2572
Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) J. Case, D.
Harrington, R. Presuhn, B. Wijnen

RFC 2573
SNMP Applications D. Levi, P. Meyer, B. Stewart

RFC 2574
User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
U. Blumenthal, B. Wijnen

RFC 2575
View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) B.
Wijnen, R. Presuhn, K. McCloghrie

RFC 2576
Co-Existence between Version 1, Version 2, and Version 3 of the Internet-standard Network
Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 2578
Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2579
Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2580
Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2581
TCP Congestion Control M. Allman, V. Paxson, W. Stevens

RFC 2583
Guidelines for Next Hop Client (NHC) Developers R. Carlson, L. Winkler

RFC 2591
Definitions of Managed Objects for Scheduling Management Operations D. Levi, J. Schoenwaelder

RFC 2625
IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W. Rickard

RFC 2635
Don't SPEW A Set of Guidelines for Mass Unsolicited Mailings and Postings (spam*) S. Hambridge, A.
Lunde

RFC 2637
Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, G. Zorn

Appendix G. Related protocol specifications 795

RFC 2640
Internationalization of the File Transfer Protocol B. Curtin

RFC 2665
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J. Johnson

RFC 2671
Extension Mechanisms for DNS (EDNS0) P. Vixie

RFC 2672
Non-Terminal DNS Name Redirection M. Crawford

RFC 2675
IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710
Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B. Haberman

RFC 2711
IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740
OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

RFC 2753
A Framework for Policy-based Admission Control R. Yavatkar, D. Pendarakis, R. Guerin

RFC 2782
A DNS RR for specifying the location of services (DNS SRV) A. Gubrandsen, P. Vixix, L. Esibov

RFC 2821
Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822
Internet Message Format P. Resnick, Ed.

RFC 2840
TELNET KERMIT OPTION J. Altman, F. da Cruz

RFC 2845
Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O. Gudmundsson, D. Eastlake 3rd, B.
Wellington

RFC 2851
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman, S. Routhier, J.
Schoenwaelder

RFC 2852
Deliver By SMTP Service Extension D. Newman

RFC 2874
DNS Extensions to Support IPv6 Address Aggregation and Renumbering M. Crawford, C. Huitema

RFC 2915
The Naming Authority Pointer (NAPTR) DNS Resource Record M. Mealling, R. Daniel

RFC 2920
SMTP Service Extension for Command Pipelining N. Freed

RFC 2930
Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941
Telnet Authentication Option T. Ts'o, ed., J. Altman

RFC 2942
Telnet Authentication: Kerberos Version 5 T. Ts'o

RFC 2946
Telnet Data Encryption Option T. Ts'o

RFC 2952
Telnet Encryption: DES 64 bit Cipher Feedback T. Ts'o

796 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 2953
Telnet Encryption: DES 64 bit Output Feedback T. Ts'o

RFC 2992
Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019
IP Version 6 Management Information Base for The Multicast Listener Discovery Protocol B. Haberman,
R. Worzella

RFC 3060
Policy Core Information Model—Version 1 Specification B. Moore, E. Ellesson, J. Strassner, A.
Westerinen

RFC 3152
Delegation of IP6.ARPA R. Bush

RFC 3164
The BSD Syslog Protocol C. Lonvick

RFC 3207
SMTP Service Extension for Secure SMTP over Transport Layer Security P. Hoffman

RFC 3226
DNSSEC and IPv6 A6 aware server/resolver message size requirements O. Gudmundsson

RFC 3291
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman, S. Routhier, J.
Schoenwaelder

RFC 3363
Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name System R. Bush, A.
Durand, B. Fink, O. Gudmundsson, T. Hain

RFC 3376
Internet Group Management Protocol, Version 3 B. Cain, S. Deering, I. Kouvelas, B. Fenner, A.
Thyagarajan

RFC 3390
Increasing TCP's Initial Window M. Allman, S. Floyd, C. Partridge

RFC 3410
Introduction and Applicability Statements for Internet-Standard Management Framework J. Case, R.
Mundy, D. Partain, B. Stewart

RFC 3411
An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks
D. Harrington, R. Presuhn, B. Wijnen

RFC 3412
Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) J. Case, D.
Harrington, R. Presuhn, B. Wijnen

RFC 3413
Simple Network Management Protocol (SNMP) Applications D. Levi, P. Meyer, B. Stewart

RFC 3414
User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
U. Blumenthal, B. Wijnen

RFC 3415
View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) B.
Wijnen, R. Presuhn, K. McCloghrie

RFC 3416
Version 2 of the Protocol Operations for the Simple Network Management Protocol (SNMP) R. Presuhn,
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

Appendix G. Related protocol specifications 797

RFC 3417
Transport Mappings for the Simple Network Management Protocol (SNMP) R. Presuhn, J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 3418
Management Information Base (MIB) for the Simple Network Management Protocol (SNMP) R. Presuhn,
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 3419
Textual Conventions for Transport Addresses M. Daniele, J. Schoenwaelder

RFC 3484
Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

RFC 3493
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, J. McCann, W. Stevens

RFC 3513
Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S. Deering

RFC 3526
More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE) T. Kivinen, M.
Kojo

RFC 3542
Advanced Sockets Application Programming Interface (API) for IPv6 W. Richard Stevens, M. Thomas, E.
Nordmark, T. Jinmei

RFC 3566
The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec S. Frankel, H. Herbert

RFC 3569
An Overview of Source-Specific Multicast (SSM) S. Bhattacharyya, Ed.

RFC 3584
Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management
Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 3602
The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R. Glenn, S. Kelly

RFC 3629
UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658
Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3678
Socket Interface Extensions for Multicast Source Filters D. Thaler, B. Fenner, B. Quinn

RFC 3715
IPsec-Network Address Translation (NAT) Compatibility Requirements B. Aboba, W. Dixon

RFC 3810
Multicast Listener Discovery Version 2 (MLDv2) for IPv6 R. Vida, Ed., L. Costa, Ed.

RFC 3826
The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model U.
Blumenthal, F. Maino, K McCloghrie.

RFC 3947
Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A. Huttunen, V. Volpe

RFC 3948
UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V. Volpe, L. DiBurro, M. Stenberg

RFC 4001
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman, S. Routhier, J.
Schoenwaelder

RFC 4007
IPv6 Scoped Address Architecture S. Deering, B. Haberman, T. Jinmei, E. Nordmark, B. Zill

798 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

RFC 4022
Management Information Base for the Transmission Control Protocol (TCP) R. Raghunarayan

RFC 4106
The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP) J. Viega, D.
McGrew

RFC 4109
Algorithms for Internet Key Exchange version 1 (IKEv1) P. Hoffman

RFC 4113
Management Information Base for the User Datagram Protocol (UDP) B. Fenner, J. Flick

RFC 4191
Default Router Preferences and More-Specific Routes R. Draves, D. Thaler

RFC 4217
Securing FTP with TLS P. Ford-Hutchinson

RFC 4292
IP Forwarding Table MIB B. Haberman

RFC 4293
Management Information Base for the Internet Protocol (IP) S. Routhier

RFC 4301
Security Architecture for the Internet Protocol S. Kent, K. Seo

RFC 4302
IP Authentication Header S. Kent

RFC 4303
IP Encapsulating Security Payload (ESP) S. Kent

RFC 4304
Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet
Security Association and Key Management Protocol (ISAKMP) S. Kent

RFC 4307
Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2) J. Schiller

RFC 4308
Cryptographic Suites for IPsec P. Hoffman

RFC 4434
The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol P. Hoffman

RFC 4443
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification A.
Conta, S. Deering

RFC 4552
Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

RFC 4678
Server/Application State Protocol v1 A. Bivens

RFC 4753
ECP Groups for IKE and IKEv2 D. Fu, J. Solinas

RFC 4754
IKE and IKEv2 Authentication Using the Elliptic Curve Digital Signature Algorithm (ECDSA) D. Fu, J.
Solinas

RFC 4809
Requirements for an IPsec Certificate Management Profile C. Bonatti, Ed., S. Turner, Ed., G. Lebovitz,
Ed.

RFC 4835
Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and
Authentication Header (AH) V. Manral

Appendix G. Related protocol specifications 799

RFC 4862
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten, T. Jinmei

RFC 4868
Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec S. Kelly, S. Frankel

RFC 4869
Suite B Cryptographic Suites for IPsec L. Law, J. Solinas

RFC 4941
Privacy Extensions for Stateless Address Autoconfiguration in IPv6 T. Narten, R. Draves, S. Krishnan

RFC 4945
The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX B. Korver

RFC 5014
IPv6 Socket API for Source Address Selection E. Nordmark, S. Chakrabarti, J. Laganier

RFC 5095
Deprecation of Type 0 Routing Headers in IPv6 J. Abley, P. Savola, G. Neville-Neil

RFC 5175
IPv6 Router Advertisement Flags Option B. Haberman, Ed., R. Hinden

RFC 5282
Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange
version 2 (IKEv2) Protocol D. Black, D. McGrew

RFC 5996
Internet Key Exchange Protocol Version 2 (IKEv2) C. Kaufman, P. Hoffman, Y. Nir, P. Eronen

RFC 7627
Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension K. Bhargavan, A.
Delignat-Lavaud, A. Pironti, Inria Paris-Rocquencourt, A. Langley, M. Ray

RFC 8446
The Transport Layer Security (TLS) Protocol Version 1.3 E. Rescorla

Internet drafts
Internet drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Other groups can also distribute working documents as Internet drafts. You can see
Internet drafts at http://www.ietf.org/ID.html.

800 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

http://www.ietf.org/ID.html

Appendix H. Accessibility

Publications for this product are offered in Adobe Portable Document Format (PDF) and should be
compliant with accessibility standards. If you experience difficulties when using PDF files, you can view
the information through the z/OS Internet Library website http://www.ibm.com/systems/z/os/zos/library/
bkserv/ or IBM Documentation https://www.ibm.com/docs/en. If you continue to experience problems,
send a message to Contact z/OS web page(www.ibm.com/systems/z/os/zos/webqs.html) or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully. The major accessibility features in z/OS enable users to:

• Use assistive technologies such as screen readers and screen magnifier software
• Operate specific or equivalent features using only the keyboard
• Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user interfaces found in z/OS.
Consult the assistive technology documentation for specific information when using such products to
access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. See z/OS TSO/E Primer, z/OS TSO/E User's
Guide, and z/OS ISPF User's Guide Vol I for information about accessing TSO/E and ISPF interfaces.
These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

z/OS information
One exception is command syntax that is published in railroad track format, which is accessible using
screen readers with IBM Documentation, as described in “Dotted decimal syntax diagrams” on page
801.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing IBM Documentation using a
screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more
syntax elements are always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that your screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you know that
your syntax can include either USERID or SYSTEMID, but not both.

© Copyright IBM Corp. 2000, 2020 801

http://www.ibm.com/systems/z/os/zos/library/bkserv/
http://www.ibm.com/systems/z/os/zos/library/bkserv/
https://www.ibm.com/docs/en

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol can be used next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE indicates
that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol giving information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN,
and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the
elements must be separated by a comma. If no separator is given, assume that you use a blank to
separate each syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is defined elsewhere. The
string following the % symbol is the name of a syntax fragment rather than a literal. For example, the line
2.1 %OP1 means that you should see separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

• A question mark (?) means an optional syntax element. A dotted decimal number followed by the ?
symbol indicates that all the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal
number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line
by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5
NOTIFY, and 5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional; that is, you
can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

• An exclamation mark (!) means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicate that the syntax element is the default option for all syntax
elements that share the same dotted decimal number. Only one of the syntax elements that share the
same dotted decimal number can specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1!
(KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In this
example, if you include the FILE keyword but do not specify an option, default option KEEP will be
applied. A default option also applies to the next higher dotted decimal number. In this example, if the
FILE keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP applies only to the next higher dotted decimal
number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is
used if the keyword FILE is omitted.

• An asterisk (*) means a syntax element that can be repeated 0 or more times. A dotted decimal number
followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is
optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can
include one data area, more than one data area, or no data area. If you hear the lines 3*, 3 HOST, and 3
STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than once
each. In the previous example, you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

802 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

• + means a syntax element that must be included one or more times. A dotted decimal number followed
by the + symbol indicates that this syntax element must be included one or more times; that is, it must
be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you
must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you
must include HOST, STATE, or both. Similar to the * symbol, the + symbol can only repeat a particular
item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent
to a loop-back line in a railroad syntax diagram.

Appendix H. Accessibility 803

804 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 United
States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation Site Counsel 2455 South Road Poughkeepsie, NY 12601-5400 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 2000, 2020 805

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

806 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com®/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Notices 807

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle

Programming interface information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of z/OS Communications Server.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

808 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

http://www.ibm.com/legal/copytrade.shtml

Bibliography

This bibliography contains descriptions of the documents in the z/OS Communications Server library.

z/OS Communications Server documentation is available online at the z/OS Internet Library web page at
http://www.ibm.com/systems/z/os/zos/library/bkserv/.

z/OS Communications Server library updates
Updates to documents are also available on RETAIN and in information APARs (info APARs). Go to http://
www.software.ibm.com/support to view information APARs.

• z/OS Communications Server V2R1 New Function APAR Summary
• z/OS Communications Server V2R2 New Function APAR Summary
• z/OS Communications Server V2R3 New Function APAR Summary

z/OS Communications Server information
z/OS Communications Server product information is grouped by task in the following tables.

Planning
Title Number Description

z/OS Communications Server:
New Function Summary

GC27-3664 This document is intended to help you plan for new IP or
SNA functions, whether you are migrating from a previous
version or installing z/OS for the first time. It summarizes
what is new in the release and identifies the suggested and
required modifications needed to use the enhanced
functions.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC27-3663 This document is a high-level introduction to IPv6. It
describes concepts of z/OS Communications Server's
support of IPv6, coexistence with IPv4, and migration
issues.

Resource definition, configuration, and tuning
Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC27-3650 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS UNIX
System Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document with the z/OS
Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2000, 2020 809

http://www.ibm.com/systems/z/os/zos/library/bkserv/
http://www.software.ibm.com/support
http://www.software.ibm.com/support
http://www.ibm.com/software/support/systemsz/cs-v2r1-new-func-apars.html
http://www.ibm.com/software/support/systemsz/cs-v2r2-new-func-apars.html
http://www.ibm.com/software/support/systemsz/cs-v2r3-new-func-apars.html

Title Number Description

z/OS Communications Server:
IP Configuration Reference

SC27-3651 This document presents information for people who want to
administer and maintain IP. Use this document with the
z/OS Communications Server: IP Configuration Guide. The
information in this document includes:

• TCP/IP configuration data sets
• Configuration statements
• Translation tables
• Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC27-3672 This document presents the major concepts involved in
implementing an SNA network. Use this document with the
z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC27-3675 This document describes each SNA definition statement,
start option, and macroinstruction for user tables. It also
describes NCP definition statements that affect SNA. Use
this document with the z/OS Communications Server: SNA
Network Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC27-3676 This document contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server:
IP Network Print Facility

SC27-3658 This document is for systems programmers and network
administrators who need to prepare their network to route
SNA, JES2, or JES3 printer output to remote printers using
TCP/IP Services.

Operation
Title Number Description

z/OS Communications Server:
IP User's Guide and
Commands

SC27-3662 This document describes how to use TCP/IP applications. It
contains requests with which a user can log on to a remote
host using Telnet, transfer data sets using FTP, send
electronic mail, print on remote printers, and authenticate
network users.

z/OS Communications Server:
IP System Administrator's
Commands

SC27-3661 This document describes the functions and commands
helpful in configuring or monitoring your system. It contains
system administrator's commands, such as TSO NETSTAT,
PING, TRACERTE and their UNIX counterparts. It also
includes TSO and MVS commands commonly used during
the IP configuration process.

z/OS Communications Server:
SNA Operation

SC27-3673 This document serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications Server:
Quick Reference

SC27-3665 This document contains essential information about SNA
and IP commands.

810 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Customization
Title Number Description

z/OS Communications Server:
SNA Customization

SC27-3666 This document enables you to customize SNA, and includes
the following information:

• Communication network management (CNM) routing table
• Logon-interpret routine requirements
• Logon manager installation-wide exit routine for the CLU

search exit
• TSO/SNA installation-wide exit routines
• SNA installation-wide exit routines

Writing application programs
Title Number Description

z/OS Communications Server:
IP Sockets Application
Programming Interface Guide
and Reference

SC27-3660 This document describes the syntax and semantics of
program source code necessary to write your own
application programming interface (API) into TCP/IP. You
can use this interface as the communication base for writing
your own client or server application. You can also use this
document to adapt your existing applications to
communicate with each other using sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC27-3649 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the
socket interface for CICS using z/OS TCP/IP.

z/OS Communications Server:
IP IMS Sockets Guide

SC27-3653 This document is for programmers who want application
programs that use the IMS TCP/IP application development
services provided by the TCP/IP Services of IBM.

z/OS Communications Server:
IP Programmer's Guide and
Reference

SC27-3659 This document describes the syntax and semantics of a set
of high-level application functions that you can use to
program your own applications in a TCP/IP environment.
These functions provide support for application facilities,
such as user authentication, distributed databases,
distributed processing, network management, and device
sharing. Familiarity with the z/OS operating system, TCP/IP
protocols, and IBM Time Sharing Option (TSO) is
recommended.

z/OS Communications Server:
SNA Programming

SC27-3674 This document describes how to use SNA macroinstructions
to send data to and receive data from (1) a terminal in either
the same or a different domain, or (2) another application
program in either the same or a different domain.

z/OS Communications Server:
SNA Programmer's LU 6.2
Guide

SC27-3669 This document describes how to use the SNA LU 6.2
application programming interface for host application
programs. This document applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with other
session types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications Server:
SNA Programmer's LU 6.2
Reference

SC27-3670 This document provides reference material for the SNA LU
6.2 programming interface for host application programs.

Bibliography 811

Title Number Description

z/OS Communications Server:
CSM Guide

SC27-3647 This document describes how applications use the
communications storage manager.

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC27-3646 This document describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP application
programs. The document provides guide and reference
information about CMIP services and the SNA topology
agent.

Diagnosis
Title Number Description

z/OS Communications Server:
IP Diagnosis Guide

GC27-3652 This document explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in the
TCP/IP product code. It explains how to gather information
for and describe problems to the IBM Software Support
Center.

z/OS Communications Server:
ACF/TAP Trace Analysis
Handbook

GC27-3645 This document explains how to gather the trace data that is
collected and stored in the host processor. It also explains
how to use the Advanced Communications Function/Trace
Analysis Program (ACF/TAP) service aid to produce reports
for analyzing the trace data information.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures
and z/OS Communications
Server: SNA Diagnosis Vol 2,
FFST Dumps and the VIT

GC27-3667

GC27-3668

These documents help you identify an SNA problem, classify
it, and collect information about it before you call the IBM
Support Center. The information collected includes traces,
dumps, and other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used
to read an SNA dump. They are intended for IBM
programming service representatives and customer
personnel who are diagnosing problems with SNA.

Messages and codes
Title Number Description

z/OS Communications Server:
SNA Messages

SC27-3671 This document describes the ELM, IKT, IST, IUT, IVT, and
USS messages. Other information in this document includes:

• Command and RU types in SNA messages
• Node and ID types in SNA messages
• Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC27-3654 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB,
EZD)

SC27-3655 This volume contains TCP/IP messages beginning with EZB
or EZD.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC27-3656 This volume contains TCP/IP messages beginning with EZY.

812 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122

Title Number Description

z/OS Communications Server:
IP Messages Volume 4 (EZZ,
SNM)

SC27-3657 This volume contains TCP/IP messages beginning with EZZ
and SNM.

z/OS Communications Server:
IP and SNA Codes

SC27-3648 This document describes codes and other information that
appear in z/OS Communications Server messages.

Bibliography 813

814 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Index

A
abbreviations and acronyms 773
abend U4093, user 761
abends

C program 91
errno value dependency 91
return values 91
RTL functions 91
SCEERUN 91
uninitialized storage 91

ACCEPT (call) 395
ACCEPT (macro) 202
accept() 94
accessibility 801
addr parameter on C socket calls

on accept() 94
on gethostbyaddr() 105

address families 8
address parameter on TCP/UDP/IP (pascal), on gethoststring
705
address, loopback 19
addressing sockets in internet domain 8
addressing within sockets, network byte order 9
addrlen parameter on C socket calls

on accept() 94
on gethostbyaddr() 105

AddUserNote 701
AF parameter on call interface, on SOCKET 518
AF parameter on macro interface, on socket 349
AF_INET 23
AF_INET address family 8, 11, 763
AF_IUCV 23
AF_IUCV address family 763
ALET parameter on macro socket interface

on RECV 301
on RECVFROM 304
on SEND 321
on SENDTO 327
on WRITE 356

allocate, socket call 23
AmountOfTime parameter on TCP/UDP/IP (Pascal) , on
SetTimer 716
APITYPE parameter on macro interface, INITAPI call 278
application program, organizing 13
applications program interface (API)

C language API 85
Pascal language API 689

arg parameter on C socket calls
on fcntl() 103
on ioctl() 129

Assembler Callable Services, z/OS UNIX, general description
8
assembler calls 699
assembler programs, macro instructions 202
asynchronous communication, (Pascal API) 689
asynchronous ECB routine 199

asynchronous exit routine 199
asynchronous macro, coding example 200
asynchronous select 40
AtoETable parameter on TCP/UDP/IP (Pascal), on
ReadXlateTable 713
ATTACH supervisor call instruction 33, 43

B
backlog parameter on C socket call, listen() 131
BACKLOG parameter on call interface, LISTEN call 467
BACKLOG parameter on macro interface, LISTEN call 289
BeginTcpIp (Pascal) 702
Berkeley socket implementation 91
bind () 95
BIND (call) 397
BIND (macro) 206
BIND2ADDRSEL (call) 399
BIND2ADDRSEL (macro) 209
bit set macros on C socket calls

FD_CLR 141
FD_ISSET 141
FD_SET 141
FD_ZERO 141

bit-mask on call interface, on EZACIC06 call 528
bit-mask-length on call interface, on EZACIC06 call 528
buf parameter on C socket calls

on read() 134
on recv() 136
on recvfrom() 138
on write() 162

BUF parameter on call socket interface
on GETIBMOPT 425
on READ 472
on RECV 476
on RECVFROM 478
on SEND 493
on SENDTO 498
on WRITE 522

BUF parameter on macro socket interface
on GETIBMOPT 240
on RECV 300
on RECVFROM 304
on SEND 320
on SENDTO 326
on WRITE 356

Buffer parameter on TCP/UDP/IP (Pascal) procedure
on MonQuery 708
on RawIpReceive 711
on RawIpSend 712
on TcpFReceive, TcpReceive, TcpWaitReceive 718
on TcpFSend, TcpSend, TcpWaitSend 721

bufferaddress parameter on TCP/UDP/IP (Pascal)
procedure

on UdpNReceive 726
on UdpSend 729

BufferLength parameter on TCP/UDP/IP (Pascal) interface

Index 815

BufferLength parameter on TCP/UDP/IP (Pascal) interface (continued)
on RawIpReceive 711
on TcpFSend, TcpSend, TcpWaitSend 721
on UdpNReceive 726

BUFFERspaceAVAILABLE (Pascal) 695
bufSize parameter on TCP/UDP/IP (Pascal), on MonQuery
708
byte order parameter on C socket calls

on htonl() 125
on htons() 125
on ntohl() 133
on ntohs() 133

byte ordering convention
big endian 9
little endian 9

BytesRead parameter on TCP/UDP/IP (Pascal) procedure, on
TcpFReceive, TcpReceive, TcpWaitReceive 719
BytesToRead 692
BytesToRead parameter on TCP/UDP/IP (Pascal) procedure

on TcpFReceive, TcpReceive, TcpWaitReceive 719

C
C applications

compiling and link-editing non-reentrant modules 86
compiling and link-editing reentrant modules 88

C socket application programming interface 85
C socket call syntax 93
C socket calls

accept()
description 94
example 95
return values 95
use example 94

bind()
AF_INET domain example 98
AF_IUCV domain example 98
created in the AF_INET domain 96
created in the AF_IUCV domain 96
description 95
return values 97
use example 25, 26

close()
description 98
example 98
return values 99

connect()
description 99
Examples 101
return values 100
Servers, AF_INET domain 100
Servers, AF_IUCV domain 100

endhostent() 102
endnetent() 102
endprotoent() 102
endservent() 103
fcntl()

call example 104
description 103
return values 104

getclientid()
call example 104
description 104
return values 104

C socket calls (continued)
getdtablesize() 105
gethostbyaddr()

call example 105
description 105
return values 106

gethostbyname()
call example 106
description 106
return values 107

gethostent()
call example 107
description 108
return values 108

gethostid()
description 108
return values 108

gethostname()
description 108
return values 109

getibmopt()
description 109
return values 110

getibmsockopt()
call example 111
description 110
return values 111

getnetbyaddr()
description 111
return values 112

getnetbyname()
description 112
return values 113

getnetent()
description 113
return values 113

getpeername()
description 113, 114
return values 114

getprotobyname()
description 114
return values 115

getprotobynumber()
description 115
return values 115

getprotoent()
description 115
return values 116

getservbyname()
description 116
return values 117

getservbyport()
description 117
return values 117

getservent()
description 117
return values 118

getsockname()
description 118
return values 119

getsockopt()
call example 123
description 119
options 120, 122, 153

816 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

C socket calls (continued)
getsockopt() (continued)

return values 122
givesocket()

description 123
return values 124

htonl()
description 125
return values 125

htons()
description 125
return values 126

inet_addr()
description 126
return values 126

inet_lnaof()
description 127
return values 127

inet_makeaddr()
description 127
return values 127

inet_netof()
description 127
return values 128

inet_network()
description 128
return values 128

inet_ntoa()
description 128
return values 129

ioctl()
call example 129, 131
command 129
description 129
return values 130

listen()
call example 131
description 94, 131
return values 131

maxdesc()
description 132
examples 132
return values 132

ntohl()
description 133
return values 133

ntohs()
description 133
return values 134

read()
description 134
return values 134

readv()
description 135
return values 135
use example 56

recv()
call example 136
description 136
return values 137
use example 56

recvfrom()
call example 137
description 137

C socket calls (continued)
recvfrom() (continued)

return values 138
use example 58

recvmsg()
description 138
return values 140

select()
bit set macros 141
call example 140, 142
description 140
return values 142
use example 41, 95

selectex()
description 143
return values 144

send()
call example 144
description 56, 144
return values 145
use example 56

sendmsg()
description 145
return values 146

sendto()
call example 147
description 147
return values 148
use example 58

sethostent()
description 148
return values 148

setibmopt()
description 149
return values 149
structure elements 149

setibmsockopt()
call example 150, 151
return values 150

setnetent()
description 151
return values 151

setprotoent()
description 152
return values 152

setservent()
description 152
return values 152

setsockopt()
call example 156
description 153
options 154
return values 155

shutdown()
description 156
return values 156

sock_debug() 157
sock_do_teststor() 157
socket()

call examples 160
description 158
limitations 159
return values 159

takesocket()

Index 817

C socket calls (continued)
takesocket() (continued)

description 160
return values 160

tcperror()
call example 161
description 161

write()
description 162
return values 162
use example 56

writev()
description 163
return values 163
use examples 56

C socket header files
bsdtypes.h 92, 132, 141
fcntl.h 92
if.h 92
in.h 92
inet.h 92, 96
ioctl.h 92
manifest.h 92
netdb.h 92
rtrouteh.h 92
saiucv.h 92, 96
socket.h 139, 146
uio.h 92, 135, 163

C socket programming concepts 5
C sockets, general description 7
C structures 93
C/C++ Sockets, general description 7
CALAREA parameter on CANCEL 213
CALL Instruction Interface for Assembler, PL/I, and COBOL
391
Call Instructions for Assembler, PL/1, and COBOL Programs

ACCEPT 395
BIND 397
BIND2ADDRSEL 399
CLOSE 402
CONNECT 403
EZACIC04 525
EZACIC05 526
EZACIC06 527
EZACIC08 529
FCNTL 406
GETCLIENTID 416
GETHOSTBYADDR 417
GETHOSTBYNAME 420
GETHOSTID 422
GETHOSTNAME 423
GETIBMOPT 424
GETPEERNAME 430
GETSOCKNAME 432
GETSOCKOPT 434
GIVESOCKET 450
INET6_IS_SRCADDR 452
INITAPI 455
IOCTL 457
LISTEN 466
READ 471
READV 472
RECV 474
RECVFROM 476

Call Instructions for Assembler, PL/1, and COBOL Programs (continued)
RECVMSG 479
SELECT 483
SELECTEX 486
SENDMSG 493
SENDTO 497
SETSOCKOPT 499
SHUTDOWN 515
SOCKET 517
TAKESOCKET 519
TERMAPI 521
WRITE 521
WRITEV 523

Call Instructions for Assembler, PL/I, and COBOL Programs
EZACIC14 534
EZACIC15 535

call interface sample PL/I programs 536
call sequence 15
call syntax, C sockets 93
CallReturn parameter on TCP/UDP/IP (Pascal), on SayCalRe
714
CANCEL (macro) 212
CHAR-MASK parameter on call interface, on EZACIC06 528
Character Generator 19
CICS (customer information control system) sockets

general description 7
CICS, not using tcperror() 85
Class parameter on TCP/UDP/IP (pascal), on IsLocalHost
708
ClearTimer 702
client and server socket programs 13
CLIENT parameter on call socket interface

on GETCLIENTID 417
on GIVESOCKET 451
on TAKESOCKET 520

CLIENT parameter on macro socket interface
on GETCLIENTID 229
on GIVESOCKET 270
on TAKESOCKET 352

client program, designing 47
client, socket calls, general

givesocket() and takesocket() 33
send() and recv() 55

clientid parameter on C socket call
on getclientid() 104
on givesocket() 124
on takesocket() 160

CLOSE (macro) 213
cmd parameter on C socket calls

on fcntl() 103
on inet_addr() 126
on inet_network() 128
on ioctl() 129

COMMAND parameter on call interface, IOCTL call 458
COMMAND parameter on call socket interface

on EZACIC06 528
on FCNTL 407
on GETIBMOPT 425

COMMAND parameter on macro interface
on FCNTL 219
on IOCTL 281

COMMAND parameter on macro socket interface
on GETIBMOPT 240

Communications Server for z/OS, online information xxxii

818 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

compiling and linking, C sockets
compiling and link-editing non-reentrant modules 86
compiling and link-editing reentrant modules 88

concepts, TCP/IP 3
concurrent server program, designing 33
concurrent server socket programs 14
CONNECT (macro) 215
connect() 99
Connection (Pascal) 692
connection information record (Pascal) 692
Connection parameter on TCP/UDP/IP (Pascal) procedure

on TcpAbort 717
on TcpClose 717
on TcpFReceive, TcpReceive, TcpWaitReceive 718
on TcpFSend, TcpSend, TcpWaitSend 721
on TcpOption 724

Connection States (Pascal) 691, 693
CONNECTIONclosing (Pascal) 691
ConnectionInfo parameter on TCP/UDP/IP (Pascal)

procedure
on TcpOpen, TcpWaitOpen 723
on TcpStatus 725

CONNECTIONstateCHANGED (Pascal) 695
ConnIndex parameter on TCP/UDP/IP (Pascal) procedure

on UdpClose 726
on UdpNReceive 726
on UdpOpen 727
on UdpReceive 728
on UdpSend 729

CreateTimer 703
customer information control system sockets, general
description, see also CICS 7

D
Data parameter on TCP/UDP/IP (Pascal), on SetTimer 716
data sets

hlq.AEZAMAC4 699
hlq.ETC.PROTO 102, 114, 115, 152
hlq.ETC.SERVICES 8, 103, 116, 117, 152
hlq.HOSTS.ADDRINFO 102
hlq.HOSTS.SITEINFO 102
MANIFEST.H 92
NETDB.H 105–107, 111, 117
SEZACMAC 173
SEZACMTX 173
SEZAINST 43, 173
SEZALOAD 173
TCPIP.DATA 157
user_id.TCPIP.DATA 705, 722

data sets for TCP/IP programming libraries 19
data structures, Pascal 691
data transfer between sockets 51
data transfer, sockets 6
data translation, socket interface

ASCII to EBCDIC 526
bit-mask to character 527
character to bit-mask 527
EBCDIC to ASCII 525, 534

DATAdelivered (Pascal) 695
datagram sockets 5
datagram sockets, program design 49
DatagramAddress parameter on TCP/UDP/IP (Pascal), on
UdpReceive 728

DataLength parameter on TCP/UDP/IP (Pascal), on
RawIpSend 712
debug and measurement tools

Character Generator 19
Discard 19
Echo 19

designing an iterative server program 23
DestroyTimer 703
disability 801
Discard 19
DNS, online information xxxiii
domain name system (DNS) 722
domain parameter on C socket calls

on getclientid() 104
on gethostbyaddr() 105
on socket() 158

DomainName parameter on TCP/UDP/IP (Pascal) , on
GetIdentity 706
dotted decimal notation 128

E
ECB parameter on EZASMI 40
ECB parameter on macro interface

on ACCEPT 205
on BIND 208
on BIND2ADDRSEL 211
on CANCEL 213
on CLOSE 215
on CONNECT 218
on FCNTL 220
on GETCLIENTID 230
on GETHOSTBYNAME 232
on GETHOSTID 236
on GETHOSTNAME 238
on GETPEERNAME 248
on GETSOCKNAME 251
on GETSOCKOPT 254
on GIVESOCKET 271
on INET6_IS_SRCADDR 274
on IOCTL 287
on LISTEN 290
on READ 296
on READV 298
on RECV 301
on RECVFROM 305
on RECVMSG 309
on SELECT 314
on SEND 321
on SENDMSG 324
on SENDTO 328
on SETSOCKOPT 331
on SHUTDOWN 348
on SOCKET 351
on TAKESOCKET 353
on WRITE 357
on WRITEV 359

ECBPTR parameter on C socket call, shutdown () 144
Echo 19
endhostent() 102
endnetent() 102
endprotoent() 102
endservent() 103
EndTcpIp (Pascal) 703

Index 819

ERETMSK parameter on call interface, on SELECT 486
ERRNO parameter on call socket interface

on ACCEPT 397
on BIND 399
on BIND2ADDRSEL 402
on CLOSE 403
on CONNECT 406
on FCNTL 407
on GETCLIENTID 417
on GETHOSTNMAE 424
on GETIBMOPT 426
on GETPEERNAME 432
on GETSOCKNAME 434
on GETSOCKOPT 435
on GIVESOCKET 452
on INET6_IS_SRCADDR 454
on INITAPI 457
on IOCTL 465
on LISTEN 467
on READ 472
on READV 474
on RECV 476
on RECVFROM 479
on RECVMSG 482
on SELECT 486
on SELECTEX 491
on SEND 493
on SENDMSG 496
on SENDTO 499
on SETSOCKOPT 501
on SHUTDOWN 516
on SOCKET 519
on TAKESOCKET 520
on WRITE 522
on WRITEV 524

ERRNO parameter on macro socket interface
on ACCEPT 205
on BIND 208
on BIND2ADDRSEL 211
on CANCEL 213
on CLOSE 214
on CONNECT 217
on FCNTL 220, 221, 228, 409, 416
on GETIBMOPT 241
on GETSOCLOPT 254, 331
on GETSPCKNAME 251
on GIVESOCKET 271
on GRTCLIENTID 230
on GRTHOSTNAME 238
on GRTPEERNAME 248
on INET6_IS_SRCADDR 274
on INITAPI 278
on IOCTL 287
on LISTEN 289
on READV 298
on RECV 301
on RECVFROM 305
on RECVMSG 309
on SELECT 313
on SELECTEX 317
on SEND 321
on SENDMSG 324
on SENDTO 328
on SHUTDOWN 347

ERRNO parameter on macro socket interface (continued)
on SOCKET 350
on TAKESOCKET 353
on WRITE 357
on WRITEV 359

errno values, code dependency 91
errno values, printing 91
ERRNO.H message file 91
ERROR parameter on macro interface

on ACCEPT 206
on BIND 209
on BIND2ADDRSEL 212
on CLOSE 215
on CONNECT 218
on FCNTL 220, 221, 228, 246
on GETCLIENTID 230
on GETHOSTBYADDR 231
on GETHOSTBYNAME 234
on GETHOSTID 237
on GETHOSTNAME 239
on GETPEERNAME 249
on GETSOCKNAME 251
on GETSOCKOPT 254, 331
on GIVESOCKET 271
on INET6_IS_SRCADDR 275
on INITAPI 279
on IOCTL 287
on LISTEN 290
on RECV 302
on RECVFROM 306
on SELECT 314
on SEND 321
on SENDTO 328
on SHUTDOWN 348
on SOCKET 351
on TAKESOCKET 353
on WRITE 357

ERROR parameter on macro socket interface
on CANCEL 213
on GETIBMOPT 242
on RECVMSG 310
on SELECTEX 319
on SENDMSG 325
on WRITEV 359

ESDNMASK parameter on call interface, on SELECT 486
EtoATable parameter on TCP/UDP/IP (Pascal), on
ReadXlateTable 713
EWOULDBLOCK error return, call interface calls

RECV 474
RECVFROM 476

EWOULDBLOCK error return, macro interface calls 219, 302,
357
exceptfds parameter on C socket calls

on select() 141
on selectex() 143

EZACIC04, call interface, EBCDIC to ASCII translation 525
EZACIC05, call interface, ASCII to EBCDIC translation 526
EZACIC06 39
EZACIC06, call interface, bit-mask translation 527
EZACIC08, HOSTENT structure interpreter utility 529
EZACIC09, RES structure interpreter utility 531
EZACIC14, call interface, EBCDIC to ASCII translation 534
EZACIC15, call interface, ASCII to EBCDIC translation 535
EZASOKET

820 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

EZASOKET (continued)
Assembler language call format 393
COBOL language call format 393
PL/I language call format 393

F
FCNTL (call) 406
fcntl() 103
FD_SETSIZE on send() 141
file specification record (Pascal) 697
FLAGS parameter on call socket interface

on RECV 475
on RECVFROM 477
on RECVMSG 482
on SEND 492
on SENDMSG 496
on SENDTO 498

FLAGS parameter on macro socket interface
on INET6_IS_SRCADDR 274
on RECV 301
on RECVFROM 305
on RECVMSG 309
on SEND 321
on SENDMSG 324
on SENDTO 328

flags, parameter on C socket calls
on recv() 136
on recvfrom() 138
on recvmsg() 139
on send() 145
on sendmsg() 146
on sendto() 147

FNDELAY flag on call interface, on FCNTL 407
ForeignAddress parameter on TCP/UDP/IP (Pascal), on
PingRequest 709
ForeignSocket 693
ForeignSocket parameter on TCP/UDP/IP (Pascal), on
UdpSend 729
FSENDresponse (Pascal) 696

G
GETCLIENTID (call) 416
GETCLIENTID (macro) 228
getclientid() 104
getdtablesize() 105
GETHOSTBYADDR (call) 417
gethostbyaddr() 105
GETHOSTBYNAME (call) 420
GETHOSTBYNAME (macro) 106, 232
gethostent() 107
GETHOSTID (call) 422
GETHOSTID (macro) 235
gethostid() 108
GETHOSTNAME (call) 423
GETHOSTNAME (macro) 237
gethostname() 108
GetHostNumber 704
GetHostResol 704
GetHostString 705
GetIBMopt 109
GETIBMOPT (call) 424

GETIBMOPT (macro) 239
GetIBMSockopt 110
GetIdentity 705
getnetbyaddr() 111
getnetbyname() 112
getnetent() 113
GetNextNote 706
GETPEERNAME (call) 430
GETPEERNAME (macro) 246
getpeername() 113
getprotobyname() 114
getprotobynumber() 115
getprotoent() 115
getservbyname() 116
getservbyport() 117
getservent() 117
GetSmsg 706
GETSOCKNAME (call) 432
GETSOCKNAME (macro) 249
getsockname() 118
GETSOCKOPT (call) 434
GETSOCKOPT (macro) 252
getsockopt() 119
GIVESOCKET (call) 450
GIVESOCKET (macro) 269
givesocket() 123
GLOBAL (macro) 271
guidelines for using socket types 6

H
Handle (Pascal) 707
header files

C sockets
in.h 11, 95, 96
saiucv.h 96, 100

general, tcperrno.h 161
Pascal 690, 691

HiperSockets Accelerator 121
hisdesc parameter on C socket call, takesocket() 160
host lookup routines 699
HOSTADDR parameter on call interface, on
GETHOSTBYADDR 418
HostAddress parameter on TCP/UDP/IP (Pascal), on Handle
707
HOSTADR parameter on macro socket interface, on
GETHOSTBYADDR 231
HOSTENT parameter on call socket interface

on GETHOSTBYADDR 418
on GETHOSTBYNAME 421

HOSTENT parameter on macro socket interface
on GETHOSTBYADDR 231
on GETHOSTBYNAME 234

HOSTENT structure interpreter parameters, on EZACIC08
530
hostname parameter on TCP/UDP/IP (Pascal), on GetIdentity
705
hostnumber parameter on TCP/UDP/IP (Pascal)

on GetHostNumber 704
on GetHostResol 704, 705

how parameter on C socket call, on shutdown() 156
HOW parameter on call interface, on SHUTDOWN 516
HOW parameter on macro interface, on SHUTDOWN 347
htonl() 125

Index 821

htons() 125

I
IBM Software Support Center, contacting xxvi
IDENT parameter on call interface, INITAPI call 456
IDENT parameter on macro interface, INITAPI call 278
IMS (information management system) sockets

general description 7
in parameter on C socket calls

on inet_lnaof() 127
on inet_netof() 128
on inet_ntoa() 129

IN-BUFFER parameter on call interface, EZACIC05 call 527
inet_addr() 126
inet_lnaof() 127
inet_makeaddr() 127
inet_netof() 127
inet_network() 128
inet_ntoa() 128
INET6_IS_SRCADDR (call) 452
INET6_IS_SRCADDR(macro) 272
inetdesc parameter on maxdesc(), C socket call 132
Information APARs xxx
information management system socket interface, general
description, see also IMS 7
INITAPI(call) 455
INITAPI(macro) 275
initialization procedures, TCP/UDP/IP (Pascal) 698
interface, C socket 5
internet control message protocol (ICMP) 5
internet domain, addressing sockets 8
Internet, finding z/OS information online xxxii
InternetAddress parameter on TCP/UDP/IP (Pascal)

procedure
on SayInAd 714
on SayIntNum 715

internetwork, protocol layer 5
IOCTL (call) 457
IOCTL (macro) 279
ioctl() 129
iov parameter on C socket calls

on readv() 135
on writev() 163

IOV parameter on call socket interface
on READV 473
on WRITEV 524

IOV parameter on macro socket interface
on RECVMSG 308
on SENDMSG 323
on WRITEV 358

iovcnt parameter on C socket calls
on readv() 135
on writev() 163

IOVCNT parameter on call socket interface
on READV 474
on RECVMSG 482
on SENDMSG 496
on WRITEV 524

IOVCNT parameter on macro socket interface
on READV 298
on RECVMSG 309
on SENDMSG 324
on WRITEV 359

IPv6 programs 61
iQDIO 121
IsLocalAddress 707
IsLocalHost 708
iterative server socket programs 13

J
JCL

non-reentrant modules
compiling 87
linking 88
running 88

reentrant modules
compiling 89
prelinking and linking 90
running 90

K
keyboard 801

L
language syntax, C socket call 93
len parameter on C socket calls

on read() 134
on recv() 136
on recvfrom() 138
on send() 145
on sendto() 147
on write() 162

LENGTH parameter on call socket interface
on EZACIC04 526
on EZACIC05 527
on EZACIC14 534
on EZACIC15 535

length parameter on TCP/UDP/IP (Pascal) procedure
on MonQuery 709
on PingRequest 709
on UdpSend 729

level parameter on C socket calls
on getibmsockopt() 110
on getsockopt() 119
on setibmsockopt() 150
on setsockopt() 153

libraries
Data Set 19
sockets and pascal API 92

license, patent, and copyright information 805
listen () 131
LISTEN (call) 466
LISTEN (macro) 288
Listening (Pascal) 691
lna parameter on inet_makeaddr(), C socket call 127
LocalSocket 693
LocalSocket parameter on TCP/UDP/IP (Pascal), on UdpOpen
727
loopback, test address 19

M
macro instruction interface for assembler programs 193

822 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

macro instructions for assembler programs
ACCEPT 202
BIND 206
BIND2ADDRSEL 209
CANCEL 212
CLOSE 213
CONNECT 215
GETCLIENTID 228
GETDHOSTBYNAME 232
GETHOSTID 235
GETHOSTNAME 237
GETIBMOPT 239
GETPEERNAME 246
GETSOCKNAME 249
GETSOCKOPT 252
GIVESOCKET 269
GLOBAL 271
INET6_IS_SRCADDR 272
INITAPI 275
IOCTL 279
LISTEN 288
READV 296
RECV 298
RECVFROM 302
RECVMSG 306
SELECT 310
SELECTEX 314
SEND 319
SENDMSG 321
SENDTO 325
SETSOCKOPT 328
SHUTDOWN 346
SOCKET 348
TAKESOCKET 351
TASK 353
TERMAPI 354
WRITE 355
WRITEV 357

macro interface sample Assembler language programs 359
mainframe

education xxx
MANIFEST.H header file 92
maxdesc() 132
maximum number of sockets 10
MAXSNO parameter on call interface, INITAPI call 456
MAXSNO parameter on macro interface, INITAPI call 278
MAXSOC parameter on call socket interface

on INITAPI 456
on SELECT 485
on SELECTEX 490

MAXSOC parameter on macro socket interface
on INITAPI 277
on SELECT 313
on SELECTEX 317

MISCSERV (miscellaneous server) 19
monitor procedures 698
MonQuery 708
Motorola-style byte ordering 9
msg parameter on C socket calls

on recvmsg() 139
on send() 145
on sendmsg() 145
on sendto() 147

MSG parameter on call socket interface

MSG parameter on call socket interface (continued)
on RECVMSG 481
on SENDMSG 495

MSG parameter on macro call interface
on RECVMSG 307, 323

multicast programs 63

N
name parameter on C socket calls

on bind() 96
on connect() 100
on gethostbyname() 106
on gethostname() 109
on getnetbyname() 112
on getpeername() 114
on getprotobyname() 114
on getservbyname() 116
on getsockname() 119
on recvfrom() 138

NAME parameter on call socket interface
on ACCEPT 396
on BIND 398
on BIND2ADDRSEL 401
on CONNECT 405
on GETHOSTBYNAME 421
on GETHOSTNAME 424
on GETPEERNAME 431
on GETSOCKNAME 433
on INET6_IS_SRCADDR 453
on RECVFROM 478

NAME parameter on macro interface
on ACCEPT 204
on BIND 207
on BIND2ADDRSEL 210
on CONNECT 216
on GETHOSTBYNAME 234
on GETHOSTNAME 238
on GETPEERNAME 247
on GETSOCKNAME 250
on INET6_IS_SRCADDR 273
on RECVFROM 304
on SENDTO 327

Name parameter on TCP/UDP/IP (Pascal) procedure
on GetHostNumber 704
on GetHostResol 704
on GetHostString 705
on IsLocalHost 708

namelen parameter on C socket calls
on bind() 96
on connect() 100
on gethostname() 109
on getpeername() 114
on recvfrom() 138

NAMELEN parameter on call socket interface
on GETHOSTBYNAME 421
on GETHOSTNAME 423

NAMELEN parameter on macro socket interface
on GETHOSTBYNAME 234
on GETHOSTNAME 238

NBYTE parameter on call socket interface
on READ 472
on RECV 475
on RECVFROM 478

Index 823

NBYTE parameter on call socket interface (continued)
on SEND 492
on SENDTO 498
on WRITE 522

NBYTE parameter on macro socket interface
on RECV 300
on RECVFROM 303
on SEND 320
on SENDTO 326
on WRITE 356

net parameter on C socket call
on getnetbyaddr() 111
on inet_makeaddr() 127

NETSTAT command 692
network concentrator function 121
NewNameOfTCP parameter on TCP/UDP/IP (Pascal), on
TcpNameChange 722
nfds parameter on C socket calls

on select() 140
on selectex() 143

non-reentrant modules, compiling and link-editing 86
NONEXISTENT (Pascal) 691
Note parameter on TCP/UDP/IP (Pascal), on GetNextNote
706
Notification parameter on TCP/UDP/IP (Pascal), on
SayNoeEn 715
notification record (Pascal) 693
Notifications parameter on TCP/UDP/IP (Pascal)

on Handle 707
on Unhandle 729

NotificationTag (Pascal) 695
NS parameter on macro interface

on ACCEPT 205
on SOCKET 350
on TAKESOCKET 353

ntohl() 133
ntohs() 133
number of sockets, maximum 10
NumPackets parameter on TCP/UDP/IP (Pascal), on
RawIpSend 713

O
obey file 6
onoff parameter on C socket calls

on sock_debug() 157
on sock_do_teststor() 157

OPEN (Pascal) 691
OpenAttemptTimeout 692
OptionName parameter on TCP/UDP/IP (Pascal), on
TcpOption 724
options, getsockopt(), C socket call 120, 122, 153
OptionValue parameter on TCP/UDP/IP (Pascal), on
TcpOption 724
optlen parameter on C socket calls

on getibmsockopt() 111
on getsockopt() 119
on setibmsockopt() 150
on setsockopt() 153

optname parameter on C socket calls
on getibmsockopt() 110
on getsockopt() 119
on setibmsockopt() 150
on setsockopt() 153

optval parameter on C socket calls
on getibmsockopt() 110
on getsockopt() 119
on setibmsockopt() 150
on setsockopt() 153

organizing TCP/IP application program 13
OUT-BUFFER parameter on call interface, on EZACIC04 526
OUT-BUFFER parameter on call interface, on EZACIC14 534
OUT-BUFFER parameter on call interface, on EZACIC15 535

P
parameters common, macro interface

'value' 197
(reg) 197
*indaddr 197
address 197

Pascal
assembler calls 699
asynchronous communication 689
Compiler, IBM VS Pascal and Library 690
connection information record 692
connection state type 691
data structures 691
file specification record 697
include files

tcperrno.h 91
notification record 693
notifications 698
procedure call usage 698
return codes 699
software requirements 690
TCP/UDP/IP 689

Pascal procedure calls
AddUserNote 701
BeginTcpIp 702
ClearTimer 702
CreateTimer 703
DestroyTimer 703
EndTcpIp 703
GetHostNumber 704
GetHostResol 704
GetHostString 705
GetIdentity 705
GetNextNote 706
GetSmsg 706
Handle 707
IsLocalAddress 707
IsLocalHost 708
MonQuery 708
PingRequest 709
RawIpClose 710
RawIpOpen 710
RawIpReceive 711
RawIpSend 712
ReadXlateTable 713
SayCalRe 714
SayConSt 714
SayIntAd 714
SayIntNum 715
SayNotEn 715
SayPorTy 715
SayProTy 716
SetTimer 716

824 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Pascal procedure calls (continued)
TcpAbort 716
TcpClose 717
TcpFReceive, TcpReceive, TcpWaitReceive 718
TcpFSend, TcpSend, TcpWaitSend 720
TcpNameChange 722
TcpOpen, TcpWaitOpen 722
TcpOption 724
TcpStatus 725
UdpClose 726
UdpNReceive 726
UdpOpen 727
UdpReceive 728
UdpSend 728
Unhandle 729

Pascal sockets 7
pending activity 38
pending exception 41
pending read 41
performance 6
perror(), UNIX function 161
PING 698
PingRequest 709
PINGresponse (Pascal) 696
PL/I programs, required statement 393
port parameter on getservbyport – C socket call 117
Port parameter on TCP/UDP/IP (Pascal), on SayPorTy 715
ports, well known 8
POSIX standard

using z/OS UNIX C sockets API with 7
prerequisite information xxx
program variable definitions, call interface

assembler definition 394
COBOL PIC 394
PL/I declare 394
VS COBOL II PIC 394

programming with sockets 5
programs

IPv6 61
multicast 63

programs, client and server 13
proto parameter on C socket calls

on getprotobynumber() 115
on getservbyname() 116
on getservbyport() 117

PROTO parameter on call interface, on SOCKET 518
PROTO parameter on macro interface, on SOCKET 350
Protocol (Pascal) 694
protocol parameter on C socket call, on socket() 158
Protocol parameter on TCP/UDP/IP (Pascal), on SayProTy
716
ProtocolNo parameter on TCP/UDP/IP (Pascal) procedure

on RawIpClose 710
on RawIpOpen 711
on RawIpReceive 711
on RawIpSend 712

prototyping 93
PushFlag parameter on TCP/UDP/IP (Pascal), on TcpFSend,
TcpSend, TcpWaitSend 721

Q
QueryRecord parameter on TCP/UDP/IP (Pascal), on
MonQuery 709

R
Raw Ip Interface 698
raw sockets 5
RawIpClose (Pascal) 710
RawIpOpen (Pascal) 710
RAWIPpacketsDELIVERED (Pascal) 696
RawIpReceive (Pascal) 711
RawIpSend (Pascal) 712
RAWIPspaceAVAILABLE (Pascal) 696
READ (call) 471
READ (macro) 294
read() 134
readfds parameter on C socket calls

on select() 141
on selectex() 143

READV (call) 472
READV (macro) 296
readv() 135
ReadXlateTable 713
RECEIVINGonly (Pascal) 691
RECV (call) 474
RECV (macro) 298
recv() 136
RECVFROM (call) 476
RECVFROM (macro) 302
recvfrom() 137
RECVMSG (call) 479
RECVMSG (macro) 306
recvmsg() 138
reentrant modules, compiling and link-editing 88
REQARG and RETARG parameter on call socket interface

on FCNTL 407
on IOCTL 464

REQARG parameter on macro socket interface
on FCNTL 220
on IOCTL 285

RESOLVE_VIA_LOOKUP, on C socket call 102, 106, 107
RESOURCESavailable (Pascal) 696
Result parameter on TCP/UDP/IP (Pascal), on GetIdentity
706
RETARG parameter on call interface, on IOCTL 465
RETARG parameter on macro interface, IOCTL call 285
RETCODE parameter on call socket interface

on ACCEPT 397
on BIND 399
on BIND2ADDRSEL 402
on CLOSE 403
on CONNECT 406
on EZACIC06 528
on FCNTL 407
on GETCLIENTID 417
on GETHOSTBYADDR 418
on GETHOSTBYNAME 421
on GETHOSTID 423
on GETHOSTNAME 424
on GETIBMOPT 426
on GETPEERNAME 432
on GETSOCKNAME 434
on GETSOCKOPT 435
on GIVESOCKET 452
on INET6_IS_SRCADDR 454
on INITAPI 457
on IOCTL 465

Index 825

RETCODE parameter on call socket interface (continued)
on LISTEN 467
on READ 472
on READV 474
on RECV 476
on RECVFROM 479
on RECVMSG 482
on SELECT 486
on SELECTEX 491
on SEND 493
on SENDMSG 496
on SENDTO 499
on SETSOCKOPT 501
on SHUTDOWN 517
on SOCKET 519
on TAKESOCKET 520
on WRITE 522
on WRITEV 524

RETCODE parameter on macro socket interface
on ACCEPT 205
on BIND 208
on BIND2ADDRSEL 211
on CANCEL 213
on CLOSE 214
on CONNECT 217
on FCNTL 220, 221, 228, 409, 416
on GETCLIENTID 230
on GETHOSTBYADDR 231
on GETHOSTID 236
on GETHOSTNAME 238
on GETIBMOPT 242
on GETPEERNAME 248
on GETSOCKNAME 251
on GETSOCKOPT 254, 331
on GIVESOCKET 271
on GRTHOSTBYNAME 234
on INET6_IS_SRCADDR 275
on INITAPI 278
on IOCTL 287
on LISTEN 289
on READV 298
on RECV 301
on RECVFROM 305
on RECVMSG 309
on SELECT 313
on SELECTEX 317
on SEND 321
on SENDMSG 324
on SENDTO 328
on SHUTDOWN 347
on TAKESOCKET 353
on WRITE 357
on WRITEV 359

return codes
C sockets 94, 745
call interface 395
macro and call interface 756
macro interface 197
socket 745

return values, code dependency 91
ReturnCode parameter on TCP/UDP/IP (Pascal) procedure

on AddUserNote 702
on BeginTcpip 702
on GetNextNote 706

ReturnCode parameter on TCP/UDP/IP (Pascal) procedure (continued)
on Handle 707
on IsLocalAddress 707
on MonQuery 708
on Pingrequest 710
on RawIpClose 710
on RawIpOpen 711
on RawIpReceive 712
on RawIpSend 713
on ReadXlateTable 713
on TcpAbort 717
on TcpClose 717
on TcpFReceive, TcpReceive, TcpWaitReceive 719
on TcpFSend, TcpSend, TcpWaitSend 721
on TcpOpen, TcpWaitOpen 723
on TcpOption 724
on TcpStatus 725
on UdpClose 726
on UdpNReceive 727
on UdpOpen 727
on UdpReceive 728
on UdpSend 729
on Unhandle 730

REXX sockets
general description 7

RFC (request for comments)
accessing online xxxii

RRETMSK parameter on call interface, on SELECT 486
RSNDMSK parameter on call interface, on SELECT 485
RTL functions

and return codes 91
built-in 91

S
S, defines socket descriptor on C socket call

on accept() 94
on bind() 96
on close() 99
on connect() 99
on fcntl() 103
on getibmsockopt() 110
on getpeername() 114
on getsockname() 116
on getsockopt() 119
on ioctl() 129
on listen() 131
on read() 134
on readv() 135
on recv() 136
on recvfrom() 138
on recvmsg() 139
on send() 144
on sendmsg() 145
on sendto() 147
on setibmsockopt() 150
on setsockopt() 153
on shutdown() 156
on tcperror() 161
on write() 162
on writev() 163

S, defines socket descriptor on macro interface
on ACCEPT 204
on BIND 207

826 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

S, defines socket descriptor on macro interface (continued)
on BIND2ADDRSEL 210
on CLOSE 214
on CONNECT 216
on FCNTL 219, 221, 223, 224, 243, 408, 410, 411, 427
on GETPEERNAME 247
on GETSOCKNAME 250
on GETSOCKOPT 254, 331
on GIVESOCKET 270
on IOCTL 281
on LISTEN 289
on READV 297
on RECV 300
on RECVFROM 303
on RECVMSG 307, 323
on SEND 320
on SENDTO 326
on SHUTDOWN 347
on WRITE 356
on WRITEV 358

S, defines socket descriptor on socket call interface
on ACCEPT 396
on BIND 398
on BIND2ADDRSEL 401
on CLOSE 403
on CONNECT 405
on FCNTL 407
on GETPEERNAME 431
on GETSOCKNAME 433
on GETSOCKOPT 435
on GIVESOCKET 451
on IOCTL 458
on LISTEN 467
on READ 472
on READV 473
on RECV 475
on RECVFROM 477
on RECVMSG 481
on SEND 492
on SENDMSG 495
on SENDTO 498
on SETSOCKOPT 500
on SHUTDOWN 516
on WRITE 522
on WRITEV 524

sample programs
C socket

TCP client 165
TCP server 166
UDP client 170
UDP server 168

call interface
CBLOCK, PL/I 548
client, PL/I 539
server, PL/I 536

IUCV sockets
client, C language 44, 742
server, C language 44, 735
subtask, C language 44, 740

macro interface
client, assembler language 366
server, assembler language 359

TCP/UDP/IP Pascal 730
SayCalRe 714

SayConSt 714
SayIntAd 714
SayIntNum 715
SayNotEn 715
SayPorTy 715
SayProTy 716
SCEERUN 91
SELECT (call) 483
SELECT (macro) 310
select mask 38
select, server, socket call, general 37
select() 140
SELECTEX (call) 486
SELECTEX (macro) 314
selectex() 143
selecting sockets 5
SEND (call) 491
SEND (macro) 319
send() 144
SENDINGonly 691
SENDMSG (call) 493
SENDMSG (macro) 321
sendmsg() 145
SENDTO (call) 497
SENDTO (macro) 325
sendto() 147
server

allocate() 23
select() 37

sethostent() 148
setibmopt() 149
setibmsockopt() 150
setnetent() 151
setprotoent() 152
setservent() 152
SETSOCKOPT (call) 499
SETSOCKOPT (macro) 328
setsockopt() 152
SetTimer 716
shortcut keys 801
shouldwait parameter on TCP/UDP/IP (Pascal), on
GetNextNote 706
SHUTDOWN (call) 515
SHUTDOWN (macro) 346
shutdown() 156
smsg parameter on TCP/UDP/IP (Pascal), on GetSmsg 706
SMSGreceived (Pascal) 696
SO_BULKMODE, on C socket calls. 110
SO_NONBLOCKLOCAL, on C socket calls. 110
Sock_debug() 157
SOCK_DGRAM 6
Sock_do_teststor() 157
SOCK_RAW 6
SOCK_STREAM 95
SOCKET (call) 517
SOCKET (macro) 348
socket call syntax, C 93
socket definition 5
socket libraries

Native TCP/IP environment 7
UNIX environment 7

socket return codes 745
socket service types

datagram socket 5

Index 827

socket service types (continued)
raw socket 5
stream socket 5

socket() 158
sockets

addresses 10, 91
connected 16, 56
data transfer 6
domain parameter 23
guidelines for using 6
header files

MANIFEST.H 92
SOCKET.H 131

implementation 91
interface

datagram 5
raw 5
stream 5
transaction 5

library 92
performance 6
protocol parameter 23
TCP socket 15
type parameter 23
typical TCP socket session 15
typical UDP socket session 16
UDP socket 16
unconnected 16

sockets concepts 4
Sockets Extended

definition of call instruction API 7
definition of macro API 7

sockets programming 5
sockets, maximum number 10
SOCRECV parameter on call interface, TAKESOCKET call 520
SOCRECV parameter on macro interface, TAKESOCKET call
353
SOCTYPE parameter on call interface, on SOCKET 518
SOCTYPE parameter on macro interface, on SOCKET 349
softcopy information xxx
software requirements, Pascal 690
SOL_SOCKET, on C socket calls. 110, 119, 153
state parameter on TCP/UDP/IP (Pascal), on SayConSt 714
storage definition, macro interface

STORAGE=CSECT on EZASMI 196
STORAGE=DSECT on EZASMI 196, 271, 353

STORAGE parameter on macro interface
on GLOBAL call 272
on TASK call 354

stream sockets 5
strerror() 91
structures, C 93
SUBTASK parameter on call interface, INITAPI call 456
SUBTASK parameter on macro interface, INITAPI call 277
Success parameter on TCP/UDP/IP (Pascal), on GetSmsg
707
summary of changes xxxv
syntax diagram, how to read xxvii
syntax, C socket call 93
system errors, printing 85

T
T parameter on TCP/UDP/IP (Pascal) procedure

T parameter on TCP/UDP/IP (Pascal) procedure (continued)
on ClearTimer 703
on CreateTimer 703
on DestroyTimer 703
on SetTimer 716

TableName parameter on TCP/UDP/IP (Pascal), on
ReadXlateTable 713
TAKESOCKET (call) 519
TAKESOCKET (macro) 351
takesocket() 160
TASK (macro) 353
task management, macro calls 199
TCP

communication procedures (PASCAL) 698
socket session 15

TCP/IP
online information xxxii
protocol specifications 781

TCP/IP concepts 3
TCP/UDP/IP API (pascal language) 689
TCP/UDP/IP initialization procedures (Pascal) 698
TCP/UDP/IP termination procedure (Pascal) 698
TcpAbort (Pascal) 716
TcpClose (Pascal) 717
tcperror() 161
TcpFReceive (Pascal) 718
TcpFSend (Pascal) 720
TcpIpServiceName parameter on TCP/UDP/IP (Pascal), on
GetIdentity 706
TcpNameChange 722
TcpOpen (Pascal) 722
TcpOption (Pascal) 724
TcpReceive (Pascal) 718
TcpSend (Pascal) 720
tcpserror() 91
TcpStatus (Pascal) 725
TcpWaitOpen (Pascal) 722
TcpWaitReceive 718
TcpWaitSend (Pascal) 720
Technotes xxx
TERMAPI (call) 521
TERMAPI (macro) 354
test address, loopback 19
test tools

Character Generator 19
Discard 19
Echo 19
loopback address 19
miscellaneous server (MISCSRV) 19

timeout parameter on C socket calls
on select() 141
on selectex() 143

TIMEOUT parameter on call interface, on SELECT 485
TIMEOUT parameter on call socket interface

on SELECTEX 490
TIMEOUT parameter on macro interface, on SELECT 313
TIMEOUT parameter on macro socket interface

on SELECTEX 318
Timeout parameter on TCP/UDP/IP (Pascal), on PingRequest
709
Timer Routines 699
TIMERexpired (Pascal) 696
to parameter on C socket calls 147
tolen parameter on C socket calls 148

828 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

totdesc parameter on C socket calls 132
trademark information 808
transaction sockets 5
transferring data between sockets 51
TranslateTableSpec parameter on TCP/UDP/IP (Pascal), on
ReadXlateTable 713
transport, protocol layer 5
TRYINGtoOPEN (Pascal) 691
type parameter on C socket call

on getnetbyaddr() 111
on socket() 158

typical TCP socket session 15
typical UDP socket session 16

U
U4093, user abend 761
UDP

communication procedures 698
socket session 16

UdpClose (Pascal) 726
UDPdatagramDELIVERED (Pascal) 696
UDPdatagramSPACEavailable (Pascal) 697
UdpNReceive 726
UdpOpen (Pascal) 727
UdpReceive (Pascal) 728
UdpSend (Pascal) 728
Unhandle (Pascal) 729
UnpackedBytes 692
unsolicited event exit 201
urgentflag parameter on TCP/UDP/IP (Pascal) procedure, on
TcpFSend, TcpSend, TcpWaitSend 721
URGENTpending (Pascal) 697
use of HOSTENT structure interpreter, EZACIC08 529
user abend U4093 761
USERdefinedNOTIFICATION (Pascal) 697
userid parameter on TCP/UDP/IP (Pascal), on GetIdentity
705
using socket implementation 91
utility programs

EZACIC04 525
EZACIC05 526
EZACIC06 527
EZACIC08 529
EZACIC14 534
EZACIC15 535

V
Versatile Message Transfer Protocol (VMTP) 5
VTAM, online information xxxii

W
WRETMSK parameter on call interface, on SELECT 486
WRITE (call) 521
WRITE (macro) 355
write() 162
writefds parameter on C socket calls

on select() 141
on selectex() 143

WRITEV (call) 523
WRITEV (macro) 357

writev() 163
WSNDMSK parameter on call interface, on SELECT 486

X
X/Open Transport Interface (XTI)

fnctl() 176
RFC1006 173
select() 176
selectex() 176
t_accept() 175
t_bind() 174
t_close() 175
t_connect() 175
t_error() 176
t_getinfo() 176
t_getstate() 176
t_listen() 175
t_look() 175
t_open() 174
t_rcv() 175
t_rcvconnect() 175
t_rcvdis() 175
t_snd() 175
t_snddis() 175
t_unbind() 175

XPG4 standard
using z/OS UNIX C sockets API with 7

XTI call library 173
XTI management services 173

Z
z/OS Basic Skills Information Center xxx
z/OS UNIX return codes 756
z/OS, documentation library listing 809

Index 829

830 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

Communicating your comments to IBM

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page 831.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Documentation function
If your comment or question is about the IBMDocumentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The title and order name of the document, and the version of z/OS Communications Server
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2000, 2020 831

https://www.ibm.com/developerworks/rfe/
https://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

832 z/OS Communications Server: z/OS V2R4.0 Communications Server: IP Sockets Application Programming
Interface Guide and Reference

IBM®

Product Number: 5650-ZOS

SC27-3660-40

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	How to contact IBM service

	Conventions and terminology that are used in this information
	How to read a syntax diagram
	Prerequisite and related information

	Summary of changes for IP Sockets Application Programming Interface Guide and Reference
	Changes made in z/OS Communications Server Version 2 Release 4
	Changes made in z/OS Communications Server Version 2 Release 3
	Changes made in z/OS Version 2 Release 2

	Part 1. Overview
	Chapter 1. Introducing TCP/IP concepts
	TCP/IP concepts
	Understanding sockets concepts
	Introducing TCP/IP concepts: Programming with sockets
	Introducing TCP/IP concepts: Selecting sockets
	Introducing TCP/IP concepts: Socket libraries
	Native TCP/IP
	UNIX

	Introducing TCP/IP concepts: Address families
	Introducing TCP/IP concepts: Addressing sockets in an Internet domain
	Internet addresses
	Ports
	Network byte order
	Maximum number of sockets
	AF_INET socket addresses in an Internet domain
	AF_INET6 socket addresses in an Internet domain

	Chapter 2. Organizing a TCP/IP application program
	Client and server socket programs
	Client/server socket programs: Iterative server socket programs
	Client/server socket programs: Concurrent server socket programs

	Client/server socket programs: Call sequence in socket programs
	Call sequence in stream socket sessions
	Call sequence in datagram socket sessions

	Client/server socket programs: Blocking, nonblocking, and asynchronous socket calls
	Client/server socket programs: Testing a program using a miscellaneous server
	Client/server socket programs: Testing a local machine using a loopback address
	Client/server socket programs: Accessing required data sets

	Part 2. Designing programs
	Chapter 3. Designing an iterative server program
	Allocating sockets in an iterative server program
	Binding sockets in an iterative server program
	Binding with a known port number
	Binding using socket call gethostbyname
	Binding a socket to a specific port number

	Listening for client connection requests in an iterative server program
	Accepting client connection requests in an iterative server program
	Transferring data between sockets in an iterative server program
	Closing a connection in an iterative server program
	Active and passive closing in an iterative server program
	Shutdown call in an iterative server program
	Linger option in an iterative server program

	Chapter 4. Designing a concurrent server program
	Concurrent servers in native MVS environment
	MVS subtasking considerations in a concurrent server program
	Access to shared storage areas in a concurrent server program
	Data set access in MVS
	Task and workload management in a concurrent server program
	Security considerations in a concurrent server program
	Reentrant code in a concurrent server program

	Understanding the structure of a concurrent server program
	Selecting requests in a concurrent server program
	Client connection requests in a concurrent server program
	Passing sockets in a concurrent server program
	givesocket and takesocket
	Giving a socket to a subtask
	Taking sockets from the main process

	Transferring data between sockets in a concurrent server program
	Closing a concurrent server program

	Chapter 5. Designing a client program
	Allocating a socket in a client program
	Connecting to a server in a client program
	Transferring data between sockets in a client program
	Closing a client program

	Chapter 6. Designing a program to use datagram sockets
	Datagram socket characteristics
	Understanding datagram socket program structure
	Allocating a datagram socket
	Binding datagram sockets to port numbers
	Streamline data transfer using connect call
	Transferring data between datagram sockets

	Chapter 7. Transferring data between sockets
	Transferring data between sockets: Streams and messages
	Transferring data between sockets: Data representation
	Using send() and recv() calls
	The send() and recv() call conversation
	Using socket calls in a network application
	Reading and writing data from and to a socket

	Using sendto() and recvfrom() calls

	Chapter 8. Designing IPv6 programs
	Chapter 9. Designing multicast programs
	Designing multicast programs: Multicast source filters
	Designing multicast programs: IPv4 multicast options
	IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP
	IP_ADD_SOURCE_MEMBERSHIP and IP_DROP_SOURCE_MEMBERSHIP
	IP_BLOCK_SOURCE and IP_UNBLOCK_SOURCE
	IP_MULTICAST_IF
	IP_MULTICAST_LOOP
	IP_MULTICAST_TTL

	Designing multicast programs: IPv6 multicast options
	IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP
	IPV6_MULTICAST_IF
	IPV6_MULTICAST_LOOP
	IPV6_MULTICAST_HOPS

	Designing multicast programs: Protocol-independent multicast options
	MCAST_JOIN_GROUP and MCAST_LEAVE_GROUP
	MCAST_JOIN_SOURCE_GROUP and MCAST_LEAVE_SOURCE_GROUP
	MCAST_BLOCK_SOURCE and MCAST_UNBLOCK_SOURCE

	Designing multicast programs: IOCTL multicast commands
	SIOCGIPMSFILTER
	SIOCGMSFILTER
	SIOCSIPMSFILTER
	SIOCSMSFILTER

	Part 3. Application program interfaces
	Chapter 10. C Socket application programming interface
	Compiler restrictions with C applications
	Compiling and linking C applications
	C application compatibility considerations
	C socket API: Non-reentrant modules
	C socket API: Reentrant modules

	C program compiler messages
	C program abends
	C socket implementation
	C socket header files
	Manifest.h header file
	Prototyping

	C structures
	C socket API error messages and return codes
	C socket calls
	accept()
	bind()
	close()
	connect()
	endhostent()
	endnetent()
	endprotoent()
	endservent()
	fcntl()
	getclientid()
	getdtablesize()
	gethostbyaddr()
	gethostbyname()
	gethostent()
	gethostid()
	gethostname()
	getibmopt()
	getibmsockopt()
	getnetbyaddr()
	getnetbyname()
	getnetent()
	getpeername()
	getprotobyname()
	getprotobynumber()
	getprotoent()
	getservbyname()
	getservbyport()
	getservent()
	getsockname()
	getsockopt()
	givesocket()
	htonl()
	htons()
	inet_addr()
	inet_lnaof()
	inet_makeaddr()
	inet_netof()
	inet_network()
	inet_ntoa()
	ioctl()
	listen()
	maxdesc()
	ntohl()
	ntohs()
	read()
	readv()
	recv()
	recvfrom()
	recvmsg()
	select()
	selectex()
	send()
	sendmsg()
	sendto()
	sethostent()
	setibmopt()
	setibmsockopt()
	setnetent()
	setprotoent()
	setservent()
	setsockopt()
	shutdown()
	sock_debug()
	sock_do_teststor()
	socket()
	takesocket()
	tcperror()
	write()
	writev()

	Sample C socket programs
	Executing TCPS and TCPC modules
	Executing UDPS and UDPC modules
	C socket TCP client
	C socket TCP server
	C socket UDP server
	C socket UDP client

	Chapter 11. X/Open Transport Interface
	XTI software requirements
	What is provided with XTI
	How XTI works in the z/OS environment
	Creating an application using the XTI protocol
	Coding XTI calls
	Coding XTI calls: Initializing a transport endpoint
	Coding XTI calls: Establishing a connection
	Coding XTI calls: Transferring data
	Coding XTI calls: Releasing a connection
	Coding XTI calls: Disabling a connection
	Coding XTI calls: Managing events
	Coding XTI calls: Using utility calls
	Coding XTI calls: Using system calls

	Compiling and linking XTI applications using cataloged procedures
	XTICL
	XTIC
	XTIS

	Understanding XTI sample programs
	XTI socket client sample program
	XTI socket server sample program

	Chapter 12. Macro application programming interface
	Sockets API environmental restrictions and programming requirements
	Sockets API input register information
	Sockets API output register information
	Sockets API compatibility considerations
	Defining storage for the macro API
	Understanding common parameter descriptions
	Sockets API error messages and return codes
	Characteristics of sockets
	Task management and asynchronous function processing
	Macro API asynchronous function processing: How it works
	Asynchronous exit environmental and programming considerations

	Using an unsolicited event-exit routine
	Diagnosing problems in applications using the macro API
	Macros for assembler programs
	ACCEPT
	BIND
	BIND2ADDRSEL
	CANCEL
	CLOSE
	CONNECT
	FCNTL
	FREEADDRINFO
	GETADDRINFO
	GETCLIENTID
	GETHOSTBYADDR
	GETHOSTBYNAME
	GETHOSTID
	GETHOSTNAME
	GETIBMOPT
	GETNAMEINFO
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	GIVESOCKET
	GLOBAL
	INET6_IS_SRCADDR
	INITAPI
	IOCTL
	LISTEN
	NTOP
	PTON
	READ
	READV
	RECV
	RECVFROM
	RECVMSG
	SELECT
	Testing sockets
	Read operations
	Write operations
	Exception operations
	Returning the results
	MAXSOC parameter
	TIMEOUT parameter

	SELECTEX
	SEND
	SENDMSG
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	TAKESOCKET
	TASK
	TERMAPI
	WRITE
	WRITEV

	Macro interface assembler language sample programs
	EZASOKAS sample server program for IPv4
	EZASOKAC sample client program for IPv4
	EZASO6AS sample server program for IPv6
	EZASO6AC sample client program for IPv6

	Chapter 13. CALL instruction application programming interface
	CALL instruction API environmental restrictions and programming requirements
	CALL instruction API output register information
	CALL instruction API compatibility considerations
	CALL instruction application programming interface (API)
	Understanding COBOL, Assembler, and PL/I call formats
	COBOL language call format
	Assembler language call format
	PL/I language call format

	Converting parameter descriptions
	Diagnosing problems in applications using the CALL instruction API
	CALL instruction API error messages and return codes
	Code CALL instructions
	ACCEPT
	Parameter values set by the application
	Parameter values returned to the application

	BIND
	Parameter values set by the application
	Parameter values returned to the application

	BIND2ADDRSEL
	Parameter values set by the application
	Parameter values returned to the application

	CLOSE
	Parameter values set by the application
	Parameter values returned to the application

	CONNECT
	Parameter values set by the application
	Parameter values returned to the application

	FCNTL
	Parameter values set by the application
	Parameter values returned to the application

	FREEADDRINFO
	Parameter values set by the application
	Parameter values returned to the application

	GETADDRINFO
	Parameter values set by the application

	GETCLIENTID
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYADDR
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTID
	Parameter values set by the application

	GETHOSTNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETIBMOPT
	Parameter values set by the application
	Parameter values returned to the application

	GETNAMEINFO
	Parameter values set by the application

	GETPEERNAME
	Parameter values set by the application
	Parameter Values Returned to the Application

	GETSOCKNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETSOCKOPT
	GIVESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	INET6_IS_SRCADDR
	Parameter values set by the application
	Parameter values returned to the application

	INITAPI
	Parameter values set by the application
	Parameter values returned to the application

	IOCTL
	Parameter values set by the application
	Parameter values returned to the application

	LISTEN
	Parameter values set by the application
	Parameter values returned to the application

	NTOP
	Parameter values set by the application
	Parameter values returned to the application

	PTON
	Parameter values set by the application
	Parameter values returned to the application

	READ
	Parameter values set by the application
	Parameter values returned to the application

	READV
	Parameter values set by the application
	Parameter values returned to the application

	RECV
	Parameter values set by the application
	Parameter values returned to the application

	RECVFROM
	Parameter values set by the application
	Parameter values returned to the application

	RECVMSG
	Parameter values set by the application
	Parameter values returned to the application

	SELECT
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned to the application

	SELECTEX
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned to the application

	SEND
	Parameter values set by the application
	Parameter values returned to the application

	SENDMSG
	Parameter values set by the application
	Parameter values returned to the application

	SENDTO
	Parameter values set by the application
	Parameter values returned to the application

	SETSOCKOPT
	SHUTDOWN
	Parameter values set by the application
	Parameter values returned to the application

	SOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TAKESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TERMAPI
	Parameter values set by the application

	WRITE
	Parameter values set by the application
	Parameter values returned to the application

	WRITEV
	Parameter values set by the application
	Parameters returned by the application

	Using data translation programs for socket call interface
	Assembler language utility programs call format
	Data translation
	Bit-string processing
	EZACIC04
	EZACIC05
	EZACIC06
	EZACIC08
	EZACIC09
	EZACIC14
	EZACIC15

	Call interface sample programs
	Sample code for IPv4 server program
	Sample program for IPv4 client program
	Sample code for IPv6 server program
	Sample program for IPv6 client program
	Common variables used in PL/I sample programs
	Common variables used in COBOL sample programs
	COBOL call interface sample IPv6 server program
	COBOL call interface sample IPv6 client program

	Chapter 14. REXX socket application programming interface
	Overview
	Supported REXX APIs
	Prerequisites for using REXX sockets
	Format of the REXX socket function and return values
	REXX programming hints and tips
	How structures are represented

	Runtime functions
	ACCEPT
	BIND
	BIND2ADDRSEL
	CLOSE
	CONNECT
	FCNTL
	GETADDRINFO
	GETCLIENTID
	GETDOMAINNAME
	GETHOSTBYADDR
	GETHOSTBYNAME
	GETHOSTID
	GETHOSTNAME
	GETNAMEINFO
	GETPEERNAME
	GETPROTOBYNAME
	GETPROTOBYNUMBER
	GETSERVBYNAME
	GETSERVBYPORT
	GETSOCKNAME
	GETSOCKOPT
	GIVESOCKET
	INET6ISSRCADDR
	INITIALIZE
	IOCTL
	LISTEN
	READ
	RECV
	RECVFROM
	RESOLVE
	SELECT
	SEND
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	SOCKETSET
	SOCKETSETLIST
	SOCKETSETSTATUS
	TAKESOCKET
	TERMINATE
	VERSION
	WRITE

	Sample programs
	Overview of REXX sample programs
	The REXX-EXEC RSCLIENT sample program for IPv4
	The REXX-EXEC RSSERVER sample program for IPv4
	The REXX-EXEC R6CLIENT sample program for IPv6
	The REXX-EXEC R6SERVER sample program for IPv6
	AT-TLS security definitions for REXX samples
	Running the REXX sample programs
	Testing the GIVESOCKET and TAKESOCKET commands

	Chapter 15. Pascal application programming interface
	Steps for Pascal language API procedure calls
	Pascal language API software requirements
	Pascal API header files
	Pascal language API compatibility considerations
	Pascal language API data structures
	Connection state
	Connection information record
	Notification record
	File specification record

	Pascal language API: using procedure calls
	Notifications
	TCP initialization procedures
	TCP termination procedure
	TCP communication procedures
	PING interface
	Monitor procedures
	UDP communication procedures
	Raw IP interface
	Timer routines
	Host lookup routines
	Assembler calls
	Other routines

	Pascal return codes
	Pascal language API procedure calls
	AddUserNote
	BeginTcpIp
	ClearTimer
	CreateTimer
	DestroyTimer
	EndTcpIp
	GetHostNumber
	GetHostResol
	GetHostString
	GetIdentity
	GetNextNote
	GetSmsg
	Handle
	IsLocalAddress
	IsLocalHost
	MonQuery
	PingRequest
	RawIpClose
	RawIpOpen
	RawIpReceive
	RawIpSend
	ReadXlateTable
	SayCalRe
	SayConSt
	SayIntAd
	SayIntNum
	SayNotEn
	SayPorTy
	SayProTy
	SetTimer
	TcpAbort
	TcpClose
	TcpFReceive, TcpReceive, and TcpWaitReceive
	TcpFSend, TcpSend, and TcpWaitSend
	TcpNameChange
	TcpOpen and TcpWaitOpen
	TcpOption
	TcpStatus
	UdpClose
	UdpNReceive
	UdpOpen
	UdpReceive
	UdpSend
	Unhandle

	Sample Pascal program
	Building the sample Pascal API module
	Running the sample module
	Sample Pascal application program

	Appendix A. Multitasking C socket sample program
	Server sample program in C
	The subtask sample program in C
	The client sample program in C

	Appendix B. Socket call error return codes
	System error codes for socket calls
	Sockets return codes (ERRNOs)

	z/OS UNIX return codes
	Additional return codes
	Sockets extended ERRNOs

	User abend U4093

	Appendix C. Address family cross reference
	Appendix D. GETSOCKOPT/SETSOCKOPT command values
	Appendix E. Abbreviations and acronyms
	Appendix F. GETNAMEINFO flags and returned information examples
	Appendix G. Related protocol specifications
	Appendix H. Accessibility
	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Policy for unsupported hardware
	Trademarks

	Bibliography
	Communicating your comments to IBM
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

